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Abstract

Cancer cells within tumors exhibit a wide range of phenotypic states driven by
non-genetic mechanisms in addition to extensively studied genetic alterations.
Conversions among cancer cell states can result in intratumoral heterogeneity which
contributes to metastasis and development of drug resistance. However, mechanisms
underlying the initiation and/or maintenance of such phenotypic plasticity are poorly
understood. In particular, the role of intercellular communications in phenotypic plasticity
remains elusive. In this study, we employ a multiscale inference-based approach using
single-cell RNA sequencing (scRNA-seq) data to explore how intercellular interactions
influence phenotypic dynamics of cancer cells, particularly cancers undergoing
epithelial-mesenchymal transition. Our inference approach reveals that signaling
interactions between cancerous cells in small cell lung cancer (SCLC) result in
seemingly contradictory behaviors—reinforcing the cellular phenotypes and maintaining
population-level intratumoral heterogeneity. Additionally, we find a recurring signaling
pattern across multiple types of cancer in which the mesenchymal-like subtypes utilize
signals from other subtypes to reinforce its phenotype, further promoting the
intratumoral heterogeneity. We use a mathematical model based on ordinary differential
equations to show that inter-subtype communication accelerates the development of
heterogeneous tumor populations. Our work highlights the critical role of intercellular
signaling in sustaining intratumoral heterogeneity, and our approach of computational
analysis of scRNA-seq data can infer inter- and intra-cellular signaling networks in a
holistic manner.

Significance

Single cell-based inference approach reveals a key role of intercellular signaling
in maintaining intratumoral heterogeneity. Cell-cell communications stabilize newly
acquired cell states and diverse phenotypes of cell populations in multiple cancers.

Introduction

Most tumors develop and evolve as complex ecosystems under strong
environmental selective pressures, leading to a unique collection of cancer cells that
exhibit a wide range of genotypic and phenotypic characteristics1,2. This intratumoral
heterogeneity promotes aggressive disease progression, increased resistance to
therapeutic interventions, and poor overall survival1,3–5. While genetic diversity is a
well-known driver of intratumoral heterogeneity6, there is increasing evidence that
non-genetic mechanisms, such as epigenetic, transcriptional, and/or translational
changes, also significantly contribute to the intratumoral heterogeneity and disease
progression4,5,7,8. These non-genetic mechanisms can create distinct cancer cell states
through a process called phenotypic plasticity, where cells are dynamic, reversible, and
responsive to regulatory changes3,9,10.

Phenotypic plasticity has recently been recognized as a hallmark of cancer and a
key driver of tumor aggressiveness3. It influences various cellular behaviors in cancer,
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including stemness and differentiation, drug-sensitive and drug-resistant states, and
transitions between epithelial and mesenchymal cell-states11. Increasing efforts are
being made to characterize the intrinsic cellular factors that drive phenotypic
plasticity12–14. However, despite extensive molecular characterization, the dynamics of
phenotypic plasticity at the single-cell and population levels remain largely unclear. This
is particularly true regarding how non-cell-autonomous effects regulate intratumoral
heterogeneity and whether the intercellular communication between different cell states
stabilizes or destabilizes these phenotypes.

One such cancer where phenotypic plasticity is particularly evident is small cell
lung cancer (SCLC)15,16. SCLC is a neuroendocrine (NE) carcinoma that constitutes
approximately 15 percent of all lung cancer cases and has a dismal 5-year survival rate
of less than 7 percent17. Despite the high similarity to pulmonary NE cells and having
highly consistent morphological characteristics, SCLC presents substantial inter- and
intratumoral heterogeneity, featuring distinct molecular subtypes with varied biological
behaviors18–22. These subtypes are categorized based on the enriched expression of
one of four transcription factors (TFs): ASCL1, NEUROD1, POU2F3, YAP123.
Furthermore, these subtypes delineate into two overarching categories, NE (A2, A, and
N) and non-NE (P and Y), with the NE subtypes typically exhibiting some level of
ASCL1 expression while non-NE counterparts do not. Recent studies have
demonstrated that SCLC tumors will often comprise multiple cell types, with the different
subtypes cooperating to drive tumorgenicity21,22. The dynamic regulation of TFs
regulates intratumoral compositions, and this diversity is essential as different subtypes
play distinct biological roles, impacting therapeutic response21,22.

Further highlighting the phenotypic plasticity evident within SCLC, previous work
by us24 and others25,26 has linked the different SCLC subtypes to the
epithelial-mesenchymal transition (EMT) program, a cellular process in which cell-cell
interactions are remodeled, resulting in cells losing their epithelial properties and
assuming a more mesenchymal phenotype.27. Within SCLC, the NE subtype A2
demonstrates a strong epithelial-like phenotype whereas the other NE subtypes, A and
N, display a partial EMT state (Figure 1A). Non-NE subtypes, P and Y, also display a
partial EMT state, albeit with mesenchymal gene expression signatures that differ from
that of the NE subtypes. This correspondence with EMT further demonstrates the
plastic nature of this cancer.

