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ABSTRACT 16 
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal 17 
filament that coils up to form more compact structures. Chromatin exists in two main forms: 18 
euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, 19 
and heterochromatin, which is condensed and transcriptionally repressed 1-10. It is widely 20 
accepted that chromatin architecture modulates DNA accessibility, restricting the access of 21 
sequence-specific, gene-regulatory, transcription factors to the genome. Here, we measure 22 
genome accessibility at all GATC sites in living human MCF7 and MCF10A cells, using an 23 
adenovirus vector to express the sequence-specific dam DNA adenine methyltransferase. We 24 
find that the human genome is globally accessible in living cells, unlike in isolated nuclei. 25 
Active promoters are methylated somewhat faster than gene bodies and inactive promoters. 26 
Remarkably, both constitutive and facultative heterochromatic sites are methylated only 27 
marginally more slowly than euchromatic sites. In contrast, sites in centromeric chromatin 28 
are methylated slowly and are partly inaccessible. We conclude that all nucleosomes in 29 
euchromatin and heterochromatin are highly dynamic in living cells, whereas nucleosomes 30 
in centromeric α-satellite chromatin are static. A dynamic architecture implies that simple 31 
occlusion of transcription factor binding sites by chromatin is unlikely to be critical for gene 32 
regulation. 33 
 34 
Chromatin consists of repeating units called nucleosomes, which contain ~147 bp of DNA coiled 35 
around a central histone octamer core. The octamer is composed of two molecules each of H2A, 36 
H2B, H3 and H4 11. Nucleosomes are regularly spaced on the DNA, resembling beads on a string. 37 
This nucleosomal filament undergoes additional compaction to form euchromatin or 38 
heterochromatin. In mammalian cells, heterochromatin may be constitutive, involving the same 39 
genomic regions in all cells (typically gene-poor regions composed of short repeated sequences), 40 
such as pericentromeric and telomeric regions, or facultative, involving cell type-specific fully 41 
repressed genes 1-10. Heterochromatin is associated with specific post-translational histone 42 
modifications: constitutive heterochromatin is marked by H3K9me2/3, whereas facultative 43 
heterochromatin is marked by H3K27me3, although there is some overlap 12. Conversely, other 44 
histone marks, such as H3K4me1, H3K4me3, H3K36me3 and H3K27ac, are generally associated 45 
with euchromatin. 46 
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 2 

 The highly condensed nature of heterochromatin suggests that access to the DNA may be 47 
limited or even prevented. However, large proteins and dextrans can penetrate heterochromatin 48 
domains to some extent when injected into living cells, suggesting that heterochromatin may be 49 
accessible 13. Furthermore, heterochromatin protein 1 (HP1), which binds to H3K9me3 in 50 
constitutive heterochromatin, is mobile in living mammalian cells 14,15 and transcription of repeat 51 
sequences in constitutive heterochromatin occurs at low levels 6,16. These data indicate that 52 
constitutive heterochromatin is at least partially accessible some of the time. Liquid-liquid phase 53 
separation may also be important in constitutive heterochromatin, resulting in exclusion of specific 54 
proteins from the heterochromatin phase 9,17-19. These studies have led to a more nuanced view 55 
concerning the accessibility of constitutive heterochromatin. 56 
 57 
 Facultative heterochromatin contains inactive genes that are subject to Polycomb-mediated 58 
repression and are marked by H3K27me3 (reviewed by 10). Genome-wide MNase-seq and ATAC-59 
seq studies on isolated nuclei from various organisms have shown that inactive genes lack 60 
nucleosome-depleted regions (NDRs) at their promoters, unlike active genes. This observation 61 
suggests that nucleosomes prevent transcription factor binding at regulatory elements, such as 62 
promoters and enhancers, resulting in repression 20-24. However, inactive promoters are partially 63 
accessible in mouse liver cell nuclei 25. Although most transcription factors cannot access their 64 
cognate binding sites when incorporated into a nucleosome 20, there is a class of transcription 65 
factor, the "pioneer" factors, which bind to a nucleosomal site with high affinity 26. Pioneer factors 66 
may be critical for initiating the process of nucleosome removal from regulatory elements by 67 
facilitating the binding of other transcription factors and recruitment of ATP-dependent chromatin 68 
remodelers to remove or displace blocking nucleosomes 27-29.  69 

 70 
These observations suggest that nucleosomes play a crucial role in gene regulation by 71 

controlling access to regulatory elements. However, they are based primarily on experiments with 72 
nuclei, which may not be representative of chromatin in living cells. Indeed, we have shown 73 
recently that the budding yeast genome is globally accessible in living cells, except for the point 74 
centromeres and the silenced loci 30. However, budding yeast chromatin is virtually all 75 
euchromatin, and lacks heterochromatin resembling that found in higher eukaryotes, Here, we have 76 
asked whether human euchromatin is generally accessible in living cells, like that of yeast, and 77 
whether human heterochromatin is inaccessible, as might be expected. Surprisingly, we find that 78 
both euchromatin and heterochromatin are generally accessible at the nucleosomal level in living 79 
cells, and that only particular centromeric regions have limited accessibility in vivo. 80 
 81 
Global accessibility in live human cells 82 

We adapted our qDA-seq method to measure genome accessibility in human cells 25,30. 83 
Specifically, we used E. coli dam methyltransferase (Dam) as a probe for the accessibility of GATC 84 
sites in chromatin. Dam methylates the 'A' in GATC to 'm6A'. It is challenging to express Dam 85 
without leaky expression using inducible promoter systems 31. Therefore, we employed an 86 
adenovirus vector to transduce Dam fused to GFP and three HA tags into MCF7 cells (a human 87 
breast cancer cell line). Following transduction, cells were collected at various time points to 88 
monitor the kinetics of genome methylation (Fig. 1a) and of Dam production (Fig. 1b). Genomic 89 
DNA was purified and digested with DpnI, a restriction enzyme that cuts at GATC only if the 'A' 90 
is methylated on both strands. Agarose gel analysis of the extent of DpnI digestion revealed that 91 
the genome became almost fully methylated over time (Fig. 1c; compare with purified control 92 
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unmethylated MCF7 DNA completely digested with MboI, which cuts at unmethylated GATC 93 
sites). Thus, Dam can access a large fraction of the human genome. 94 

 95 
The conclusion that most of the genome is accessible is further supported by genomic 96 

analysis of GATC sites (Fig. 1d). The DpnI-digested DNA was sonicated to small fragments and 97 
subjected to paired-end sequencing. For each GATC site, the fraction methylated is calculated as 98 
the number of left or right DNA fragment ends divided by the coverage of that GATC site (Fig. 99 
1a; see Methods). We calculated the methylation kinetics for each of ~5.9 million GATC sites in 100 
the human genome. To visualise the data for all GATC sites, we plotted the fraction methylated for 101 
the median GATC site, and for all sites within the 5%-95% methylated range, as a function of time 102 
after transduction (Fig. 1d). The median GATC site was ~80% methylated after 72 h and still 103 
trending upwards; 90% of all GATC sites show a similar trend.  104 

