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Abstract: This paper introduces cross-wound CFRP shear reinforcement of hollow HPC
beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh
from carbon rovings oriented at ±45◦ from the longitudinal axis. The shear reinforcement
was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex.
Tensile reinforcement made of BFRP bars was positioned directly around the hollow core
and was used as a platform for manual winding of the shear reinforcement. The hollow
beams were subjected to a three-point bending test with four configurations of the tensile
BFRP reinforcement for better evaluation of the effect of the shear reinforcement under
different conditions. The 1600 tex shear reinforcement increased the ultimate flexural
strength by at least 89% compared to specimens without any shear reinforcement. The
3700 tex shear reinforcement yielded slightly better results in most cases but was not
utilized to its full shear capacity as these specimens always failed in shear due to the
delamination of the concrete matrix from the shear reinforcement. There was too much
reinforcement in the beam cross-section.

Keywords: hollow concrete beam; shear reinforcement; composite reinforcement; woven
reinforcement; cross-wound reinforcement; fiber-reinforced polymer; high-performance concrete

1. Introduction
In view of the increasing number of natural and man-made disasters and the in-

creasing economic and social problems, it is necessary to adapt the existing principles
and methods of structural design, the corresponding construction techniques, and the
operation of buildings to make them more sustainable, resilient, and adaptable to new
situations in changing natural and socio-economic conditions in the world. Concrete, in
general, is the most used material in construction. Recent research and development of
concrete composition, production technology, and development of concrete constructions,
intensified over the last 20 years, have led to the improvement of technical parameters
while reducing environmental impacts. Due to the optimization of the mixture, new types
of concrete can have significantly better characteristics from the perspective of strength,
mechanical resistance, durability, and resistance to extreme loads. However, it is necessary
to further search for the effective application of these new silicate materials in wide practice.
Developed technical solutions could contribute to addressing the Sustainable Development
Goals (SDGs), which the United Nations set out in 2015 as a 2030 action plan [1].
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Concrete is gradually becoming a building material with a high potential for technical
solutions meeting these new requirements, leading to the necessary reduction in environ-
mental impacts and the consequent necessary improvement of properties in the conditions
of a changing climate. With respect to the amount of produced concrete, the optimization
of concrete structures represents a great potential for improving the complex quality of
structures from the perspective of sustainable development [2–5]. One of the ways can be a
completely new look at concrete structures and the search for the optimal application of new
silicate materials or their combinations. It can be a sandwich construction, combinations of
concrete, combinations of reinforcements, or shape optimization using the potential of new
silicate materials and alternative reinforcement.

This article presents an example of the last-mentioned variant. It uses the advan-
tages of high-performance concrete (HPC) with its high mechanical performance and
durability [6–8] in combination with alternative composite reinforcement in the form of
hollow beams with hybrid basal fiber-reinforced polymer (BFRP) bars and carbon fiber-
reinforced polymer (CFRP) woven reinforcement. This non-corrosive reinforcement also
has high mechanical performance and higher durability [9,10] in comparison with tradi-
tional steel reinforcement. Thanks to that, elements can be designed only for load-bearing
capacity, not durability, leading to extremely thin elements without considering traditional
reinforcement concrete cover thicknesses. To maximize this effect and minimize material
consumption, it is appropriate to optimize the shape of such cross-sections, for example,
the I-shape [11,12], I-shape as a structural element [13–15]. Another option for lightening
and optimizing is the use of a hollow cross-section, which corresponds to the presented
topic. It is possible to use a hollow section in both columns and beams, very often with a
tubular shape [16–19].

Flexural behavior is relatively well described and known; it is interesting to focus more
closely on the shear capacity of thin-walled hollow HPC beams with BFRP reinforcement
bars and CFRP woven reinforcement. The application technology, the way of shaping the
shear reinforcement, and its angle compared to traditional solutions are original. Textile
concrete reinforcement of both commercial and laboratory production is capable of reliably
transmitting shear stress, as presented in the mentioned articles [11–19]. All the above
solutions use the longitudinal and transverse directions of individual textile reinforcement
roving, i.e., angles of 0 and 90 degrees from the longitudinal direction of the 1D element,
not 45 degrees, as presented in the presented article. There are also articles generally
describing FRP shear reinforcement in the form of stirrups [20,21] or spirals [22–24] with
open or closed-type winding, which is a conservative approach for massive structures close
to the traditional approach to metal reinforcement from the point of view of static action,
which is not very suitable for hollow ultra-thin HPC elements. Traditional composite
reinforcement allows for the minimization of the concrete cover layer in terms of durability.
However, to ensure sufficient interaction with the cementitious matrix, a greater thickness
of the concrete layer is required. The cross-wound consists of individual roving, making
it suitable for extremely thin elements with a concrete layer thickness of only about one
centimeter. A separate category is additional reinforcement of elements using FRP and
textiles; however, it does not correspond to the production technology of the presented
beams [25–27] because the article presents newly created elements.

