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Let A be a d � n matrix and T � Tn�1 be the standard simplex in Rn.
Suppose that d and n are both large and comparable: d � �n, � �
(0, 1). We count the faces of the projected simplex AT when the
projector A is chosen uniformly at random from the Grassmann
manifold of d-dimensional orthoprojectors of Rn. We derive �N(�) >
0 with the property that, for any � < �N(�), with overwhelming
probability for large d, the number of k-dimensional faces of P �
AT is exactly the same as for T, for 0 < k < �d. This implies that P
is  �d -neighborly, and its skeleton Skel �d (P) is combinatorially
equivalent to Skel �d (T). We also study a weaker notion of neigh-
borliness where the numbers of k-dimensional faces fk(P) >

fk(T)(1 � �). Vershik and Sporyshev previously showed existence of
a threshold �VS(�) > 0 at which phase transition occurs in k�d. We
compute and display �VS and compare with �N. Corollaries are as
follows. (1) The convex hull of n Gaussian samples in Rd, with n
large and proportional to d, has the same k-skeleton as the (n � 1)
simplex, for k < �N (d�n)d(1 � oP(1)). (2) There is a ‘‘phase
transition’’ in the ability of linear programming to find the sparsest
nonnegative solution to systems of underdetermined linear equa-
tions. For most systems having a solution with fewer than �VS(d�
n)d(1 � o(1)) nonzeros, linear programming will find that solution.

neighborly polytopes � convex hull of Gaussian sample � underdetermined
systems of linear equations � uniformly distributed random projections �
phase transitions

1. Introduction

Let T � Tn�1 be the standard simplex in Rn and let A be a
uniformly distributed random projection from Rn to Rd.

Some time ago, Goodman and Pollack proposed to study the
properties of n points in Rd obtained as the vertices of P � AT;
this model was called by Schneider the Goodman–Pollack model
of a random pointset. Independently, Vershik advocated a
‘‘Grassmann approach’’ to high-dimensional convex geometry
and began to study the same object P, motivated by average-case
analysis of the simplex method of linear programming.

Key insights into the properties of P were obtained by Affen-
tranger and Schneider (1) and Vershik and Sporyshev (2). Both
developed methods to count the number of faces of the randomly
projected simplices P � AT. Affentranger and Schneider consid-
ered the case where d is fixed and n is large and showed the number
of points on the convex hull if P grew logarithmically in n. Vershik
and Sporyshev considered the situation where the dimension d was
proportional to the number of points n and found that the low-
dimensional face numbers of P behaved roughly like those of the
simplex.

1.1. New Applications. In the years since refs. 1 and 2 first appeared,
new connections arose, motivating a fresh study of this problem.

Y The first connection involves properties of Gaussian ‘‘point
clouds.’’ Work of Baryshnikov and Vitale (3) has shown that the
Goodman–Pollack model is for certain purposes equivalent to
the classical model of drawing n samples from a multivariate
Gaussian distribution in Rd. Thus, results in this model tell us
about the properties of multivariate Gaussian point clouds, in
particular, the properties of their convex hull. High-dimensional
Gaussian point clouds provide models of modern high-dimen-

sional data sets. Much development of statistical models assumes
these clouds behave as low-dimensional clouds; as we will see,
low-dimensional intuition is wildly inaccurate.

Y The second connection involves sparse solution of linear systems.
In a companion paper (4), we considered the problem of finding
the sparsest nonnegative solution to an underdetermined system
of equations y � Ax, x � 0, A a d � n matrix. We connected this
with the problem of k-neighborliness of the polytope P0 �
conv(AT 	 {0}); for more on neighborliness, see below. We
showed that, if P0 is k-neighborly, then for every problem instance
(y, A) where y � Ax0 with x0 having at most k nonzeros, the
sparsest solution can be obtained by linear programming.

Inspired by these two more recent developments, we study
randomly projected simplices anew.

1.2. Neighborliness. The polytope P is called ‘‘k-neighborly’’ if every
subset of k vertices forms a (k � 1)-face (ref. 5, Chap. 7). A
k-neighborly polytope ‘‘acts like’’ a simplex, at least from the
viewpoint of its low-dimensional faces. More formally, a k-
neighborly polytope with n vertices has several properties of interest
as follows:

Y It has the same number of �-dimensional faces as the simplex
Tn�1, � � 0, . . . , k � 1.