Most research on SCLC has focused on describing its differing cell states, with
very few studies attempting to define these states at the single-cell level. Consequently,
there is still much to learn about the transitions between different cell states and
whether intercellular communication influences the intratumoral heterogeneity. Given
the plasticity present within SCLC, we utilized single-cell RNA-sequencing (scRNA-seq)
SCLC data to investigate whether intercellular communications influence cell-fate
transitions, and if so, whether these extracellular signals reinforce the current phenotype
of a cell or push it towards a different phenotype.
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To investigate whether intercellular communications play a role in driving
intratumoral heterogeneity within SCLC, we adapted a single-cell multiscale
inference-based approach that integrates both intercellular interactions and intracellular
signaling dynamics. By linking inter- and intracellular signaling, we aim to determine if
intercellular interactions impact downstream intracellular mechanisms. If cell–cell
communication affects downstream signaling, this approach will also reveal whether
these interactions drive the cell towards a different phenotype or reinforce its current
one (Figure 1B). To explore the effect of cell–cell communications on phenotypic
heterogeneity, we utilized scRNA-seq data from ex vivo cultured cells obtained from a
genetically engineered mouse model that incorporates a constitutively active form of
MYC, coincident with deletions of Rb and p53 (RPM)28. The cells undergo a transition
over time in culture from a NE to non-NE state and these time series data enable the
exploration of intercellular communications between the NE and Non-NE populations at
individual time points. Through this approach, we identified the activation of several
well-established EMT pathways, revealing a consistent pattern of convergence towards
activating mesenchymal genes within the mesenchymal phenotype. Additionally, our
analysis revealed that the epithelial phenotype employs both paracrine and autocrine
signaling mechanisms to maintain its epithelial state. To see if these mechanisms are
consistent across epithelial cancers that involve EMT, we applied this method to colon
and breast cancer datasets. The convergence of EMT pathways towards the
mesenchymal phenotype is present across all 3 cancers. However, SCLC appears to be
unique in its utilization of both paracrine and autocrine signals to sustain its phenotypic
state. Overall, our results show recurring roles of intercellular communications in
maintaining newly formed cell states, and they shed light into non-cell-autonomous
mechanisms of intratumoral heterogeneity.

A multiscale inference approach to explore the signaling mechanisms
maintaining phenotypic heterogeneity in cancer cell populations

To assess whether cell-cell communications contribute to intratumoral
heterogeneity and phenotypic plasticity it is essential to connect intercellular signaling
with downstream intracellular processes and determine their overall impact on
maintaining phenotypic diversity. To link intercellular communication with intracellular
signaling, we adapted the LIANA+29 methodology (see Methods) (Figure 1C), which
integrates various approaches to explore both intercellular and intracellular signaling
events. Briefly, we used CellChat30 to infer the intercellular communications from
processed scRNA-seq data. We opted for CellChat over alternative cell-cell
communication inference methods due to its capacity to incorporate heteromeric
complexes and its robustness to noise31. CellChat infers active signaling pathways and
ligand–receptor (L–R) interactions, which are subsequently used to assess intracellular
signaling.
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The active signaling pathways inferred by CellChat are used to predict
transcriptional activity and identify the relative strength of active signaling pathways in
each cell state. We used CARNIVAL32, an integer linear programming based tool for
contextualizing causal networks, to integrate the transcription factor (TF) activity
inference scores, differential expression analysis and L-R interactions. This algorithm
will find the smallest-sign consistent network that explains the measured inputs and
outputs, connecting the receptors to the downstream TFs. To aid in assessing the
relationships between EMT states cellular differentiation, we incorporate downstream
EMT target genes in the network—adding EMT-specific genes based on the
congruence between regulatory modes (i.e. activation or inhibition) and gene
expression. This multiscale integration allows us to capture dynamic changes in
signaling networks across different cell states and enables a detailed exploration of the
potential signaling mechanisms involved in maintaining the phenotypic heterogeneity
within the cancerous population.