The paper focuses on homogenized yarn to maximize the efficiency of carbon fib-
rils using epoxy resin [28–30] also with reinforcement surface treatment [28,30–33]. The
polymer matrix of yarn can also protect single fibrils against the alkaline environment of
concrete [34–36], but also has some negatives like lover resistance [37] to elevated tem-
perature. It is also possible to replace the resin using cementitious [38] or geopolymer
suspension for the yarn homogenization [39].
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Thanks to the method of execution and the angle of 45 degrees of the reinforcement
from the longitudinal direction, this reinforcement not only resists shear loading but also
participates in the transmission of tensile stress at the bottom surface. The carbon yarn is
applied around BFRP bending reinforcement bars on the removable rigid steel core, which
forms the shape of the cross-section. The carbon yarn forms a square mesh oriented at
45◦ to the element axis. The density of the mesh corresponds to the number of yarns in
the cross-section. The mesh is then homogenized using epoxy resin; this step connects the
carbon mesh and the BFRP bars into one solid whole. The surface of CFRP mesh is coated
using fine-grain silica sand.

The samples have a shear reinforcement of two types, which differ only in the linear
density of used carbon yarn. The spacing of the woven reinforcement and the number
of rovings are identical for all specimens. Each group was supplemented with samples
without any woven reinforcement to clearly demonstrate the positive effect. Furthermore,
there was a difference in the amount of flexural reinforcement; four groups were designed
so that with a larger amount of flexural reinforcement, the sample could not be damaged
by the rupture of the flexural reinforcement, and the importance and influence of the
cross-wound CFRP were highlighted. It is also evident from the specimen dimensions
that the potential of these larger diameter BFRP bars in thin HPC skin will not be fully
utilized due to the small layer of HPC around the BFRP bar. These specimens exceed the
reinforcement ratio limit for traditionally reinforced beams defined in Eurocode 2 [40].
Laboratory samples of short hollow beams 100 × 100 × 400 mm were loaded using a
three-point bending test with a distance between supports of 300 mm.

2. Materials and Methods
2.1. Materials
2.1.1. Concrete Mixture

By using a fine-grained HPC mixture with a maximal grain size of 1.2 mm, good
penetration of the concrete matrix through the composite shear reinforcement mesh was
ensured. The concrete mixture, as described in Table 1, achieved a compressive strength
of 115.6 ± 4.3 MPa on cubes with an edge length of 100 mm, in accordance with the
technical standard EN 12390-3:2019 [41]. The tensile strength, measured on prisms of
40 × 40 × 160 mm3 using three-point bending with a 100 mm support distance as per
EN 12390-5:2019 [42], was 14.3 ± 0.9 MPa. The secant modulus of elasticity, measured on
prisms of 100 × 100 × 400 mm3 in compression according to EN 12390-13:2021 [43], was
45.3 ± 0.7 GPa. All tests were conducted at 28 days of age using the Controls MCC-Multitest
testing machine (Milan, Italy).

Table 1. High-performance concrete mix composition.

Component [kg/m3]

Cement I 42.5 R 752
Technical silica sand 1062

Silica flour 250
Silica fume 110

Superplasticizers 29
Water 176

2.1.2. Reinforcement

BFRP reinforcement bars as a bending reinforcement were used by the company
ORLITECH®, produced by Binevir ITS Kompozit Üretim A.S. (Maslak, Turkey), and were
used as tensile reinforcement for all specimens. The BFRP bars are made from thermosetting
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epoxy resin, with their surface modified using silica sand for higher diameters or wrapped
from the yarn of the same material in the case of weaker reinforcement to enhance almost
perfect bonding with the concrete matrix. The density of the BFRP bars is 2.0 g/mm3, with
the basalt fiber content exceeding 80% by weight. Bars with diameters of 4 mm (treated
using wave roving) and 8 mm (treated using silica sand) were used in this presented study.
The 4 mm diameter BFRP bars have an average tensile strength of 1030 MPa, measured
according to ISO 10406-1 [44] (the minimum declared tensile strength is 1000 MPa). The
static modulus of elasticity, measured according to the same standard, is 55.8 GPa (with a
minimum declared value of 50 GPa). The minimum declared bond strength with concrete
is 25 N/mm2. The 8 mm diameter BFRP bars have an average tensile strength of 1265 MPa
(minimum 1200 MPa). The static modulus of elasticity is 55.7 GPa (minimum 50 GPa), and
the minimum declared bond strength with concrete is 50 N/mm2.