Y The �-dimensional faces are all simplicial, for 0 � � � k.
Y The (k � 1)-dimensional skeleton is combinatorially equiva-

lent to the (k � 1)-skeleton of the simplex Tn�1.

Such properties can seem counterintuitive. Comparing Tn�1 
 Rn

with P � ATn�1 
 Rd, we note that P is a lower-dimensional
projection of Tn�1 and, it would seem, might ‘‘lose faces’’ as
compared with Tn�1 because of the projection. For example, it
might seem plausible that, under projection, some edges of Tn�1

might fall ‘‘inside’’ the convex hull conv(ATn�1); yet if P is 2-neigh-
borly, the plausible does not happen. Surprisingly, in high dimen-
sions, the counterintuitive event of 2-neighborliness is quite typical.
Even much more extreme things occur: we can have k-
neighborliness with k proportional to d.

1.3. Asymptotic Analysis. We adopt the Vershik–Sporyshev asymp-
totic setting and consider the case where d is proportional to n and
both are large. However, to better align with applications, and with
our companion work (4, 6, 7), we use different notation than
Vershik and Sporyshev in ref. 2. In a later section we will harmonize
results. We assume d � dn � �n and consider n large.

Our primary concern is the neighborliness phase transition. It
turns out that, with overwhelming probability for large n, the
polytope P � ATn�1 typically has n vertices and is k-neighborly for
k � �N(d�n)�d. The function �N will be characterized and computed
below (see Fig. 1). For example, Fig. 1 shows that if n � 2d and n
is large, k-neighborliness holds for k � 0.133d.

To state a formal result, for a polytope Q, let f�(Q) denote the
number of �-dimensional faces.
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Theorem 1: Main Result. Let � � �N(�) and let A � Ad,n be a uniformly
distributed random projection from Rn to Rd, with d � �n. Then

Prob�f��ATn�1� � f��Tn�1� , � � 0, . . . ,  �d  	 3 1,

as n 3 
 . [1.1]

In particular, this agreement of face numbers means that P is
k-neighborly for k � �N(�)d(1 � oP(1)).

We may distinguish this result from the pioneering work of
Vershik and Sporyshev (2), who were interested in the question of
whether, for k in a fixed proportion to n, the face numbers
fk(ATn�1) � fk(Tn�1)(1 � oP(1)) or not. They also proved a
threshold phenomenon for k in the vicinity of �VSd, for some
implicitly characterized �VS � �VS(d�n). Although Vershik and
Sporyshev referred to ‘‘the neighborliness problem’’ in the title of
their article, the notion they studied was not neighborliness in the
sense of ref. 5 and classical convex polytopes but instead what we
might call ‘‘weak neighborliness.’’ Such weak neighborliness asks
whether, for a given random polytope P � ATn�1, there are n
vertices and whether the overwhelming majority of �-membered
subsets of those vertices span (� � 1)-faces of P, for � � k.

For comparison with Theorem 1, note that the question
of approximate equality of face numbers fk(ATn�1) �
fk(Tn�1)(1 � oP(1)) is weaker than the exact equality studied
here in Theorem 1; it changes at a different threshold in k�d.
Vershik–Sporyshev’s result can be stated as follows.

Theorem 2: Vershik–Sporyshev. There is a function �VS(�), character-
ized below, with the following property. Let d � d(n) � �n and let A �
Ad,n be a uniform random projection from Rn to Rd. Then for a
sequence k � k(n) with k�d � �, � � �VS(�), we have

fk�ATn�1� � fk�Tn�1��1 � oP�1��. [1.2]

We emphasize that our notation differs from Vershik and
Sporyshev, who studied instead the inverse function �VS(�). Fig.
1 displays the weak-neighborliness phase transition function �VS

for comparison with the neighborliness phase transition �N.
The Vershik–Sporyshev result is sharp in the sense that for

sequences with k�d � �  �VS, we do not have the approximate

equality 1.2. In this work, we will show how a proof of Theorem 2
can be made similar to the proof of Theorem 1.