We applied this approach to the SCLC RPM dataset, focusing primarily on
timepoints 7 and 11, when both NE and non-NE subtypes are present in relatively high
abundance (Figure 1D). Within this dataset, five subtypes were determined via
archetype analysis (A2, A/N, P/Y, Y and None), with the A2 subtype displaying more
epithelial-like properties, while the P/Y and Y subtypes exhibited more mesenchymal
like features, as expected. We then extended this approach to three additional datasets
involving cancers undergoing EMT: SC53 (Human SCLC circulating tumor cells-derived
xenograft sample25), HCT116 colon cancer cell line33, and a HER2 Crainbow
mouse34(Figure 1E & Supplementary Figure 1). The cell type classifications in these
datasets were determined by the authors who generated the data. In SC53 there are
four identified subtypes: A, A2, Y and Generalists, which is a non-specified cell type
from archetype analysis. Notably, the Y subtype exhibited gene expression profiles
consistent with a more mesenchymal-like state. In the colon cancer dataset, three
EMT-associated states were characterized: epithelial (Epi), mesenchymal (Mes), and
partial-EMT (pEMT). The HER2 dataset has four cell-states that were inferred through
trajectory analysis: hormone-sensitive (HS), hormone-receptor negative (HS-), EMT and
a transitional (T) state.
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Figure 1: Multiscale Inference Approach to Investigate Role of Intercellular Communication on Cellular
Plasticity. A) Schematic depicting EMT and correspondence to SCLC subtypes. Subtypes are characterized based on
transcriptomic expression. B) Investigating whether intercellular communications affect the cell state transitions between
subtypes and the overall intratumoral heterogeneity. Black dashed arrows represent inferred cell-cell communication and the
black, double-arrow represents the interconversion between subtypes. C) I: Pre-processed and annotated scRNA-seq data.
Pipeline is applied to four different datasets across three different cancers II: Inference of cell-cell communications using
CellChat. III: Differential expression and transcription factor activity analysis. IV: Signaling network inference via CORNETO is

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2025. ; https://doi.org/10.1101/2025.01.03.631250doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.03.631250
http://creativecommons.org/licenses/by/4.0/


performed using the receptor probability and transcription factor activity scores as inputs. v: Differentially expressed SCLC and
EMT gene markers are added to the network based on filtering criteria. D) Filled bar chart showing the cell counts for the RPM
dataset. X-axis represents the proportion of cells and y-axis is the time point. The cell numbers for each cell type are shown. E)
Cell counts for SCLC SC53, HER2 and colon cancer datasets, respectively.

Diverse signaling pathways converge on activating key mesenchymal
pathways/genes

We first analyzed the RPM dataset and identified 48 active signaling pathways
across the six different timepoints (Supplementary Table 1). Many of these pathways
are well-established contributors to EMT in cancer27,35–56 (Figure 2A). Notably, we
observed a recurring pattern among these EMT pathways wherein they converge
towards the mesenchymal non-NE cell types (P/Y in Figure 2B). This convergence is
mediated by paracrine (NOTCH) signaling from NE to non-NE cells and autocrine
signaling within the non-NE cell population (WNT and SPP1).

To elucidate how the intercellular communication affects intracellular signaling,
we constructed a signaling network for the Day 7 P/Y cell type that has TGFβ and
NOTCH as primary ligands and captured key lineage-supporting target genes (Figure
2C). Within the network, we observed the activation of numerous mesenchymal markers
(like vimentin, PDGF-C and Axl) and the inhibition of epithelial markers, especially
Epcam. Consistent with previous experimental findings16, we noted that the activation of
Myc and Notch signaling promotes the non-NE SCLC fate. Our network further
highlights that the inhibition of Ascl1—a NE and SCLC-A & -A2 subtype marker
downstream of the Notch2 receptor—and the activation of Myc facilitates the
upregulation of mesenchymal markers. Notably, the ligand–receptor interactions
captured in the network are well known EMT modulators. Since the ligands involved in
the activation of mesenchymal markers within the P/Y network originate from A2, A/N
and P/Y cells, our network underscores the contributions of both NE and non-NE cells
toward mesenchymal transitions.This approach yielded similar results in the Day 11 P/Y
cell type by capturing the activation of lineage-supporting genes, with both NE and
non-NE cells playing a role in activating those genes (Supplementary Figure 2). We
assessed the importance of lineage supporting genes to the networks inferred from the
differentially expressed genes downstream of the detected L–R pairs by determining the
proportion of lineage supporting genes included in the inferred signaling networks
versus excluded from the network. We found a higher proportion of lineage supporting
genes within the network compared to outside the network (Figure 2D) (Supplementary
Table 2), suggesting that the inferred intercellular communication driving the
mesenchymal (M) state transcriptional program was not simply due to the random
selection of broadly upregulated M genes.

To assess the generalizability of these findings across other cancers undergoing
EMT, we performed a similar analysis on three additional scRNA-seq datasets. We
observed the activation of intercellular communication-driven mesenchymal pathways
converging towards a more mesenchymal phenotype in all three datasets (Figure 2E).
However, application of the signaling network pipeline to the colon and HER2 datasets
yielded less comprehensive networks compared to those observed in SCLC
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(Supplementary Figure 3). This discrepancy suggests potential differences in the
sensitivity to detect extracellular signals or a reduced influence of the tumor
microenvironment in driving phenotypic heterogeneity within these datasets. Overall,
our findings demonstrate that the intercellular communications between cancer cells
can have varying degrees of influence in maintaining phenotypic diversity. Within SCLC,
the intercellular communications between NE and non-NE phenotypes reinforce the
non-NE/mesenchymal (P/Y or Y) state.