 105 
We compared the methylation kinetics of transcriptionally active and inactive genes. 106 

Analysis of published ATAC-seq data for MCF7 cells 32 (Extended Data Fig. 1a) delineated two 107 
gene classes: one with high ATAC signal at the promoter, indicating the presence of an NDR, and 108 
one with low or no ATAC signal, indicating the absence of an NDR (Extended Data Fig. 1a). To 109 
confirm this interpretation, we performed MNase-seq on MCF7 nuclei and sorted the genes 110 
according to ATAC signal (Extended Data Fig. 1a). We observed a clear correlation between ATAC 111 
signal and the presence of a promoter NDR. Published gene expression (RNA-seq) data for MCF7 112 
cells 32 also correlate with ATAC signal (Extended Data Fig. 1a).  113 

 114 
We examined GATC site methylation at active and inactive promoters by plotting the mean 115 

GATC site methylation as a function of distance from the transcription start site (TSS). After 12 h 116 
of transduction, active genes show a weak nucleosome phasing signal that is exactly out of phase 117 
with our nucleosome dyad data (MNase-seq) for MCF7 nuclei (grey profile) (Fig. 1e; Extended 118 
Data Fig. 1b). This suggests that Dam methylation of the linkers and in promoter NDRs is slightly 119 
faster than methylation within the first (+1) and second (+2) nucleosomes. Mean methylation 120 
increases with time, reaching ~90% by 72 h. Promoter NDRs are methylated faster than gene 121 
bodies (Fig. 1e). Inactive genes show the same trend, but are methylated slightly more slowly, 122 
reaching ~83% after 72 h (Fig. 1f; Extended Data Fig. 1b). The methylation rate is almost uniform 123 
across inactive promoter regions, with no phasing; promoters and gene bodies are methylated at 124 
almost the same rate, consistent with the MNase-seq data (Fig. 1f). Nucleosome positioning 125 
appears to be essentially random around inactive promoters. We conclude that both active and 126 
inactive promoter regions are almost entirely accessible to Dam in vivo. 127 

 128 
To determine whether higher transcription renders genes more accessible, we divided the 129 

active genes into quintiles according to their mRNA levels in MCF7 cells 32. Quintile 5 has the 130 
most active genes; inactive genes were placed in a separate group. We observed a small but 131 
reproducible trend of increasing median methylation with increasing transcriptional activity; the 132 
most active genes were methylated marginally faster than the least active genes (Fig. 1g; Extended 133 
Data Fig. 1c). Thus, higher transcription correlates with a modest increase in methylation rate. 134 
However, the overarching conclusion is that both active and inactive genes are accessible to Dam. 135 

 136 
 137 
 138 
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Slow, limited methylation at centromeres 139 
To measure the accessibility of other genomic regions, we compared median methylation 140 

rates for GATC sites in promoters, gene bodies, tRNA genes, enhancers, CpG islands, silencers, 141 
replication origins and centromeres (Fig. 1h) using the hg38 genome annotations 33. All regions 142 
are methylated at similar rates and to high levels, similar to gene bodies, except for the tRNA 143 
genes, which are methylated even faster, and the centromeres, which are methylated much more 144 
slowly and appear to be reaching a limit (Fig. 1h; Extended Data Fig. 1d,e). We quantified the 145 
median methylation rates for the various regions relative to the median for all genomic GATC sites 146 
by plotting the log of the unmethylated fraction as a function of time after transduction (Extended 147 
Data Fig. 1f). Relative methylation rates for promoters, enhancers, silencers and CpG islands were 148 
all slightly faster (1.2 to 1.7x; see replicates) than gene bodies and replication origins (1.0 to 1.1x). 149 
tRNA genes were methylated ~2x faster, whereas centromeres were methylated ~3x more slowly 150 
(0.3/0.4x the genomic median). Thus, the range in median methylation rate is ~8-fold, from 151 
centromeres (slowest) to tRNA genes (fastest). We conclude that all genomic regions examined 152 
are fully accessible, except for the centromeres. 153 

 154 
To search for large regions of relatively inaccessible chromatin at the chromosome level, 155 

we constructed a heat map showing the mean methylation rate for each 100 kb window along each 156 
chromosome. The T2T (Telomere to Telomere) human genome was used for this analysis because 157 
the centromeric regions have been thoroughly annotated 34. The rate was calculated as above, using 158 
the mean methylation for all GATC sites in each window for each time point. We found that 159 
windows of slow methylation tend to cluster predominantly at a few specific regions in each 160 
chromosome (Fig. 2a). Most of these windows are situated within centromeres (Fig. 2a; red 161 
rectangles indicate centromeres). The T2T genome has revealed the complexity of human 162 
centromeres, which make up ~6% of the genome and include many different repeats, including α-163 
satellite repeats, human satellites (HSat1 to 5), β-satellite (βSat), γ-satellite (γSat), as well as non-164 
satellite DNA 35 (Fig. 2b). The α-satellite repeats comprise variants of a ~171 bp repeat, which can 165 
be divided into 20 supra-chromosomal families. Active α-satellite repeats are enriched in 166 
centromeric histone H3 (CENP-A) and associate with the kinetochore. All of these centromeric 167 
regions are methylated more slowly (0.4x to 0.7x) than the genomic average (1.0) (Fig. 2c, d); α-168 
satellite and HSats exhibit the slowest methylation rates (Fig. 2d; Extended Data Fig. 2). We 169 
examined the methylation rates within the CENP-A-enriched active α-satellite SF1, SF2, SF3 and 170 
SF01 supra-chromosomal families (Fig. 2e,f). The SF1 family has the slowest methylation rate 171 
(0.2x) and reaches a limit at < 30% median methylation, indicating that a GATC site located in 172 
SF1 α-satellite DNA is inaccessible in a large fraction of cells. In summary, centromeric GATC 173 
sites are methylated more slowly than other genomic regions in living cells (Fig. 2f). This is 174 
particularly true of the active α-satellite repeats (especially the SF1 family), which are associated 175 
with CENP-A-containing nucleosomes, and are only partially accessible in vivo. 176 
 177 
TAD boundary chromatin is accessible 178 

The loop organisation of chromatin depends on the CTCF transcription factor/insulator-179 
binding protein and cohesin, which together define TAD boundaries 36,37. Consequently, CTCF 180 
binding is expected to be quite stable, which is consistent with the exceptionally good nucleosome 181 
phasing observed on both sides of CTCF binding sites (Fu et al., 2008; Wiechens et al., 2016). We 182 
examined methylation patterns at and around CTCF sites (Fig. 1i). We detected very strong phasing 183 
around CTCF motifs in our Dam data, which is out of phase with nucleosome dyads, as expected 184 
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(cf. the MNase-seq dyad plot, grey profile). Although phasing is strong, the nucleosomal DNA is 185 
still accessible to Dam, since the mean methylation level increases with time, reaching ~85% after 186 
72 h (Fig. 1i; Extended Data Fig. 1g). The plots also imply that the CTCF site is similarly accessible 187 
to Dam, since methylation increases to high levels at the motif, even though the motif is in a small 188 
trough in the methylation profiles (Fig. 1i). However, we note that the CTCF motif itself does not 189 
contain a GATC site; it is therefore unclear whether it is protected from methylation. 190 
 191 
Heterochromatin is accessible in live cells 192 