1.4. Numerical Result. Our work contributes to the study of the
neighborliness phase transition and to the numerical information
about the Vershik–Sporyshev weak-neighborliness phase transi-
tion. Our MATLAB software for computing these curves is available
from D.L.D. or J.T. on request. In particular, Fig. 1 depicts
substantial numerical differences in the critical proportion �VS and
the lower bounds �N. The most striking property of �VS is that it
crosses the line � � 1�2 near � � 0.425 and increases to 1 as �3 1.
This property has implications for sparse solution of linear equa-
tions with n equations and 2n unknowns (see ref. 4). For compar-
ison, we compute that

0.371 � lim
�31

�N��� . [1.3]

1.5. Solid Simplices. There are two natural variations on the notion
of simplex to which the above results also apply. The first, T0

n, is the
convex hull of {0} and Tn�1. It is a ‘‘solid’’ n-simplex in Rn but not
a regular simplex, because the vertex at 0 is closer to the other
vertices than they are to each other. The second, T1

n, is the convex
hull of the vector ��1 with Tn�1, where � solves (1 � �)2 � (n �
1)�2 � 2. It is also a solid n-simplex in Rn, this time a regular one,
with n � 1 vertices all spaced �2 apart. For applications where
random projections of one or both of these alternate simplices could
be of interest, we make the following remark.

Theorem 3. Theorems 1 and 2 hold for AT1
n, with the same functions

�N and �VS and the comparable conclusions. Theorems 1 and 2 hold
for AT0

n, with the same functions �N and �VS and the comparable
conclusions, provided ‘‘neighborliness’’ is replaced by ‘‘outward neigh-
borliness.’’

Outward neighborliness is a slight variation of the concept of
neighborliness (see ref. 4). To save space we give the (simple) proof
of Theorem 3 in the technical report (ref. 8, Appendix).

1.6. Applications. We briefly indicate how these new results give
information about the applications sketched in Section 1.1.
1.6.1. Gaussian point clouds. Suppose we sample X1, X2, . . . , Xn i.i.d.
according to a multivariate Gaussian distribution on Rd with
nonsingular covariance. By Baryshnikov–Vitale (3), any affine-
invariant property of the point configuration will have the same
probability distribution under this model as it would under the
model where A is a uniform random projection and Xi is the ith
column of A. We conclude the following.

Corollary 1.1. Let � � (0, 1) be fixed and let d � dn � �n . Let � �
�N(�). Let X1, X2, . . . , Xn be i.i.d. samples from a Gaussian
distribution on Rd with nonsingular covariance. Consider the convex
hull P of (Xi)i�1

n . Then with overwhelming probability for large n,

Y every Xi is a vertex of the convex hull P;
Y every pair Xi, Xj generates an edge of the convex hull;
Y . . .
Y every k �  �d points generate a (k � 1)-face of P.

In short, not only are the points on the convex hull, but all
reasonable-sized subsets span faces of the convex hull.

This behavior is wildly different than the behavior that would be
expected by traditional low-dimensional thinking. If we consider the
case of d fixed and n tending to infinity, Affentranger and Schneider
(1) showed that there are a constant times log(n)(d�1)�2 points on
the convex hull; in contrast, in the high-dimensional asymptotic
considered here, all n points are on the convex hull.
1.6.2. Sparse solution by linear programming. Finding the sparsest
nonnegative solution to y � Ax is an NP-hard problem in general
when d � n. Surprisingly, many matrices have a sparsity threshold:

Fig. 1. �vs and �N. The lower curve (dashed) shows the lower bound �N(�) on
the neighborliness threshold, computed by methods described in this work.
The upper curve (solid) shows Vershik–Sporyshev weak neighborliness thresh-
old �VS. MATLAB software is available from the authors.
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for all instances y such that y � Ax has a sufficiently sparse
nonnegative solution, there is a unique nonnegative solution, which
can be found by linear programming. Interestingly, the neighbor-
liness phase transitions �N and �VS describe the threshold behavior
of typical matrices A. This connection is discussed at length in ref.
4. Consider the standard linear program

�LP� min 1�x subject to y � Ax , x � 0.