Figure 2: Mesenchymal Phenotypes Utilize Autocrine and Paracrine Signaling to Reinforce SCLC Subtypes. A)
Inferred active pathways in the SCLC dataset. Dot size is representative of the relative interaction strength for a given time point.
B) Inferred CellChat signaling of pathways known to be involved in EMT. Dot size is proportional to cell number. Line color
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represents source of signal/ligand. Line width represents interaction strength. C) RPM TP7 P/Y cell type inferred signaling
network connecting both intercellular and intracellular signaling. The red box contains an illustrative summary of the network.
The black box is a legend for the network. Node fill color represents a role in signaling pathway. The shape of the ligand nodes
represents the subtype source of the ligand. The edges connecting a ligand to receptor vary in width corresponding to
interaction strength. Average log2 fold-change of target gene expression is colored as indicated by the scale bar. Epithelial target
genes are indicated by a yellow border around the node and mesenchymal genes have a black border. D) Proportion of lineage
supporting genes included in (In Network) and excluded from (Out of Network) the network. Fisher’s exact test was used to
calculate significance. P-values are labeled in red. Odds ratios from left to right: 126.99, inf, 54.08. E) Inferred CellChat signaling
of EMT pathways from other datasets. Left: Human SCLC CDX. Subtypes are characterized through archetype analysis. Middle:
HCT116 colon cancer. Subtype labels are Epi (Epithelial), Mes (Mesenchymal), and pEMT (Partial EMT) and they are from the
original publication. Left: HER2 breast cancer mouse. Subtype labels are HS (Hormone-sensitive), HR-negative
(Hormone-receptor negative), T (Transitional state), and EMT. The more mesenchymal states in these datasets are, Y, Mes, and
EMT, respectively.

SCLC utilizes autocrine and paracrine signaling to maintain epithelial state

We next asked how the cross-talk between the different states affects the
epithelial state. In the RPM dataset, our analysis revealed that the epithelial state is
sustained through a combination of paracrine and autocrine signaling mechanisms. We
applied our analytical pipeline to construct a network for the Day 7 epithelial, A2 subtype
(Figure 3A). The network captured the activation of several epithelial marker genes. We
observed the activation of the epithelial marker Cdh1 in both the Day 7 and Day 11
network (Supplementary Figure 4). Additionally, the Day 7 network showed the
activation of the A2 marker, Ascl1. Notably, we identified Sp1 as a key transcription
factor involved in the activation of several epithelial markers. Interestingly, Sp1 was also
present in the P/Y network, suggesting its potential to influence both NE and non-NE
cell fate determination.

Similar to observations in the P/Y network, the A2 network revealed the
participation of both NE and non-NE cells in maintaining the epithelial state within A2
cells. This interplay is also evident in the other inferred signaling pathways (Figure 3B).
Specifically, the inferred interaction involving Jam3 ligands within the JAM signaling
pathway is consistent with prior work demonstrating Jam3’s role in establishing the
epithelial phenotype57. Furthermore, we identified the CDH1 pathway as being activated
by autocrine signaling within A2 cells. The presence of CDH1 and JAM signaling
pathways was also observed in human SCLC SC53 samples, operating in a manner
similar to our findings in the A2 network (Figure 3C and Supplementary Figure 5). This
suggests that the maintenance of the SCLC epithelial state involves signaling
interactions between epithelial and mesenchymal cells.

When applying the signaling network pipeline to the epithelial states of the other
cancers, a network could only be generated for the colon cancer epithelial state but not
the HER2 epithelial states (Supplementary Figure 3). The colon cancer network does
not capture the activation of any of the overexpressed epithelial genes present within
this cell type. For the HER2 epithelial states, a causal inference network could not be
generated from the receptors to transcription factors. However, the less comprehensive
nature of the colon cancer network and the inability to generate a network for the HER2
epithelial state could be due to additional mechanisms playing a role in either
maintaining or destabilizing the epithelial state. This highlights the different levels of
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influence that cell–cell communication may play in maintaining the intratumoral
heterogeneity, with the epithelial SCLC state being more sensitive to these signals.

Figure 3: Epithelial Phenotype is Maintained by Autocrine and Paracrine Signaling. A) RPM TP7 A2 cell type
inferred signaling network. The inset indicated with a red rectangle is an illustrative summary of the network. The legend of the
network is shown in the inset black rectangle. B) From the RPM data, the inferred JAM signaling pathway is shown on the left
and the inferred ligand-receptor interaction of CDH1 is shown on the right. C) Inferred CDH signaling pathway (left) and JAM
pathway (right) from the human SCLC SC53 dataset. 