We asked whether heterochromatin, as defined by specific histone marks, is accessible in 193 
living cells using published ChIP-seq data for MCF7 cells 38. We grouped all GATC sites located 194 
in H3K9me3 peaks (constitutive heterochromatin) or in H3K27me3 peaks (facultative 195 
heterochromatin) and compared their methylation with GATC sites associated with euchromatin 196 
marks (H3K4me1, H3K4me3, H3K27ac and H3K36me3). We observed that GATC sites in 197 
euchromatin are methylated faster than those associated with heterochromatin (Fig. 3a; Extended 198 
Data Fig. 3a). However, the rate difference is no more than ~2-fold: 1.2x - 1.6x the genomic 199 
average for euchromatin; 0.8x and 0.9x for the two heterochromatic states (Fig. 3a; Extended Data 200 
Fig. 3a). Most importantly, these heterochromatic regions are fully accessible to Dam. 201 

 202 
In a more sophisticated approach, we compared methylation rates in euchromatin and 203 

heterochromatin using a 15-state epigenetic ChromHMM model 39, which we derived using the 204 
same MCF7 ChIP-seq data. ChromHMM models identify genomic  regions associated with 205 
various combinations of histone marks. Our ChromHMM model identifies 11 euchromatin states 206 
based on the presence of H3K4me1, H3K4me3, H3K27ac and/or H3K36me3 (Fig. 3b). These are: 207 
transcription start sites (TSS; state 1), TSS-flanking regions (states 2, 3 and 4), transcriptionally 208 
active regions (state 5), weakly active regions (state 6), four types of enhancer (states 7, 8, 9 and 209 
10), and regions with low levels of H3K27ac (state 11). Our model also defines  two 210 
heterochromatic states: constitutive (H3K9me3; state 13) and polycomb-repressed (facultative) 211 
(H3K27me3; state 14). Some chromatin is in a bivalent state, characterised by the presence of both 212 
the active H3K36me3 mark and the inactive H3K9me3 mark (state 12). State 15 has none of the 213 
histone marks for which we have data and accounts for ~56% of the MCF7 genome. We plotted 214 
the methylation kinetics for the active and repressed chromatin states separately for ease of 215 
comparison (Fig. 3c,d; Extended Data Fig. 3b). The repressed states are methylated more slowly 216 
than the active states, but importantly, even the repressed heterochromatin states trend toward 217 
complete methylation (compare Figs. 3c and 3d).  218 

 219 
With the exception of state 1 (TSS), the actual methylation rate differences are not large, 220 

ranging from ~1.7x the median genomic rate for most of the euchromatin states to ~0.8x the 221 
median genomic rate for the heterochromatin states (compare Figs. 3c and 3d). The relative 222 
methylation rate for GATC sites in state 1 (H3K4me3 and H3K27ac) is relatively high (2.4x and 223 
4.6x for biological replicates), consistent with the inclusion of NDRs in this state (Fig. 3c,d; 224 
Extended Data Fig. 3b). We conclude that GATC sites located in heterochromatin are accessible 225 
in living cells. 226 

 227 
Accessibility is not due to replication 228 

We considered the possibility that global genome accessibility in living MCF7 cells might 229 
be due to DNA replication. It proved technically challenging to synchronise and maintain MCF7 230 
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cells in the G1 phase of the cell cycle prior to transduction. We were also unable to obtain fully 231 
confluent MCF7 cells. Consequently, to confirm our findings more broadly and to test the possible 232 
role of replication, we performed the same experiment using MCF10A cells, a normal human 233 
breast epithelial cell line. Time course experiments after transduction of MCF10A cells with the 234 
same Dam-expressing adenovirus produced similar results to those obtained for MCF7 cells 235 
(Extended Data Fig. 4). Thus, the genome is also globally accessible in normal MCF10A cells, 236 
suggesting that this accessibility is not due to the cancerous nature of MCF7 cells. We grew 237 
MCF10A cells to confluence, when the cells cease to replicate their DNA, and then repeated the 238 
transduction time course (Extended Data Fig. 5). We observed similarly high accessibility in these 239 
arrested cells. We conclude that DNA replication is not a major contributor to genome accessibility. 240 

 241 
The X-chromosome is methylated slowly 242 

Dosage compensation results in inactivation of one of the two copies of the X-chromosome 243 
in female cells and its condensation into heterochromatin (the 'Barr body'; reviewed by 40). We 244 
reasoned that the active X-chromosome would be methylated faster than the inactive X, predicting 245 
an intermediate average methylation rate relative to the autosomes, because our method cannot 246 
distinguish between the two copies. Since MCF7 cells have aberrant ploidy, whereas MCF10A 247 
cells have normal ploidy, we focused our analysis on MCF10A cells. Using the average 248 
methylation rate data for 100 kb chromosome windows (Extended Data Fig. 4i), we plotted the 249 
fraction of windows with a given relative rate for each of the 23 chromosomes (Extended Data 250 
Figs. 4l, 5k). This approach separates out the centromeric chromatin regions, which are methylated 251 
more slowly in all chromosomes. We observed that the mean relative methylation rate of the most 252 
common autosomal 100 kb window is 1.05, whereas that of the X-chromosome is 0.85. This result 253 
is consistent with slower methylation of the inactive X-chromosome due to its heterochromatic 254 
nature. 255 

 256 
Limited accessibility in isolated nuclei 257 

It has been shown previously that genome accessibility is limited in nuclei isolated from 258 
both yeast and mouse liver cells 25,30,41. To determine whether this is also true for MCF7, we treated 259 
isolated MCF7 nuclei with increasing concentrations of purified Dam enzyme. After a 30 min 260 
incubation at 37°C, genomic DNA was purified and digested with DpnI (Fig. 4a). In comparison 261 
with the fully digested unmethylated control DNA ('MboI' lane), nuclei samples showed 262 
incomplete DpnI digestion even at the highest Dam concentration. A clear nucleosome ladder 263 
pattern is observed in all of the Dam-treated samples, suggesting that Dam methylates linker DNA, 264 
but not nucleosomal DNA in nuclei. This result contrasts with the almost complete methylation 265 
observed in living cells (cf. Fig. 1c).  266 