The cross-wound part of the composite reinforcement was prepared from carbon
filament yarn with two different nominal linear density values of 1600 tex and 3700 tex.
Carbon filament yarns Tenax™-E STS40 F13 24K 1600 tex were produced by Teijin Carbon
Europe GmbH (Heinsberg, Germany), and ZOLTEK™ PX35 50K 3700 tex were produced by
ZOLTEK Corporation (Bridgeton, NJ, USA). The declared tensile strength is 4300 MPa, and
the modulus of elasticity is 240 GPa for the yarn with a lower nominal linear density [45].
These parameters for the higher tex yarn are 4137 MPa and 242 GPa [46]. The carbon yarn
was impregnated using a two-component epoxy resin, SikaFloor-150®, from the company
Sika Deutschland GmbH (Stuttgart, Germany) to ensure proper interaction of all filaments.
The resin has a flexural strength of 15 MPa and a modulus of elasticity of 2 GPa [47]. In
previous research, a tensile test of CFRP from single roving was performed. Single carbon
yarns were laminated by epoxy resin. Specimens were then placed into the steel sleeve for
necessary anchoring in a testing machine. Specimens were placed into the testing machine,
and in the middle of the roving was placed a potentiometer for exact determination of
elongation. The measured and calculated tensile strength of CFRP from single roving was
3423 MPa, and the modulus of elasticity was 267 GPa [48].

2.2. Specimen Preparation

The hollow beams were designed with a cross-section of 100 × 100 mm2 and a hollow
core of 62 × 62 mm2. The cross-sectional laboratory dimension was inspired by previous
research [49], the EN 12390-5:2019 standard [42], and also technological possibilities for the
implementation of laboratory samples. While the weight is reduced to 61.7% compared to
a solid element with similar outer dimensions, the elastic section modulus is only 14.8%
lower, and the effective height can remain unchanged. The beams were manufactured at
a length of 1200 mm and were then divided into specimens for testing purposes. Steel
tubes 60× 60 mm2 and a thickness of skin 2 mm were used as a rigid core for reinforcement
preparation (Figure 1a). The steel tubes were wrapped with polyethylene foam sheets with
a thickness of 1 mm, which resulted in a hollow core of 62 × 62 mm2 (Figure 1b) to provide
separation of the steel core from the HPC matrix and allow easy removal. Then, bending
BFRP reinforcement was fixed on the core using a thin steel wire (Figure 1c). The next
step was the application of carbon woven reinforcement and homogenization using epoxy
resin (Figure 1d) and the installation of the prepared wooden mold (Figure 1e). The next
step was the casting of the HPC mixture (Figure 1f) and the next day after the concrete
demolding (Figure 1g) and removal (pulling out) of the steel core (Figure 1h).
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Figure 1. Specimen production process: (a) rigid steel core 60 × 60 mm2; (b) foam sheet separation 
skin wrapped on the steel core; (c) BFRP bending bars fixed by wire; (d) CFRP shear reinforcement 
and their homogenization; (e) installation of reinforcement into the mold; (f) concreting process; (g) 
demolding; (h) removal of the steel core. 

2.2.1. Hollow Core 

The beams’ hollow cores were formed using square steel tubes with dimensions of 
60 × 60 × 2 mm3 as removable forms. The tubes were to be removed after concrete harden-
ing and were covered with foam sheets with a thickness of 1 mm to prevent issues with 
their removal due to shrinkage of the concrete matrix. The steel tubes with separation 
layers were used as a platform for the tensile and shear reinforcement positioning. 

Figure 1. Specimen production process: (a) rigid steel core 60 × 60 mm2; (b) foam sheet separation
skin wrapped on the steel core; (c) BFRP bending bars fixed by wire; (d) CFRP shear reinforcement
and their homogenization; (e) installation of reinforcement into the mold; (f) concreting process;
(g) demolding; (h) removal of the steel core.