A mathematical model predicts a role of inter-subtype feedback in restoring
heterogeneous tumor cell population

Through our inference pipeline we found a pattern of intercellular communication shared
by multiple cancer types and datasets: cells at the state enriched with mesenchymal (M)
genes receive signals from cells at a more epithelial-like state, and the signals were
used to maintain the recently acquired M state. While we found intra-subtype signals
that also help to maintain the new state, the functions of these autocrine-like signals
were well characterized in previous studies58,59. It was unclear, however, how the
inter-subtype signals that we found in multiple contexts can influence intratumoral
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population dynamics. We therefore built a simple mathematical model based on the
following ordinary differential equations (ODEs)
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and X2-to-X1 conversion, respectively) (Figure 4A). The signal that originates from X1

and received by X2 is modeled by an inhibitory Hill function that influences the overall
conversion rate from X2 to X1, as the inferred inter- and intra-cellular activities common
to all cancer types. Parameter determines the threshold of the inactivation and𝐾
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as a feedback mechanism that may influence the dynamics of the cancer cell
population. Simply, the model describes the dynamics of a cell population with two
discrete states (of any type) with interactions between them.

We simulated the model with an initial population containing X1 but not X2 with a
parameter set adjusted such that the steady state ratio of the two populations is
approximately 1:1 (Figure 4B, red), a ratio consistent with experimentally observed NE
to non-NE transitions of SCLC cells15. We found that removing the feedback resulted in
a lower steady state fraction of X2 due to the increased number of cells converting from
X2 to X1 (Figure 4B, black). While this might suggest a role of the feedback signaling
(Figure 4A, red) in facilitating the formation of mesenchymal-like X2 cell population, one
can argue that this performance advantage can be simply achieved by adjusting the
basal conversion rate constant . We therefore tested another feedback-free model in𝑘

2
which there was a compensatory reduction of (Figure 4B, blue) that produced the𝑘

2
same 1:1 steady state ratio for the two types of cells. We found that the model with the
inter-subtype signaling needed a significantly shorter time to achieve the equilibrium of
the two subpopulations compared to the perturbed model that achieved the same level
of heterogeneity. We found that this acceleration was consistent in a range of steady
state (target) ratios of the two subpopulations, but it was more prominent when the two
subpopulations were comparable in size (Figure 4C). We expect that this acceleration
function may help the tumor cell population to re-establish a heterogeneous population
under a subtype-specific “fractional condition,” i.e., a depletion of one of the subtypes.
Indeed, after we perturbed a population already at equilibrium with equal numbers of
each state (X1:X2 ratio of 1:1) by removing 90% of X2 cells from the system, the model
with feedback recovered more rapidly compared to the feedback-free model (Figure
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4D). Taken together, our mathematical model suggests a role of inter-subtype
communication—inferred from single-cell data—in accelerating the acquisition of
heterogeneous tumor cell population from either a relatively homogeneous initial or
out-of-equilibrium population.

Figure 4: A mathematical model for inter-subtype communication. A) Network diagram and illustration of two cell

types (Epithelial-like and Mesenchymal-like). X1 and X2 are two state variables representing the sizes of the two cell populations,

respectively. Black arrows show transitions. Red arrow shows the intercellular communication responsible for maintaining the

M-like cell state. B) Time course trajectories (solid curves) for the main model and two perturbed models. Y-axis shows the

quantity X2/(X1+X2). Dashed vertical lines show the positions of saturation times, defined as the time at which 95% of the steady

state level of the fraction is reached. C) Saturation time as a function of steady state fraction of X2. Color code is the same as

Panel B. Basal k2 values were varied to achieve various steady state X2 fractions. D) Time course trajectories of a fractional killing

scenario in which the fractions of the two populations reached steady state and 90% of X2 cells were removed at Time 100. The

orange lines are the total population size and the red and blue lines represent X2 fraction from the same models shown in B. The

control model (blue and dashed orange lines) is the no-feedback model with compensated k2.