 267 
Genomic analysis confirmed that methylation is limited in nuclei (Fig. 4b; Extended Data 268 

Fig. 6). The median of all genomic GATC sites reached a plateau at ~38% methylation, indicating 269 
that the median GATC site is accessible in ~38% of nuclei and inaccessible in the remaining ~62% 270 
of nuclei. Examination of Dam methylation around the TSS revealed that active genes display 271 
improved nucleosome phasing relative to living cells (compare Fig. 4c with Fig. 1e). Methylation 272 
of active genes in nuclei reaches a limit at ~45% in the regions flanking the promoter NDR and a 273 
limit of ~67% in the promoter NDR (Fig. 4c). In contrast, methylation of inactive genes in nuclei 274 
is uniformly limited to ~45% over the entire region, including the inactive promoters, which are 275 
not nucleosome-depleted (Fig. 4d; MNase-seq data: grey profile). Methylation is also limited 276 
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around CTCF motifs in nuclei (Extended Data Fig. 6d). The NDR associated with CTCF motifs is 277 
~70% accessible in nuclei and flanked by well-phased nucleosomes. Euchromatin and 278 
heterochromatin regions have very similar accessibilities in nuclei (Extended Data Fig. 3c). 279 
Application of our ChromHMM model to the nuclei data revealed that the active states reach a 280 
limit methylation of 40% to 50%, except for the TSS state which reaches ~60% (Extended Data 281 
Fig. 3d). The TSS state is higher because it includes promoter NDRs. All of the inactive states 282 
show almost identical limit median methylation, at 35%-45%, which is slightly lower than the 283 
median limit for the active states. We conclude that accessibility is severely limited in nuclei, 284 
unlike in living cells. 285 