2.2.1. Hollow Core

The beams’ hollow cores were formed using square steel tubes with dimensions
of 60 × 60 × 2 mm3 as removable forms. The tubes were to be removed after concrete
hardening and were covered with foam sheets with a thickness of 1 mm to prevent issues
with their removal due to shrinkage of the concrete matrix. The steel tubes with separation
layers were used as a platform for the tensile and shear reinforcement positioning.
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2.2.2. BFRP Tensile Reinforcement

The BFRP bars were placed directly on the separation layer, and their position was
secured using binding wire to prevent their shifting during the winding of the CFRP shear
reinforcement. The BFRP reinforcement was prepared using bars with diameters of 4 and
8 mm in four variants shown in Figure 2 with different reinforcement ratios from 0.8% to
4.1% (regarding the hollow cross-section). Figure 2 also shows the position of the CFRP
shear reinforcement for each variant of the tensile reinforcement.
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Figure 2. Hollow beam specimens with cross-wound CFRP shear reinforcement cross-sections:
(a) 4Ø4 BFRP bars tensile reinforcement configuration; (b) 8Ø4 BFRP bars; (c) 4Ø8 BFRP bars;
(d) 4Ø8 + 4Ø4 BFRP bars.

2.2.3. CFRP Shear Reinforcement

The carbon yarn was wound around the BFRP bars at an angle of ±45◦ from the
longitudinal axis with 12 rovings in each direction. The rovings were impregnated with
epoxy resin using a foam roller. The application of the foam roller limited accessibility
to one side of the cross-wound carbon rovings. Before the epoxy resin was cured, it was
coated from all directions with fine-grained silica sand with grain size from 0.1 to 0.6 mm
to improve the interaction between the CFRP reinforcement and the concrete matrix.

The Ø4 mm BFRP bars were pressed into the soft separation foam sheet during the
winding of the shear reinforcement, which, for the 4Ø4 BFRP bars configuration, resulted in
the impregnated carbon rovings being in direct contact with the separation layer, as shown
in Figure 3a. The shear reinforcement will be, in this case, placed on the inner surface of
the HPC shell, which will impact their interaction. The Ø8 mm BFRP bars provided better
support and positioned the CFRP reinforcement at a distance from the separation layer
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(Figure 3b). This position of the shear reinforcement will allow for the concrete to fill the
space between the BFRP bars and completely encase the CFRP reinforcement.
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2.2.4. HPC Shell

The temporary hollow core, mounted with tensile and shear reinforcement, was
placed horizontally inside a mold, protruding through a faceplate on each side to secure
its position. The concrete mixture was cast and vibrated to minimize the number of pores.
The faceplates were removed, and the temporary steel core was pulled out of the hollow
beam after 24 h. After removal from the mold, the beams were cut into specimens with a
length of 400 mm.

Figure 4a shows the variant with four BFRP bars with a diameter of 4 mm (Figure 2a)
exposed to both CFRP shear reinforcement and BFRP tensile reinforcement as a result of
their contact with the separation layer (Figure 3a). In the case of the 8Ø4 configuration, the
middle BFRP bars raised the cross-wound CFRP reinforcement above the separation layer.
As a result, the composite reinforcement was encased in the concrete matrix. Figure 4b
shows the variant with 4Ø8 + 4Ø4 BFRP bars (Figure 2d), with cavities in the concrete
matrix, where concrete could not fill the space between the BFRP bars below the hollow
core. Variant 4Ø8 was similarly impacted.
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2.3. Testing Methods

To evaluate the performance of the cross-wound CFRP shear reinforcement, all speci-
mens were subjected to a 3-point bending test with a 300 mm distance between support
pins. The experimental loading test was inspired by EN 12390-5:2019 [42] for determin-
ing the material properties of concrete. The small distance between the load supports in
comparison with the larger beam height respects the focus of the experiment on the shear
behavior of the specimen. The testing was controlled by an increment of displacement of
2 mm/min and was performed using the LabTest 4.100SP1 testing machine (LaborTech Ltd.,
Opava, Czech Republic). Table 2 provides an overview of all reinforcement configurations
and a number of prepared specimens.

Table 2. Overview of all prepared specimens.

Diagram Tensile
Reinforcement

Cross-Sectional Area
Reinforcement Ratio

Shear
Reinforcement Amt. Ultimate

Force [kN] Failure
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3. Results and Discussion
The three-point bending test resulted in all specimens without shear reinforcement in

a shear failure. The development of oblique shear cracks always leads to the formation of
a shear crack along the tensile reinforcement and its subsequent pullout. For specimens
with shear reinforcement, specimens with the lowest tensile reinforcement ratio failed in
tension, while all other tensile reinforcement configurations failed in shear. The mode
of failure and ultimate bending strength of all specimens are summarized in Table 2 and
force/displacement diagrams in Figure 5.