Discussion

Elucidating the dynamics and mechanisms that govern phenotypic plasticity
within cancer tumors is essential for developing therapeutic strategies and tackling two
major unresolved clinical challenges: cancer metastasis and therapeutic resistance10,11.
While considerable progress has been made in characterizing phenotypic plasticity at
the gene expression level12,60–62, many aspects remain poorly understood. Identifying the
mechanisms that drive intratumoral heterogeneity and regulate phenotypic plasticity is a
critical step for effective cancer treatment, as different cell types within a tumor can
respond differently to therapies22,63–67. In this study, we investigated whether intercellular
communications play a role in controlling cell fate transitions and whether these
interactions stabilize or destabilize cellular phenotypes. We applied a multiscale
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inference-based approach to different solid tumor scRNA-seq datasets to investigate
the crosstalk between cell states and how they influence one another. Within SCLC, we
found the pivotal role of intercellular signaling in maintaining the phenotypic diversity
among the cancer cell population, particularly in the context of EMT. The inferred P/Y
signaling network captures the activation of Myc and Notch signaling, which is
consistent with recent observations as the activation of these two components is seen
within the non-NE subtypes16,21. Additionally, the networks capture the mesenchymal
nature of P/Y subtype24, as the activation of many differentially overexpressed
mesenchymal markers are present within the network. Furthermore, this mesenchymal
phenotype is influenced by both mesenchymal P/Y cells and the more epithelial A2 cells
through the activation of EMT pathways Notch and Jam. The A2 network displays
similar patterns in that it utilizes both paracrine and autocrine EMT signals to maintain
its epithelial state. Among several cancer types that we analyzed, this epithelial state
maintenance mechanism appears to be unique to SCLC and specific to the A2 subtype.

Applying this multiscale methodology to the colon and HER2 cancer datasets
yielded less-comprehensive networks. One possible explanation for this difference is
that the tumor microenvironment (apart from tumor cell heterogeneity) may play a larger
role in influencing phenotypic plasticity in colon and HER2 breast cancer. In all three
datasets, we only examined the intercellular communications within the cancerous
population. In SCLC, the cell–cell communication between the cancerous cells appears
sufficient enough to influence the cellular phenotypes. However, this does not appear to
be the case with colon and HER2 cancers, where other factors in the tumor
microenvironment may have a greater impact on tumor cell plasticity68,69. The HER2
data was derived from an in vivo setting and this context introduces greater complexity,
as interactions with surrounding non-cancerous cells could significantly shape the
phenotypic diversity observed. Alternatively, technical differences in how tumor cells are
classified could affect differences in inferred networks. Our method requires sufficient
cellular diversity (i.e. number of cells for each cell state or significant differences in gene
expression between cell states) within the dataset in order to make inferences. The
cancer cells in SCLC have been categorized via archetype analysis, which identifies the
most relevant features to distinguish the cell classes in high-dimensional feature space.
The cells in the colon cancer dataset were FACs sorted based on EpCam expression
and they were assigned epithelial and mesenchymal scores through gene set
enrichment analysis. The HER2 cell identities were inferred using single-cell trajectory
analysis in which the terminal branches were used to annotate cells based on the
differential expression of known marker genes. These differences in classification
methods could influence the resolution of cell states and the inferred diversity within the
datasets, potentially limiting the ability to detect nuanced intercellular communication
networks in colon and HER2.

Phenotypic diversity in cell populations can be supported by both autonomous
and non-autonomous mechanisms. Autonomous mechanisms include intrinsic
transcriptional fluctuations, which can stochastically initiate phenotypic transitions61, as
well as multi-stable regulatory networks, where cells can switch between stable
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phenotypic states based on underlying network architectures70. Additionally,
post-transcriptional mechanisms provide another layer of intrinsic regulation71. However,
while these autonomous processes can trigger phenotypic transition, it may be difficult
to maintain this phenotypic diversity over time. Therefore, non-autonomous
mechanisms may be required, such as paracrine/autocrine signaling which can play a
critical role in reinforcing phenotypic heterogeneity through intercellular
communication58,72,73. Our findings highlight the importance of these non-autonomous
signaling mechanisms, demonstrating that cell–cell interactions can be essential for
sustaining the intratumoral phenotypic heterogeneity.

Cell–cell interactions are fundamental to shaping and maintaining multicellular
structures and tissue integrity. Among these, cell–cell communications play a pivotal
role in coordinating cellular behavior across short and long distances within tissues.
Here, we inferred cell–cell communications from scRNA-seq data, and while cell–cell
communication methods based on scRNA-seq can predict short-range
communications69,74, they are limited by the lack of spatial context and can introduce
significant false-positives75. Integrating spatial transcriptomics with scRNA-seq offers a
promising avenue to overcome these limitations, as it preserves the spatial arrangement
of cells, allowing for more accurate inference of both short- and long-range
communications76,77. Future work will benefit from leveraging these integrative
approaches as it will refine our understanding of the role of cell–cell communications in
maintaining intratumoral heterogeneity within tumors.