 286 
Analysis of methylation at the various types of centromeric repeat in nuclei indicated that 287 

the limit median methylation ranged from ~45% for non-satellite and other satellite repeats, similar 288 
to that observed for gene bodies in nuclei, down to ~25%-35% for HSat1 and active and inactive 289 
α-satellites (Extended Data Fig. 7a,b). The active α-satellite SF2, SF3 and SF01 families were 290 
methylated to 25%-30% maximum (Extended Data Fig. 7c,d). Furthermore, the α-satellite SF1 291 
family reached a limit methylation at only ~15%, indicating that GATC sites in SF1 repeats are 292 
mostly inaccessible in nuclei. The methylation kinetics of these centromeric regions in nuclei are 293 
similar to those observed in living cells, which also tend toward a limit (Fig. 2c, e), although the 294 
methylation levels reached at α-satellite repeats in living cells are generally higher than in nuclei. 295 
Notably, the SF1 α-satellite family is the slowest methylating region observed in vivo (Fig. 2f) and 296 
the least accessible in isolated nuclei (Extended Data Fig. 7c,d).  297 
 298 
Human chromatin is dynamic in live cells 299 
We have measured the accessibility of GATC sites genome-wide in vivo. We expected to find that 300 
human euchromatin would resemble yeast chromatin in being globally accessible and this is indeed 301 
the case. We proposed that yeast nucleosomes are in continuous flux in living cells, but not in 302 
nuclei, where they are static 30. Such a flux may occur either through nucleosome removal and 303 
replacement, or by sliding along the DNA, and/or through reversible conformational changes (Fig. 304 
4e). It is likely that all three mechanisms occur through the agencies of multiple ATP-dependent 305 
chromatin remodelers. This flux renders the underlying DNA open to methylation by Dam and, by 306 
inference, to sequence-specific transcription factors. 307 
 308 
 The general accessibility of both active and inactive genes to Dam suggests that the widely 309 
accepted model that inactive genes are inactive because transcription factor binding sites in their 310 
promoters are blocked by nucleosomes may no longer be tenable. It seems unlikely that 311 
nucleosomes present a permanent block to transcription factor binding, thus maintaining genes in 312 
the repressed state. The role of pioneer factors, which have similar affinity for nucleosomal  and 313 
non-nucleosomal sites, is unclear, given nucleosome flux. However, pioneer factors would be 314 
predicted to bind faster, since they do not have to wait for nucleosome dynamics to expose their 315 
cognate sites. Pioneer factors might also be important for initiating nucleosome dynamics. 316 
Alternatively, gene regulation may occur primarily through regulation of transcription factor gene 317 
expression, location (e.g. retention in the cytosol) or activity (e.g. post-translational modifications 318 
and allosteric effects), and through non-coding RNA expression. 319 
 320 
 We also expected that human heterochromatin might either be resistant to Dam 321 
methylation, because of its highly condensed state, or that it might be similar to chromatin in 322 
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nuclei, with immobile nucleosomes, such that only linkers are methylated. Instead, we observed a 323 
trend towards complete methylation, albeit at a somewhat slower rate than for euchromatin. The 324 
relatively slow methylation of heterochromatin may be due to a combination of various factors, 325 
perhaps including slower nucleosome flux relative to euchromatin, the highly condensed nature of 326 
heterochromatin, and the presence of heterochromatin proteins (e.g., HP1 or Polycomb 327 
complexes). Nevertheless, both constitutive and facultative heterochromatin are generally 328 
accessible in living human cells. This observation is inconsistent with models proposing that 329 
heterochromatin condensation prevents access to the DNA it contains, resulting in gene repression 330 
(discussed by 7). Our data show that heterochromatic DNA is generally accessible and highly 331 
dynamic at the nucleosomal level in live cells, unlike in isolated nuclei. 332 
 333 
 The only genomic regions displaying limited accessibility in living human cells are the 334 
centromeric active α-satellite repeats. These elements are methylated slowly relative to other 335 
genomic regions and, unlike those regions, reach a limit at 50%-60% methylation. The SF1 α-336 
satellite repeats are methylated even more slowly, reaching a limit at only ~30% methylation. The 337 
nucleosomes in active α-satellite repeats are enriched in centromeric H3 (CENP-A) and so 338 
resemble yeast centromeric nucleosomes in their resistance to methylation in vivo 30. The limited 339 
accessibility of centromeric active α-satellite repeats in vivo is similar to that observed for all 340 
genomic regions in isolated nuclei. This observation suggests that centromeric chromatin in live 341 
cells is static, not dynamic, with little or no nucleosome flux, such that linkers are methylated and 342 
nucleosomal DNA is protected (Fig. 4e).  343 
 344 
 In summary, we have measured the accessibility of the human genome in living cells. We 345 
find that the genome is generally accessible at the nucleosomal level, including classical 346 
heterochromatin regions marked by H3K9me3 or H3K27me3. The exception is the centromeric 347 
active α-satellite repeats, which exhibit limited accessibility. We propose that nucleosome flux 348 
creates a genome-wide open chromatin environment, in which the DNA is packaged but still 349 
accessible, facilitating the search for cognate sites by sequence-specific transcription factors. 350 
 351 
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 460 
 461 
 462 
Methods 463 
 464 
Cell culture 465 
MCF7 cells (ATCC HTB-22) were cultured in RPMI 1640 with L-glutamine (Corning 10-040-466 
CV) supplemented with 10% Fetal Bovine Serum (FBS) (Corning 35-010-CV) and 1% penicillin/ 467 
streptomycin (Gibco 15140-148) at 37°C with 5% CO2/95% air in a humidified incubator. 468 
MCF10A cells (ATCC CRL-10317) were cultured in DMEM/F12 (Gibco 11320-033) 469 
supplemented with 5% horse serum (Gibco 26050070), 10 µg/ml insulin (Gibco 12585-014), 20 470 
ng/ml epidermal growth factor (Gibco PHG0311), 500 ng/ml hydrocortisone (Sigma H0888), 100 471 
ng/ml cholera toxin (Sigma C80520), 1% penicillin/streptomycin and 2 mM L-glutamine (Gibco 472 
25030149). Confluent MCF10A cells were obtained by culturing in a 12-well plate for 46 h in the 473 
same medium and then transduced in medium lacking all growth factors except horse serum.  474 
 475 
Adenovirus transduction and Dam methylation in living cells 476 
The Dam-3HA-eGFP cassette, codon-optimised for mouse, was constructed by gene synthesis 477 
(Thermo Fisher GeneArt) (sequence available on request). The Dam expression cassette was 478 
expressed from a CMV promoter in an adenovirus vector (human adenovirus type 5 (dE1/E3); 479 
Vector Biolabs), packaged, amplified and purified by Vector Biolabs. The final viral yield was 4.2 480 
x 1010 plaque-forming units (pfu) per ml, equivalent to approximately 1012 viral particles per ml. 481 
About a million cells were seeded in each well of a 6-well plate one day prior to adenovirus 482 
transduction. The next day, the cells were counted and the amount of adenovirus required to 483 
achieve a multiplicity of infection (MOI) of 1000 was pre-incubated at 37°C for 30 min to improve 484 
transfer efficiency 42. The virus was mixed with 300 µl per well of serum-free, antibiotic-free 485 
medium (RPMI 1640 for MCF7; DMEM for MCF10A) and incubated for 5-10 min at room 486 
temperature. Meanwhile, the culture medium was aspirated from the 6-well plate and 450 µl of 487 
complete medium containing FBS was added. The transduction mixture was added to each well, 488 
mixed by gently swirling the plate a few times, and incubated at 37°C for 4 h. Then 1.8 ml of 489 
complete culture medium containing serum was added to each well.  490 
 Confluent MCF10A cells were treated slightly differently: a 12-well plate and an MOI of 491 
2000 was used. The virus was mixed with 136 µl DMEM per well and incubated for 5-10 min at 492 
room temperature. Meanwhile, the culture medium was aspirated and 204 µl of complete medium 493 
containing FBS was added. The transduction mixture was added to each well, mixed and incubated 494 
at 37°C for 8 h. Then 1 ml of complete culture medium containing serum was added to each well.  495 
 The time course started at this point, with cells harvested after 12 h, 24 h, 48 h and 72 h 496 
(for MCF10A the time points were 12 h, 24 h, 36 h and 48 h). Cells were detached from the well 497 
by washing with 1 ml PBS and then incubating in 0.4 ml 0.25% (w/v) trypsin-0.53 mM EDTA 498 
solution (ATCC 30-2101) at 37°C for 5 min (15 min for MCF10A). Next, 1 ml medium was added 499 
to the well, cells were collected by centrifugation at 100 g for 5 min, after which the medium was 500 
aspirated, and the cells were resuspended in 1 ml medium. The cells were counted, divided up for 501 
DNA and protein extraction, quickly frozen on dry ice, and stored at -80°C. DNA extraction was 502 
performed using the PureLink Genomic DNA Mini Kit (Invitrogen) according to the 503 
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manufacturer’s guidelines. Purified genomic DNA (1.2 - 1.5 µg) was digested with 10 units of 504 