In the specimens with only 4Ø4 BFRP tensile reinforcement bars (Figure 5a), tensile
failure occurred in both variants of the shear reinforcement as a result of delamination
of the tensile bars, as shown in Figure 6a. This happened due to the small contact area
of the BFRP bars with the surrounding concrete matrix. In the samples with 8Ø4 bars
(Figure 5b), simple delamination of the BFRP bars no longer occurred. The reason was a
better interaction of the middle bar of the tensile reinforcement with the concrete matrix
due to a larger contact area. In these specimens, tensile reinforcement lost cohesion with
the concrete matrix as a result of the development of a shear crack along the reinforcement
(Figure 6b).
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in the 8Ø4–16 configuration.

The shear reinforcement was fully utilized in the case of specimens with tensile
reinforcement configuration 8Ø4 (Figure 5c) and 4Ø8 + 4Ø4 (Figure 5d). Specimens with
both 1600 tex and 3700 tex behaved similarly and achieved comparable results, as shown
in Figure 5c,d. All of them collapsed due to a shear failure. The specimens with 1600 tex
shear reinforcement failed as predicted, with the rupture of carbon rovings transverse
to the shear cracks (Figure 7a). The specimens with 3700 tex shear reinforcement failed
due to delamination of the concrete matrix from the shear reinforcement, while the shear
reinforcement remained undamaged. Figure 7b shows that the concrete matrix delaminated
alongside the sand coating of the CFRP reinforcement.
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4. Conclusions
The hollow HPC beams with 38% lower weight compared to solid beams with the same

outer dimensions can retain the same effective height while experiencing slightly sooner
crack development in the concrete matrix due to a 14.8% elastic section modulus. The main
drawback of the hollow cross-section is the reduced shear capacity, as the thickness of the
HPC shells in the middle of the cross-section totals only 38% of the solid element. The
cross-wound CFRP shear reinforcement in both variants significantly increased the shear
capacity of the hollow beams. The temporary core, which was used to form the beams’
hollow core, also provided an efficient way of reinforcement positioning, as the tensile and
shear reinforcements were mounted directly on the temporary core. The reinforcement
was securely positioned without any additional spacers needed to maintain the designed
distance from the mold surface.

• The position of the tensile reinforcement in contact with the surface of the hollow
core proved to be problematic, as it increased the risk of pullout of the BFRP bars.
This issue was most pronounced in the case of the Ø4 mm BFRP bars, which were
pressed into the soft separation layer of the hollow core during positioning, which
resulted in a larger exposed surface area and, therefore, a smaller contact area with the
concrete matrix.

1. The process of epoxy resin impregnation of the carbon rovings using a foam
roller, which could reach the cross-wound textile reinforcement only from one
side, resulted in the case of the 3700 tex rovings in insufficient penetration of the
yarn. The surface of the impregnated rovings did not contain enough resin to
properly bond with the silica sand meant to coat it. This led to the delamination
of the concrete matrix along with the silica sand, yielding results only slightly
higher compared to specimens with 1600 tex reinforcement, meaning that the
shear capacity of the 3700 tex reinforcement was not fully utilized.

2. The cross-wound CFRP shear reinforcement made of 1600 tex carbon rovings
was, in the case of specimens with a 1.6% to 4.1% tensile reinforcement ratio, fully
utilized, as all of these specimens failed due to a rupture of the carbon rovings
transverse to the shear crack. These specimens had 100% or higher ultimate
mean flexural strength compared to specimens without any shear reinforcement.
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• The spalling of concrete fragments as a result of stress release during the rupture of
the shear reinforcement also showed that the 1600 tex rovings were sufficiently im-
pregnated with the epoxy resin, as the sand coating did not delaminate along with the
concrete matrix, as was the case for specimens with the 3700 tex CFRP reinforcement.

The position of the tensile reinforcement directly on the surface of the temporary core
led to several issues, especially in the case of the bars with smaller diameters. It would
be advantageous to position both the tensile and shear reinforcement closer to the outer
surface of the hollow beam. This would lead to a higher effective height of the element and,
therefore, higher flexural capacity, while the position further from the surface of the HPC
shell would provide better interaction with the shear reinforcement. Other means of epoxy
resin application should also be explored to ensure proper impregnation of yarn with a
higher number of filaments.
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