Intercellular signaling is known to contribute to the intratumoral heterogeneity
within SCLC, with the activation of Notch signaling resulting in NE to non-NE cell fate
switching in 10–50% of tumor cells15. Additionally, the non-NE subtype exhibits a
reduced proliferative rate but relatively greater chemoresistance, and these cells
support the growth and survival of the NE subtype within admixed tumors18. This
dynamic interplay between NE and non-NE subtypes highlights the role of intercellular
signaling in maintaining a functional heterogeneity that benefits tumor survival and
progression. A recent study suggests that SCLC subtypes not only coexist but may
actively cooperate to optimize essential tumor functions, with NE and non-NE cells
interacting in mutually beneficial ways to foster tumor growth and adapt to changing
external conditions, such as treatment21. Additionally, it has been suggested that
non-genetic mechanisms, such as cell-cell interactions between SCLC cell types,
provides the capability for some tumors to reemerge once therapy is withdrawn through
commensal niche-like interactions, where one cell type fosters the growth or survival of
another22. These cooperative interactions are critical for maintaining the phenotypic
diversity needed for tumor adaptability. Importantly, the rate at which phenotypic
heterogeneity reaches equilibrium is likely driven by such cooperative mechanisms,
enabling tumors to rapidly adapt by leveraging the distinct but complementary functions
of different cell types. Disrupting these signaling networks or undermining the
cooperative interactions between subtypes could impair the tumor’s ability to maintain
this adaptability. thereby enhancing therapeutic efficacy.
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We are only beginning to uncover the role in cancer of non-cell-autonomous
signaling on phenotypic plasticity—a key driver of tumor progression and therapeutic
resistance. Our results indicate that SCLC tumor cells have significant responses to
extracellular signals emanating from different tumor cell subtypes and that transitions to
mesenchymal phenotypes (especially P/Y) are enhanced by ligands released from both
NE and nonNE sources. Additionally, and somewhat surprisingly, the more epithelial A2
state is likewise stabilized by signals from both NE and nonNE sources. Our
mathematical model of the dynamics of cell state heterogeneity equilibration suggests
that feedback mechanisms dependent on intercellular signaling are important
modulators of how quickly equilibrium can be reestablished. Altogether, our results
support an important role for intercellular communication in controlling the dynamics of
establishing equilibrium of intrinsic tumor cell state heterogeneity.

Methods

Single-cell RNA-Sequencing Data

Single-cell RNA sequencing data were downloaded from Gene Expression
Omnibus (GEO) at GSE149180 (RPM mouse tumor time course)16, GSE138474
(Human SCLC CDX)25, GSE154930 (HCT116 colon cancer)33, and GSE152422 (HER2
breast cancer mouse isoform). RPM mouse tumor dataset was preprocessed as
described by Groves et al.21 Python package Scanpy (version 1.8.0) was used for
filtering and normalization of total counts. Log-transformation was performed using the
log1p function from the Numpy (version 1.17) package and scaling was done using
Scanpy.

Human CDX data were preprocessed as described by Gay et al.78 Cells were
filtered to remove non-tumor cells. Only the SC53 tumors were used in this analysis.
Scanpy was used to normalize the total counts by cell and the data was then
log-transformed.

Cell type annotation for RPM and SC53 datasets was performed as described by
Groves, et al.21 Briefly, archetypal analysis was applied to gene expression data. This
approximates the cell phenotype space as a low dimensional polytope that
encapsulates the gene expression data. The vertices of this multi-dimensional space
represent archetypes, each optimal for a specific functional task. In the RPM dataset,
there are some cell type labels that consist of 2 transcriptional states (A/N and P/Y).
This is due to these cells falling in between these two archetypes.

The deposited colon cancer data was already preprocessed as described by
Sacchetti, et al.33 EpCAMhigh and EpCAMlow raw count matrices were merged together in
R and processed for downstream analysis using the Seurat package. Dimension
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reduction was performed using PCA, tSNE, and UMAP. Cell type annotation was
performed based on EpCAM expression. Cells were also assigned epithelial and
mesenchymal scores which were computed using gene set enrichment scoring
packages.

HER2 breast cancer data was preprocessed as described by Ginzel, et al.34 Raw
count matrices were processed using Seurat (version 4.0.0). Scores for S-phase and
G2-M cell-cycle using the CellCycleScoring function. Data were log-normalized and
scaled after regressing out total UMI counts, percent mitochondrial gene expression,
and cell-cycle phase. Dimension reduction was done using PCA and UMAP. Individual
clusters were annotated based on known marker gene expression. Trajectory analysis
was performed with Monocle 2 (version 2.12.0) on a subset of the data which contains
only the epithelial compartment, and cellular identities were inferred in the terminal
branches using gene set enrichment analysis.

Cell-Cell Communication Inference

The CellChat (version 1.6.1) package in R was used to infer intercellular
communications. CellChat can quantitatively infer and analyze intercellular
communication networks from scRNA-seq data. The interactions were identified and
quantified based on the differentially over-expressed ligands and receptors for each cell
group and a mass action-based model is used to integrate all known molecular
interactions, including the core interaction between ligands and receptors with
multi-subunit structure, as well as any additional modulation by cofactors.