DpnI (New England Biolabs (NEB) R0176L) in NEB CutSmart buffer for 2 h at 37°C. 505 
 506 
Immunoblotting 507 
A pellet containing 0.3-0.5 million cells was resuspended in 0.25 to 0.4 ml of 1x lithium dodecyl 508 
sulfate buffer (Invitrogen NP0007) supplemented with 0.2 M 2-mercaptoethanol and heated for 5 509 
min at 99°C; 10 µl was loaded on to each of two 4-12% bis-Tris polyacrylamide gels (Invitrogen 510 
NP0336) and run using MOPS/SDS running buffer (Invitrogen). Transfer of proteins to a 511 
membrane and signal development with horseradish peroxidase-conjugated anti-HA (3F10; Roche 512 
12013819001) or anti-tubulin (Abcam ab-185067) antibodies were performed as described 30. 513 
 514 
FACS analysis 515 
Propidium iodide staining and flow cytometric DNA analysis of MCF7 and MCF10A cells were 516 
performed as described (Mullen (2004)). Cells (0.1-0.2 million) were resuspended in 50 µl cold 517 
buffer (250 mM sucrose, 40 mM trisodium citrate, 5% v/v DMSO) and frozen at -80°C. For FACS, 518 
cells were thawed and 200 µl of ice-cold Solution A (0.03 mg/ml trypsin, 3.4 mM trisodium citrate, 519 
0.1% v/v NP-40, 1.5 mM spermine tetrahydrochloride, 0.5 mM Tris-HCl pH 7.6) was added. The 520 
mixture was incubated at room temperature for 5 min. Subsequently, 100 µl of ice-cold Solution 521 
B (0.5 mg/ml trypsin inhibitor, 0.1 mg/ml RNase A, 3.4 mM trisodium citrate, 0.1% v/v NP-40, 522 
1.5 mM spermine tetrahydrochloride, 0.5 mM Tris-HCl pH 7.6) was added and incubated for 523 
another 5 min at room temperature. Finally, 20 µl propidium iodide at 1 mg/ml (Invitrogen P3566) 524 
was added and incubated at room temperature in the dark to prevent photobleaching. The cells 525 
were analysed using a FACSCalibur flow cytometer (Becton Dickinson) and Cell Quest Pro 526 
software, following the manufacturer's instructions. 527 
 528 
Dam methylation of isolated nuclei 529 
MCF7 cells were cultured in complete medium in a 75 cm² flask and re-passaged into a new flask 530 
after 2-3 days of growth. When the cells reached approximately 80% confluency, they were 531 
trypsinized and harvested. To extract nuclei, a pellet of 3 - 4 million cells was resuspended in 2 ml 532 
Buffer A (15 mM Tris-HCl pH 8.0, 15 mM NaCl, 60 mM KCl, 1.5 mM EDTA, 0.5 mM spermidine, 533 
15 mM β-mercaptoethanol, and protease inhibitors) with 0.03% NP-40. The mixture was gently 534 
but thoroughly mixed by pipetting and incubated on ice for 10 min, inverting the tube 2 or 3 times 535 
during the incubation. The lysate was centrifuged at 500 g for 2 min at 4°C, and the supernatant 536 
was removed. The nuclei were washed with 1 ml Buffer A. The nuclei were resuspended in 1 ml 537 
Buffer A supplemented with fresh S-adenosylmethionine to 0.5 mM, and divided into five 200 µl 538 
aliquots. Dam methyltransferase (NEB M0222B-HC2 at 40 U/µl; 8 µg Dam/ml) was added to the 539 
aliquots of nuclei: 0, 25, 50, 100, and 200 units (0, 0.8, 1.6, 3.1, 6.3 nM, respectively), gently 540 
mixed, and incubated for 30 min at 37°C. Genomic DNA was extracted using the PureLink 541 
Genomic DNA Kit (Invitrogen 2666617). Finally, 1.2 to 1.5 µg purified genomic DNA was 542 
digested with 10 units of DpnI as above. 543 
 544 
MNase-seq 545 
MNase (Worthington LS004798) was dissolved to 10 units/µl in 5 mM Na-phosphate buffer pH 546 
7.0, 0.025 mM CaCl2, aliquotted out, and stored at -80°C. MCF7 cells (3 to 4 million) were 547 
resuspended in 2 ml Buffer B (15 mM Tris-HCl, pH 8.0, 15 mM NaCl, 60 mM KCl, 1 mM EDTA, 548 
2 mM CaCl2, 0.5 mM spermidine, 0.03% NP-40, 15 mM 2-mercaptoethanol and protease 549 
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inhibitors). The cells were gently lysed by pipetting and incubated on ice for 10 min, inverting the 550 
tube 2-3 times during incubation. The lysate was centrifuged at 500 g for 2 min at 4°C and the 551 
supernatant was removed. The nuclei were washed with 1 ml Buffer B without NP40 and 552 
resuspended in 1.3 ml Buffer B without NP40. MNase was added to six tubes of 200 µl nuclei, as 553 
follows: 12.5 U, 25 U, 50 U, 100 U, 200 U and 400 U, gently mixed, and incubated for 3 min at 554 
25°C. MNase-digested DNA was purified using the PureLink Genomic DNA kit (Invitrogen 555 
2666617) and analysed in an agarose gel. For accurate and even nucleosome mapping, we chose 556 
digests with a dominant band at ~150 bp corresponding to >80% of the DNA (typically 25 U, 50 557 
U and 100 U), prepared paired-end libraries, and performed low-coverage sequencing to identify 558 
the digest with the most optimal DNA fragment length distribution 43. The 25 U sample (Replicate 559 
1) and the 50 U sample (Replicate 2) were chosen for high-coverage sequencing. 560 
 561 
Library preparation for paired-end Illumina sequencing 562 
For both nuclei and live cell experiments, DpnI-digested genomic DNA was purified using 1.8 vol. 563 
AMPure XP beads (Beckman). Paired-end libraries were prepared as described 30 except for the 564 
sonication step, in which the DNA was fragmented using a Covaris ME220 ultrasonicator (350 bp 565 
program, peak power, 50 W; duty factor 10%; 1,000 cycles per burst; average power 5; total time 566 
170 s per tube). All sequencing was performed using an Illumina NextSeq 2000 machine. 567 
 568 
Computational analysis of methylated fractions 569 
We developed two packages for methylated fraction analysis: snakemakeMethylFrac and 570 
methylFracAnalyzer. SnakemakeMethylFrac, a snakemake workflow 44, processes raw Illumina 571 
paired-end reads to determine methylated fractions at all GATC sites. Bowtie2 v2.5.1 45  is used 572 
for alignment and bedtools v2.31.1 46 is used to calculate the occupancy (fragment coverage) and 573 
5’-end counting. GATC sites that overlap with CpG sites were filtered out, because DpnI cannot 574 
cut GATm5C. GATC half-sites that are within 150 bp of each other were also filtered out because 575 
small DNA fragments < 150 bp tend to be lost during sample purification. The output includes 576 
SQLite database and bigwig files. We use pandas 47, pyBigWig 577 
(https://github.com/deeptools/pyBigWig), biopython 48, matplotlib 49 and seaborn 50 in this 578 
workflow. MethylFracAnalyzer processes bigwig files from SnakemakeMethylFrac for 579 
downstream analysis. It calculates percentiles for each feature, methylation rates from median 580 
methylated fractions and relative methylation rates. It computes the average methylated fraction 581 
in 100-kb windows (T2T v1.1 assembly) and methylation rates using average methylated fractions. 582 
It calculates the average methylated fraction relative to the TSS of active and inactive genes, and 583 
relative to CTCF sites, smoothed in 21-bp windows. Finally, it generates the associated figures. 584 
This software uses pandas 47, pyBigWig, matplotlib 49, seaborn 50 and statsmodels 51.  585 
 586 
Analysis of RNA-seq, ATAC-seq and MNase-seq data 587 
We used RNA-seq datasets from the GEO database (GSE201262 for MCF7 32; GSE237066 for 588 
MCF10A 52) using salmon v1.10.0 53 to normalise read counts. We averaged counts across 589 
replicates for each transcript using the GENCODE v43 annotation of the Hg38 assembly 54. For 590 
multi-transcript genes, we selected the most highly expressed transcripts and used their TSSs. We 591 
used published bigwig files for ATAC-seq datasets for MCF7 (GSE201262 32) and MCF10A 592 
(GSE152410 55). ATAC-seq data for 1-kb regions flanking TSSs were extracted; active genes were 593 
assigned based on average signal (>0.4 for MCF7 and >2 for MCF10A). Our MNase-seq data were 594 
aligned using Bowtie2 v2.5.1 45. We selected read fragments for single nucleosomes (fragment 595 
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length: 120-180 bp) and counted the nucleosome dyads in 2010-bp regions flanking active gene 596 
TSSs. We normalised dyad counts per gene using average dyad counts per flanking region, then 597 
averaged dyad counts across all active genes, smoothing in 21-bp windows. 598 
 599 
CTCF sites and ChromHMM  600 
CTCF narrowPeaks were obtained from ENCODE 56,57 (ENCSR000AHD for MCF7 and 601 
ENCSR193SZD for MCF10A). CTCF motifs were predicted using HOMER v4.11.1 58. For CTCF 602 
phasing analysis, the peaks containing a single copy of the highest frequency motif were selected. 603 
For ChromHMM analysis, we used ChIP-seq data from GSE85158 for both MCF7 and MCF10A 604 
cells 38, processed with the ENCODE ChIP-seq pipeline v2 (https://github.com/ENCODE-605 
DCC/chip-seq-pipeline2). ChromHMM v1.23 predicted 15 chromatin states using the T2T v1.1 606 
assembly 39. JHU RefSeqv110 + Liftoff v5.1 annotation (https://github.com/marbl/CHM13) were 607 
used for feature enrichment. Final chromatin state annotations are available in our GitHub 608 
repository (https://github.com/zhuweix/methylFracAnalyzer).  609 
 610 
Statistics and Reproducibility 611 
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belong to the same experiment. Extended Data figures generally show the results from both 613 
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DNA gel analyses were similar in both experiments. Correlations between biological replicates at 615 
the chromosomal level are presented in Extended Data Fig. 8. 616 
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Fig.1 | The human genome is globally accessible in living MCF7 cells. a, Schematic of adenovirus 