Corollary 1.2. Fix �, �  0. Let d � �n , and let A be a d � n matrix
whose columns are independent and identically distributed according
to a multivariate normal distribution with nonsingular covariance. Let
k �  (�N(�) � �)d . With overwhelming probability for large n, A has
the property that, for every nonnegative vector x0 containing at most k
nonzeros, the corresponding y � Ax0 generates an instance of the
minimization problem (LP), which has x0 for its unique solution.

In other words, for a typical A, for all problem instances
permitting sufficiently sparse solutions, the linear programming
problem (LP) computes the sparsest solution. Here ‘‘sufficiently
sparse’’ is determined by �N(d�n).

The weak-neighborliness threshold has implications in terms of
‘‘most’’ underdetermined systems. Consider the collection S�(n, d,
k) of all systems of linear equations with n unknowns, d equations,
permitting a solution by �k nonzeros. As we explain in our
companion paper (4), one can place a measure on S� in which
different matrices with the same row space are identified and
different vectors y are identified if their sparsest decompositions
have the same support. The result is a compact space on which a
natural uniform measure exists: the uniform measure on d-
subspaces of Rn times the uniform measure on k-subsets of n
objects.

Corollary 1.3. Fix �  0, and set � � �VS(�). For large n, in the
overwhelming majority of systems in S�(n, �n, (��)n), (LP) delivers
the sparsest solution.

We read off of Fig. 1 that �VS(1�2)  0.55. Thus, for large n, in
most n � 2n systems permitting a sparse solution with 55% as many
nonzeros as equations, that is the solution delivered by (LP). This
phenomenon is studied further by us in ref. 4 and material cited
there.

In both such results about solutions of linear equations, Theorem
3’s applicability to the solid simplices AT0

n is crucial.

1.7. Contents. In this work, we develop a viewpoint that allows us to
prove Theorems 1 and 2 in the same way, and that is essentially
parallel to proofs of face-counting results in ref. 7. Although
necessarily our proofs have much to do with Vershik and Spory-
shev’s proof of Theorem 2, the viewpoint we adopt has the benefit
of solving a range of problems, not only in this setting.

Section 2 proves Theorem 1, while Section 3 defined certain
exponents used in the proof. Section 4 explains how the proof may
be adapted to obtain Theorem 2. Theorem 3 is proven in ref. 8.

2. Random Projections of Simplices
We now outline the proof of Theorem 1. Key lemmas and
inequalities will be justified in a later section.

2.1. Angle Sums. As remarked in the introduction, our proof
proceeds by refining a line of research in convex integral geometry.
Affentranger and Schneider (1) [see also Vershik and Sporyshev
(2)] studied the properties of random projections P � AT where T
is an (n � 1)-simplex and P is its d-dimensional orthogonal
projection. Ref. 1 derived the formula

Efk�P� � fk�T� 	 2 �
s�0

�
F�Fk�Q�

�
G�Fd�1�2s�Q�


�F, G���G, T�,

where E denotes the expectation over realizations of the random
orthogonal projection, and the sum is over pairs (F, G) where F
is a face of G. In this display, 
(F, G) is the internal angle at face
F of G and �(G, T) is the external angle of T at face G; for
definitions and derivations of these terms see, e.g., Grünbaum,
Chap. 14 (5) as well as refs. 9–11. Write

Efk�P� � fk�T� 	 ��k, d, n� [2.1]

with

��k, d, n� � 2 �
s�0

�
F�Fk�T�

�
G�Fd�1�2s�T�


�F, G���G, T�.

[2.2]

2.2. Exact Equality from Expectation. We view Eq. 2.1 as showing that
on average fk(P) is about the same as fk(T), except for a nonnegative
‘‘discrepancy’’ �. We will show that under the stated conditions on
k, d, and n, for some �  0

��k, d, n� � n exp��n�� . [2.3]

Now as fk(P) � fk(T),

Prob�fk�P� � fk�T�	 � E�fk�T� 	 fk�P�� � ��k , d , n� .