Differential Expression Analysis and Transcription Factor Activity Inference

Differential expression analysis was performed using Seurat’s FindMarkers
function. The function was applied to each cell type within the dataset. The differential
expression results were then filtered for significance (p < 0.05). The statistically
significant differentially expressed genes were then used for downstream processes.

Transcription factor activity inference was performed using decoupleR’s (version
2.6.0) univariate linear model method. This method requires gene expression values
and a gene regulatory network as inputs. decoupleR provides the CollecTRI network
which comprises a curated collection of signed TF-target gene interactions, weighted
based on the mode of regulation79. This method will fit a linear model for each cell and
each TF in the network, predicting the observed gene expression based on the
TF-target gene interaction weights80. The average log fold-change values were used for
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the expression data input and the CollecTRI gene regulatory network was utilized for
the network input. This was done for each cell type, so the differential expression results
used in the function were specific to that cell type. Once the model is fitted, the obtained
t-value of the slope is the score. The list of inferred active TFs was filtered for
significance (p < 0.05) and activity (score > 0). The resulting inferred active TFs serve
as inputs for the next step in the pipeline.

Signaling Network Inference

The LIANA+ framework (version 1.0.2) was utilized to infer the signaling network.
The find_causalnet function utilizes the CARNIVAL algorithm in the CORNETO package
(v0.9.1-a5) to infer the signaling network from receptors to transcription factors.
CARNIVAL integrates prior knowledge of signed and directed protein-protein
interactions from OmniPath81 to construct the smallest-sign consistent network that
explains the measured inputs and outputs.

CARNIVAL requires a prior knowledge graph, receptor input scores, TF output
scores, and node weights. This incorporation ensures the resulting network captures
both dataset-specific information and established biological knowledge. For the receptor
input scores, we utilized the probability score inferred from CellChat. Given that some
receptors were inferred to be involved in multiple ligand-receptor interactions, we added
the probability scores for a receptor if the inferred signaling pathway was the same. All
inferred receptors were used as inputs for the signaling network algorithm. For the TF
output scores, we used only the inferred active transcription factors.

The prior knowledge graph was created using the LIANA+ function,
build_prior_network. Intracellular signaling Interactions were obtained from OmniPath
using the OmnipathR (version 3.8.2) package. Interactions were obtained from the
omnipath, kinaseextra, and pathwayextra datasets. The datasets were filtered based on
curation effort (curation_effort > 1). The prior knowledge graph was created using the
filtered interactions, input receptors, and output transcription factors. The nodes within
the graph were assigned weights based on cell-type specific differential expression.
Node weights had to be scaled from zero to one so the MinMaxScaler function from the
Python library, scikit-learn (version 1.3.1), was used to scale the average log2
fold-change values.

The CVXPY (version 1.3.2) backend and GUROBI optimizer (gurobipy version
10.0.3) were used within the signaling network algorithm.
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The CARNIVAL algorithm will return the smallest sign-consistent network from
the input receptors to the output TFs. In the resultant network, ligands are
reincorporated based on the L-R interactions from CellChat, while downstream target
genes were added to the network based on the consistency of mode of regulation from
upstream TF and differential expression of target gene. For example, an activating edge
towards a target gene necessitates a positive log fold-change value within the target
gene in order for the gene to be added to the network. We used cell state-specific
differential expression results for each network. TF-regulon interactions were obtained
using OmnipathR via the import_transcriptional_interactions function. The interactions
were filtered so that only SCLC21 (only for RPM and SC53 dataset) and EMT82 marker
target genes were contained within the interaction list. Additionally, the list was filtered
to contain experimentally validated interactions (curation_effort > 0).

The code of our new multiscale inference pipeline is available at
https://github.com/DanielL543/scRNA_seq_multiscale_inference.

Statistical Analysis of Networks

The cell-type specific differential expression results were used to determine the
proportion of differentially expressed genes being in network vs out of network and
whether the gene is lineage supporting or not. Lineage supporting genes were
determined based on the previously reported phenotype of the cell type. Fisher’s exact
test was then performed to determine the significance of a differentially expressed being
in network and being lineage supporting.

Mathematical Modeling

The ODE system shown in Eq 1 was used to simulate a cell population
containing two subtypes of cancer cells. A representative parameter set was used for
simulations: , , , , and . For𝑟

1
= 0. 01 𝑟

2
= 0. 001 𝑘

1
= 𝑘

2
= 0. 04 𝐾

2
= 0. 5 𝑛

2
= 6

feedback-free models (control), was set to 1000. was adjusted to allow a𝐾
2

𝑘
2

feedback-free model ( compensated model) to achieve desired fraction of X2 cells.𝑘
2

The model is dimensionless.
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