transduction and time course experiment to express Dam methylase in live cells. b, Anti-HA 

immunoblot to detect Dam-3HA-eGFP expression in MCF7 cells. c, Agarose gel electrophoresis of 

DpnI-digested genomic DNA purified from MCF7 cells as a function of time of adenovirus treatment. 

'un', undigested genomic DNA; 'MboI', DNA from non-transduced cells digested with MboI; M, DNA 

size marker. d, Almost complete methylation of GATC sites in MCF7 cells after transduction. Red line 

and shading: median GATC site methylation with data range indicated. e, f, Nucleosome phasing with 

respect to the TSS for active and inactive genes, as defined by ATAC-seq 
32

. Grey profile: nucleosome 

dyad distribution in nuclei (MNase-seq data for MCF7 cells arbitrarily normalised to 30%). g, The 

effect of transcriptional activity on methylation rate. Active genes were divided into quintiles Q1 to Q5 

based on increasing transcriptional activity (Q5 is the highest) using RNA-seq data from 
32

; 

methylation of the median GATC site in each quintile is shown. Inactive genes are treated as a single 

separate group ('NoTrans'). h, Median GATC methylation for various genomic regions. i, Nucleosome 

phasing around CTCF motifs using the motif shown.
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Fig.2 | Centromeres are methylated slower and reach a limit, unlike other genomic regions. 
a, Heat map showing the variation in methylation rate at the chromosomal level. The average 
methylation rate was calculated for all GATC sites in each 100 kb window in the T2T genome 
by plotting 'ln (1- fraction methylated)' against time after adenovirus transduction, and then 
normalised to the genomic average rate to obtain relative rates. Red rectangles: centromeric 
regions. b, Schematic of the organisation of the various centromeric elements defined in the T2T 
genome assembly (adapted from 35). Divergent α-Sat and monomeric α-Sat were combined as 
"α-Sat other". c, Median GATC methylation time courses and d, methylation rates for the 
various centromeric elements. e, Median GATC methylation time courses and f, methylation 
rates for the various active supra-chromosomal α-satellite families.
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a

RepressiveActive

b

c

d
State Description
1_TSS Active TSS
2_TSSFlnk1 Flanking TSS-1
3_TSSFlnk2 Flanking TSS-2
4_TSSFlnk3 Flanking TSS-3
5_Tx Strong transcription
6_TxWk Weak transcription
7_EnhG1 Genic enhancer-1
8_EnhG2 Genic enhancer-2
9_EnhA1 Active enhancer-1
10_EnhA2 Active enhancer-2
11_LowAc Low H3K27 acetylation
12_ZNF/Rpts ZNF genes and repeats
13_Het Heterochromatin
14_ReprPc Repressed Polycomb
15_NoMark No marks

Fig.3 | Heterochromatin is accessible but methylated at a slower rate than euchromatin. 
a, Methylation time courses and methylation rates for the median GATC site in regions with 

active histone marks (H3K4me1, H3K4me3, H3K27ac, H3K36me3) and inactive histone 

marks (H3K9me3 and H3K27me3). b, ChromHMM model defining 15 epigenetic states in 

MCF7 cells, defined as active or inactive chromatin based on the histone marks. c, 
Methylation time courses and methylation rates for the median GATC site in the active 

chromatin (euchromatin) states defined by the HMM model. d, Methylation time courses and 
methylation rates for the median GATC site in the inactive chromatin (heterochromatin) 

states defined by the HMM model. 