Hence, Eq. 2.3 implies that with overwhelming probability, we
get equality of fk(P) with fk(T), as claimed in the theorem. For
the needed simultaneous result, that f�(P) � f�(T), � � 0, . . . ,
k � 1, one defines events Ek � {fk(P) � fk(T)} and notes that
by Boole’s inequality

Prob� 	 0
k�1E�� � �

0

k�1

Prob�Ek� � �
��0

k�1

��� , d , n� .

The exponential decay of �(k, d, n) will guarantee that the sum
converges to 0 whenever the (k �1)-th term does. Hence, by
establishing Eq. 2.3 we get

Prob�f��P� � f��T� , � � 0, . . . , k 	 1	 3 1,

as is to be proved.
To establish Eq. 2.3, we rewrite Eq. 2.2 as

��k, d, n� � �
s�0

Ds,

where, for � � d � 1 � 2s, s � 0, 1, 2, . . .

Ds � 2� �
F�Fk�T�

�
G�Fd�1�2s�T�


�F, G���G, T�.

We will show that, for � � �N (still to be defined) and for
sufficiently small �  0, then for n  n0(�; �, �)

n�1 log�Ds� � �� , s � 0, 1, 2, . . . .

Eq. 2.3 follows, as well as our main result.

2.3. Decay and Growth Exponents. Following Affentranger and
Schneider (1) and Vershik and Sporyshev (2), observe the
following:

Y There are (k�1
n ) k-faces of T.

Y For �  k, there are ( ��k
n�k�1) �-faces of T containing a given

k-face of T.
Y The faces of T are all simplices, and the internal angle 
(F, G) �


(Tk, T�), where Td denotes the standard d-simplex.
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Thus, we can write

Ds � 2�� n
k � 1��n 	 k 	 1

� 	 k �
�Tk, T����T�, Tn�1�

� Cs
�Tk, T����T�, Tn�1�,

say, with Cs the combinatorial prefactor.
We now estimate n�1 log(Ds), decomposing it into a sum of terms

involving logarithms of the combinatorial prefactor, the internal
angle, and the external angle. Formally, we will define exponents
�com, �int, and �ext so that for �  0, and n  n0(�, �, �)

n�1 log�Cs� � �com���n ; � , �� � � , s � 0, 1, 2, . . . ,

and

n�1 log�
�T k, T l�� � �� int���n ; k�n� � � , [2.4]

uniformly in � � �n, k � �n, (� � k) � (� � �)n;

n�1 log���T l, T n�1�� � ��ext���n� � � , [2.5]

uniformly in � � �n. It follows that for any fixed choice of �, �,
for �  0, and for n � n0 (�, �, �) we have the inequality

n�1 log�Ds� � �com� ; � , �� 	 � int� ; ��� 	 �ext�� � 3� ,

[2.6]

valid uniformly in s. Exactly the same approach (with different
details) has been used in ref. 7, and the approach is related to
ref. 2.

To see where the exponents come from, we consider the
simplest case, �com. Define the Shannon entropy

H�p� � p log�1�p� � �1 	 p� log�1��1 	 p�� ,

noting that here the logarithm base is e, rather than the
customary base 2. As did Vershik and Sporyshev (2) and also the
authors of refs. 7 and 12, we note that

n�1 log� n
 pn  � 3 H�p� , p � �0, 1� , n 3 
 ,

[2.7]

so that H provides a convenient summary for combinatorial
terms. Defining  � ��n � �, we have

n�1 log�Cs� � H���� � H�  	 ��

1 	 ��
� �1 	 ��� � R1,

[2.8]

with remainder R1 � R1 (s, k, d, n). Define then the growth
exponent,

�com� ; � , �� � H���� � H�  	 ��

1 	 ��
� �1 	 ��� ,

describing the exponential growth of the combinatorial fac-
tors. It is banal to apply Eq. 2.7 and see that the remainder
R1 in Eq. 2.8 is o(1) uniformly in the range k � �  (� � �)n,
n  n0.

The definitions for the exponent functions Eqs. 2.4 and 2.5
are significantly more involved and are postponed to the
following section. There it will be seen that these are contin-
uous functions.

Define now the net exponent �net(; �, �) � �com(; �, �) �
�int(; ��) � �ext(). We can define at last the mysterious �N
as the threshold where the net exponent changes sign. It can

be seen that the components of �net are all continuous over
sets {� � [�0, 1], � � [�0, 1],  � [�, 1]}, and so �net has the
same continuity properties.

Definition 1: Let � � (0, 1]. The critical proportion �N(�) is the
supremum of � � [0, 1] obeying

�net� ; � , �� � 0,  � �� , 1� .

Continuity of �net shows that if � � �N then, for some �  0,

�net� ; � , �� � �4� ,  � �� , 1� .

Recall now Eq. 2.6. Then for all s � 0, 2, . . . , (n � d)�2 and
all n  n0(�, �, �)

n�1 log�Ds� � �� .

Eq. 2.3 follows, and so also our main result.

3. Properties of Exponents
We now define the exponents �int and �ext and discuss prop-
erties of �N.

3.1. Exponent for External Angle. Let Q denote the cumulative
distribution function of a normal N(0, 1�2) random variable, i.e.
X � N(0, 1�2), and Q(x) � Prob{X � x}. It has density q(x) �
exp(�x2)���. Writing things out explicitly,

Q�x� �
1
��

	
�


x

e�y2 dy. [3.1]

For  � (0, 1], define x as the solution of

2xQ�x�

q�x�
�

1 	 


, [3.2]

noting that possible values of x are nonnegative. Since xQ is a
smooth strictly increasing function �0 as x 3 0 and �x as x 3

, and q(x) is strictly decreasing, the function 2xQ(x)�q(x) is
one–one on the positive axis, and x is well-defined, and a
smooth, decreasing function of . See Fig. 2 for a depiction.

3.2. Exponent for Internal Angle. Let Y be a standard half-normal
random variable HN(0, 1), with cumulant generating function
�(s) � log(E exp(sY)). Very convenient for us is the exact
formula

��s� � s2�2 � log�2��s�� ,

where � is the usual cumulative distribution function of a
standard Normal N(0, 1). The cumulant generating function �
has a rate function [Fenchel–Legendre dual (13)]

�*�y� � max
s

sy 	 ��s� .

�* is smooth and convex on (0, 
), strictly positive except at � �
EY � �2��. More details are provided in ref. 7.

For � � (0, 1) let

���y� �
1 	 �

�
y2�2 � �*�y�.

The function ��(y) is strictly convex and positive on (0, 
) and
has a minimum at a unique y� in the interval (0, �2��). We
define, for � � ��� � �,

�int(; ��)���(y�)(���)�log�2�� 	 ��� .
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For fixed �, �, �int is continuous in  � �. Most importantly, section
6 of ref. 7 gives the asymptotic formula

��� y�� �
1
2

� log � 1 	 �

�
� , � 3 0. [3.3]

3.3. Combining the Exponents. We now consider the combined
behavior of �com, �int, and �ext. We think of these as functions of
 with �, � as parameters. The combinatorial exponent �com
involves a scaled, shifted version of the Shannon entropy, which is
a symmetric, roughly parabolic shaped function. �com is the expo-
nent of a growing function that must be outweighed by the sum
�ext � �int.

Fig. 3 shows both �com and �ext � �int with � � 0.5555 and
� � 0.145. The desired condition �net � 0 is the same as �com �
�ext � �int and holds with plenty of slack except near  � �,
where the two curves are close. We have �N(�) � 0.145.

3.4. Justifying the Exponents. It remains to justify Eqs. 2.4 and 2.5.
We sketch the argument for Eq. 2.5. The key point is the

closed-form expression for �(T�, Tn�1)

��T�, Tn�1� � �� � 1
� 	

0




e����1�x2 � 1
��

	
�


x

e�y2 dy�n���1

dx

(see ref. 1). We recognize the inner integral as involving Q from
Eq. 3.1. Set �,n � (� � 1)�n. The integral formula can be
rewritten as

�n�,n

� 	
0




exp��n�,n x2 � n�1 	 �,n� log Q�x�	dx .

[3.4]

The appearance of n in the exponent suggests to use Laplace’s
method; we define, for  fixed,

f,n�y� � exp��n��y�	 ��n

�
,

with

��y� � y2 	 �1 	 �log Q�y� .