Fig.4 | Genome accessibility is limited in isolated MCF7 nuclei. a, Agarose gel 
electrophoresis of DpnI-digested genomic DNA purified from nuclei treated with increasing 
amounts of Dam. M, DNA marker. MboI, unmethylated control DNA fully digested at GATC 
sites by MboI. b, Methylation of all the GATC sites in the human genome as a function of Dam 
concentration. Red line: methylation of the median GATC site; shading indicates the data range. 
c, Active genes: Nucleosome phasing and methylation of the median GATC site in promoters or 
gene bodies as a function of Dam concentration. Red line and shading: median GATC site 
methylation with data range indicated. Grey profile: nucleosome dyad distribution in nuclei 
(MNase-seq data for MCF7 cells arbitrarily normalised to 30%). d, The same analysis for 
inactive genes. e, Possible mechanisms for generating accessibility in living cells (based on the 
known activities of various ATP-dependent chromatin remodelers). 
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Extended Data Fig.1 | Rates of Dam methylation in various genomic regions in MCF7 cells. a, Left 
panel: All human genes sorted by ATAC-seq signal at their promoters in MCF7 cells 32 relative to the 
major TSS. The red line separates genes with NDRs (active) from those that have no NDR (inactive). 
Middle panel: RNA-seq data for MCF7 cells (from 32) sorted as in the left panel. Right panel: MNase-seq 
data sorted as in the left panel. b, Nucleosome phasing in vivo detected by Dam methylation for Replicate 
2 (see Fig.1e,f for Replicate 1). Methylation data for GATC sites across active and inactive genes at each 
time point are plotted relative to the TSS (smoothed with a 21-bp window). Grey profile: nucleosome 
dyad distribution in nuclei (MNase-seq data normalised to 30%). c, Effect of transcription on median 
GATC site methylation. The active genes were divided into quintiles, Q1 to Q5, with increasing 
transcriptional activity; inactive genes were treated as a single group ("NoTrans"). Data for Replicate 2 
(see Fig.1g for Replicate 1). d, Methylation time courses for the median GATC site in various genomic 
regions. Data for Replicate 2 (see Fig.1h for Replicate 1). e, Methylation time courses for various genomic 
regions defined by hg38 annotations. Red line: median GATC site; shading: data range as indicated. f, 
Relative methylation rates for various genomic regions in vivo. Rates are relative to the genomic average 
for all GATC sites. g, Nucleosome phasing around CTCF motifs in vivo using the motif shown. Data for 
Replicate 2 (see Fig.1i for Replicate 1). 
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Extended Data Fig.2 | Dam methylation of the various centromeric satellite repeats in MCF7 
cells. a, Methylation time courses for the median GATC site and b, methylation rates for the various 
centromeric elements relative to the genomic average site. Data for Replicate 2 (see Fig. 2c,d for 
Replicate 1). c, Methylation time courses for the median GATC site for the various centromeric 
elements. Red line: median GATC site; shading: data range as indicated. d, Methylation time courses 
for the median GATC site and e, relative methylation rates for the various active α-satellite supra-
chromosomal families. Data for Replicate 2 (see Fig. 2e,f for Replicate 1). f, Methylation time courses 
for the median GATC site for the various active α-satellite supra-chromosomal families. Red line: 
median GATC site; shading: data range as indicated.
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Extended Data Fig.3 | Dam methylation of heterochromatin and euchromatin in living 
MCF7 cells and in MCF7 nuclei. a, Methylation time courses for the median GATC site and 
methylation rates for regions marked by histone modifications associated with euchromatin 
(H3K4me1, H3K4me3, H3K27ac or H3K36me3) or heterochromatin (H3K9me3 or 
H3K27me3), relative to the genomic average site. ChIP-seq data from 38. Data for Replicate 2 
(see Fig. 3a,b for Replicate 1). b, Methylation time courses for the median GATC site and 
relative methylation rates for the 15 epigenetic states defined by our ChromHMM model (see 
Fig. 3b). Data for Replicate 2 (see Fig. 3c,d for Replicate 1). c, Methylation of the median GATC 
site in nuclei for regions marked by histone modifications associated with euchromatin or 
heterochromatin. d, Dam methylation in isolated nuclei of the different chromatin states 
specified by the ChromHMM model (see Fig. 3b). 
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Extended Data Fig.4 | The human genome is globally accessible in live MCF10A cells. a, Agarose gel electrophoresis of 
DpnI-digested genomic DNA purified from MCF10A cells as a function of time of adenovirus treatment. 'un', undigested 
genomic DNA; 'MboI', DNA from non-transduced cells digested with MboI; M, DNA size marker. b, Anti-HA immunoblot to 
detect Dam-3HA-eGFP expression in MCF10A cells. c, Almost complete methylation of GATC sites in MCF10A cells after 
transduction. Red line and shading: median GATC site methylation with data range indicated. d,e, Nucleosome phasing with 
respect to the TSS for active and inactive genes, as defined by ATAC-seq data for MCF10A cells 55. Grey profile: nucleosome 
dyad distribution in nuclei (MNase-seq data for MCF7 cells arbitrarily normalised to 30%). f, The effect of transcriptional 
activity on methylation rate. Active genes were divided into quintiles Q1 to Q5 based on increasing transcriptional activity (Q5 
is the highest) using RNA-seq data for MCF10A cells from (Dorgham et al. 2023); methylation of the median GATC site in 
each quintile is shown. Inactive genes are treated as a single separate group ('NoTrans'). g, Median GATC methylation for 
various genomic regions using annotations from the hg38 genome. h, Relative median GATC site methylation rates for various 
genomic regions. i, Heat map showing the variation in methylation rate at the chromosomal level in MCF10A cells. The average 
methylation rate was calculated for all GATC sites in each 100 kb window in the T2T genome by plotting 'ln (1- fraction 
methylated)' against time after adenovirus transduction, and then normalised to the genomic average rate to obtain relative rates. 
Red rectangles: centromeric regions. j, Relative methylation rates for the various centromeric elements. k, Nucleosome phasing 
around CTCF motifs in MCF10A cells using the motif shown. l, Relative methylation rate data derived as in 'i' for each of the 23 
chromosomes are separated into four separate plots for ease of comparison. Histograms of the fraction of 100-kb windows 
having a given relative methylation rate.
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Extended Data Fig.5 | The human genome is globally accessible in confluent MCF10A cells. 
a, Agarose gel electrophoresis of DpnI-digested genomic DNA purified from confluent MCF10A cells 
as a function of time of adenovirus treatment. 'un', undigested genomic DNA; 'MboI', DNA from non-
transduced cells digested with MboI; M, DNA size marker. b, Anti-HA immunoblot to detect Dam-
3HA-eGFP expression in MCF10A cells. c, FACS analysis confirms that the confluent MCF10A cells 
are arrested in G1 during the time course after adenovirus transduction. d, Time course of Dam  
methylation of all GATC sites in MCF10A cells after transduction. Red line and shading: median GATC 
site methylation with data range indicated. e,f, Nucleosome phasing with respect to the TSS for active 
and inactive genes, as defined by ATAC-seq data for MCF10A cells 55. Grey profile: nucleosome dyad 
distribution in nuclei (MNase-seq data for MCF7 cells arbitrarily normalised to 30%). g, The effect of 
transcriptional activity on methylation rate. Active genes were divided into quintiles Q1 to Q5 based on 
increasing transcriptional activity (Q5 is the highest) using RNA-seq data for MCF10A cells (Dorgham 
et al. 2023); methylation of the median GATC site in each quintile is shown. Inactive genes are treated 
as a single separate group ('NoTrans'). h, Median GATC methylation for various genomic regions using 
hg38 genome annotations. i, Relative median GATC site methylation rates for various genomic regions. 
j, Nucleosome phasing around CTCF motifs in MCF10A cells using the motif shown. k, Histograms of 
the fraction of 100-kb windows having a given relative methylation rate for each of the 23 
chromosomes are separated into four separate plots for ease of comparison.

a b c

g i

0   12   24   36   48

Time after adenoviral transduction (h)

< Dam-3HA-eGFP 
62 kDa

< Tubulin
50 kDa

j k

un MboI M   0   12   24   36   48   M    

Time after adenoviral transduction (h)

10 kb

2.5 kb

1 kb

0.5 kb

d e fActive Genes Inactive Genes

h

Relative methylation rate

Fr
ac

tio
n 

of
 b

in
s



Extended Data Fig.6 | Limited genome accessibility in isolated MCF7 nuclei. Nuclei were 

treated with increasing concentrations of Dam. a, Comparison of the methylation of the median 

GATC site in various genomic regions as a function of Dam concentration. b, Separate plots for 

methylation of the median GATC site in various genomic regions as a function of Dam 

concentration. Red line and shading: median GATC site methylation with data range indicated. c, 
The effect of transcriptional activity on methylation rate in nuclei. Active genes were divided into 

quintiles Q1 to Q5 based on increasing transcriptional activity (Q5 is the highest) using RNA-seq 

data for MCF7 cells 32; methylation of the median GATC site in each quintile is shown. Inactive 

genes are treated as a single separate group ('NoTrans'). d, Nucleosome phasing in nuclei relative 

to CTCF motifs detected by Dam methylation using the motif shown. Methylation data for GATC 

sites at each Dam concentration are plotted relative to each CTCF site (smoothed with a 21-bp 

window). Grey profile: nucleosome dyad distribution in nuclei (MNase-seq data normalised to 

30%). 
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Extended Data Fig.7 | Methylation of centromeric elements is limited in nuclei. a, Separate 
plots showing methylation of the median GATC site in various centromeric elements as a 
function of Dam concentration. Red line and shading: median GATC site methylation with data 
range indicated. b, Comparison of the methylation of the median GATC site in the various 
centromeric elements as a function of Dam concentration. c, Comparison of the methylation of 
the median GATC site in the various active α-satellite supra-chromosomal families as a function 
of Dam concentration. d, Separate plots showing methylation of the median GATC site in various 
active α-satellite supra-chromosomal families as a function of Dam concentration.
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Extended Data Fig.8 | Comparison of biological replicate experiments at the chromosomal 
level. Pearson correlations for the average % methylated for all GATC sites in each 100 kb 

window for each time point (live cells) or Dam concentration (nuclei). a, MCF7 cells, b, MCF7 

nuclei, c, Dividing MCF10A cells, d, Confluent MCF10A cells. 
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