We note that � is smooth and in the obvious way can develop
expressions for its second and third derivatives. Applying Laplace’s
method to � in the usual way, but taking care about regularity
conditions and remainders, gives a result with uniformity in .
Arguing in a fashion paralleling section 5 of ref. 7, one obtains:

Lemma 3.1. For  � (0, 1) let x denote the minimizer of �. Then

	
0




f,n�x�dx � exp��n��x���1 � Rn��� ,

where, for �, �  0,

sup
���,1���

Rn�� � o�1� as n 3 
 .

The minimizer x mentioned in this lemma is the same x defined
earlier in Eq. 3.2 in terms of the error function. Also, the

Fig. 2. Key notions associated with external angle. (a) The minimizer x of �,
as a function of . (b) The exponent �ext, a function of .

Fig. 3. The exponents �com(; �, �) and �int(; ��) � �ext(), for � � 0.145, � �
0.5555. The graph of �com (solid line) falls below that of �int � �ext (dashed
line), and so �net � 0.
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minimum value identified in this lemma as driving the exponen-
tial rate is the same as our exponent �ext,

�ext�� � ��x� . [3.5]

Hence, Eq. 2.5 follows.
The decay estimate Eq. 2.4 for the internal angle was derived in

ref. 7, and details can be found there. Vershik and Sporyshev (2)
used a related but seemingly different approach. The argument
starts from a closed-form integral expression for 
(Tk, T�). By ref.
14, 
(Tk, T�) � B(1�k�2, � � k � 1), where

B��, m� � ��m�1��2��m 	 1�� � 1��m�2��1�2J�m, ��,

[3.6]

with � � (1 � �)�� and

J�m, �� �
1
��

	
�



 �	
0




e��v2�2iv�dv�m

e��2d�. [3.7]

It was shown in ref. 7 that Laplace’s method applied to this last
integral yields exponential bounds on the decay of 
 of the form
Eq. 2.4.

3.5. Properties of �N. We mention two key facts about �N. First, the
concept is nontrivial.

Lemma 3.2.

�N��� � 0, � � �0, 1�. [3.8]

Second, one can show that, although �N(�) 3 0 as � 3 0, it
goes to zero slowly.

Lemma 3.3. For �  0,

�N��� � log�1�����1���, � 3 0.

These results require only a simple observation. Ref. 7 studied
uniform random projections ACn of the cross-polytope Cn,
namely the unit �1 ball in Rn. A function �N

� was derived, giving
the threshold below which a certain event En,� happens with
overwhelming probability for large n. Under the event En,� the
images under A of all  �d -dimensional faces of C appeared as
faces of AC. Viewing Tn�1 as a face of Cn, when En,� holds, it

follows that every low-dimensional face of Tn�1 must therefore
appear as a face of ATn�1, meaning that

�N��� � �N
����, � � �0, 1�.

Lower bounds completely parallel in form to those in Lemmas
3.2 and 3.3 were already proven for �N

� in ref. 7. Hence, Lemmas
3.2 and 3.3 follow from those.

4. Weak Neighborliness
We now explain how the above proof can be adapted to handle
Vershik–Sporyshev’s result, Theorem 2.

Observe that fk�1(Tn�1) � (k
n); this combinatorial factor has

exponential growth with n according to an exponent �face(��) �
H(��); thus, if k � k(n) � ��n,

n�1 log�fk�1�T n�1�� 3 � face���� , n 3 
 .

We again define �net as in the proof of Theorem 1.
Definition 2: Let � � (0, 1]. The critical proportion �VS(�) is the

supremum of � � [0, 1] obeying

�net� ; � , �� � � face���� ,  � �� , 1� . [4.1]

Recall Section 2’s definition �(k, d, n) � fk�1(T) �
fk�1(AT) � 0. The proof of Theorem 2 is based on observing that
Eq. 4.1 implies

��k, d, n� � o�fk�1�Tn�1��. [4.2]

We immediately get Eq. 1.2, showing that Eq. 4.1 implies Eq. 4.2
requires no new ideas; one proceeds as in Section 2 almost line
by line, so we omit the exercise. �

We remark that the critical proportion �VS defined in this way
does not immediately resemble the result of Vershik and Spory-
shev’s result. Section 6 of ref. 6 explains how to translate between
the two notational systems.
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