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Abstract: This article presents the fundamental principles of robot accuracy. It characterizes
a modular robot, describes the measurement setup, and outlines the methodology for
evaluating positioning accuracy across different configurations of the modular robot (four,
five, and six modules) under varying loads of 6, 10, and 16 kg. An analysis was conducted
on the impact of load changes on four- and five-module configurations, as well as the effect
of configuration changes on the robot’s performance with 6 and 10 kg loads. The findings
indicate that both the number of modules and the load affect positioning accuracy. This
article highlights the importance of selecting the optimal configuration based on planned
industrial tasks to ensure the highest precision and operational efficiency.
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1. Introduction
Recently, modular robots have been gaining popularity in the global industrial automa-

tion market. Von Neumann first introduced the concept of modular robots in his “Theory
of Self-Reproducing Cellular Automata” in the 1960s [1], which involved assembling ho-
mogeneous components to form systems. In 1988, the first modular cellular robot (CEBOT)
was developed, comprising various types of modules, such as rotary joints, telescopic
arms, and gripping units [2]. Modular industrial robots offer user-friendly, software-based
automation solutions for industrial production. The modular robotics system provides
complete freedom in configuring robots and cobots. Scalable and easily connectable motor
modules and links enable the creation of custom robotic solutions that can be expanded and
modified at any time. Such solutions are, in a sense, subsequent stages of the development
of classic industrial robots, alongside the increasingly used, developed and researched
collaborative robots [3–5].

In recent years, several studies have explored various aspects of modular robotics,
including their adaptability, scalability, and potential for industrial applications. Foun-
dational works, such as Yang and Chen’s Modular Robots: Theory and Practice [6] and
the Handbook of Robotics [7], have discussed the principles of modular robot design,
focusing on the benefits of reconfigurable systems. A more recent publication [8] carried
out comprehensive research covering the entire assumptions and construction of mod-
ular reconfigurable robots, from their creation in 1985 to 2023. In [9], the authors focus
on studying the modular robot’s configuration design and self-reconfiguration process
and propose an optimized ant colony algorithm for reconfiguration path planning and
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verifying superiority and rationality. However, these mentioned studies often lack detailed
experimental validation, particularly under varying configurations and load conditions.

Extensive research has also been conducted on the relationship between positioning
accuracy and robot design parameters. For instance, studies on improving robot accuracy
with an optical tracking system are presented in [10]. In [11], the authors, on the other
hand, propose combining a genetic algorithm with a lexicographic evaluation of solution
candidates to optimize modular robot composition. Despite these advances, most exist-
ing research focuses on traditional robotic systems rather than modular configurations,
leaving a significant gap in understanding the unique challenges posed by modularity.
These works provide valuable insights but are constrained by the narrow scope of config-
urations or lack of systematic evaluation across diverse industrial scenarios. Moreover,
there is little discussion on how these findings can guide practical applications in dynamic
industrial environments.

Modular robotics thus provides enhanced flexibility, adaptability, and scalability in
production processes. The modules of these robots are typically standardized and can
be easily replaced, allowing for the construction of various robot configurations to meet
specific production requirements. The core idea behind modular robots is their ability
to quickly adapt and reconfigure, enabling efficient adjustments to changing production
needs. Their control software is also designed to be flexible and adaptive, allowing for
robots to be programmed for a wide range of tasks [12].

The modules of modular industrial robots are designed as standalone units with
specific functions. These modules can include robotic arms, grippers, sensors, effectors,
and other specialized components, depending on the intended application. Each module
is equipped with its own computational power, communication capabilities, and power
supply, enabling it to operate independently or in conjunction with other elements [13–15].

Communication between modules is a critical aspect of modular industrial robots.
The modules are interconnected (e.g., via standard communication interfaces such as
ethernet or fieldbus systems), allowing for smooth data exchange and coordination. This
connectivity facilitates synchronized control and cooperation among multiple modules,
leading to efficient and coordinated operations. Software, in turn, aids in the integration
and coordination of individual modules and overall robot system management. Key
software components for modular industrial robots include the following:

1. An operating system that serves as the foundation for managing the robot’s hardware
and software components. It provides real-time control, task scheduling, and re-
source allocation capabilities [15]. Modular industrial robots often utilize specialized
operating systems designed for real-time control, ensuring precise and timely task
execution [16].

2. Middleware, which acts as an intermediary layer between the operating system and
the robot’s application software [13]. It facilitates communication and data exchange
between different modules and supports the integration of additional software tools,
such as vision systems or machine learning algorithms [14,17]. Middleware plays a
crucial role in achieving interoperability and modularity within the robot system.

3. An appropriate development environment. It is essential for creating and modifying
robot tasks. Modular industrial robots provide programming interfaces that allow
for users to develop and customize applications based on their specific production
needs. These development environments often include graphical user interfaces
(GUIs), high-level programming languages, and libraries for robot control and motion
planning [2].

Despite the numerous advantages of modular robots, maintaining positioning accuracy
under changing configurations and load conditions remains a key challenge. Positioning
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accuracy is critical in many industrial applications, such as assembly, welding, and ma-
terial handling, where even small deviations can reduce efficiency, safety, and product
quality. However, the relationship between the number of modules, payload, and resulting
positioning accuracy remains relatively underexplored.

The goal of this study is to analyze how modular configurations and varying loads
influence the positioning accuracy of industrial robots. Specifically, this work seeks to
address the following research questions:

• How does the number of modules affect a robot’s ability to achieve precise and
repeatable positioning within its workspace?

• How do varying loads impact the positioning accuracy of modular robots in different
configurations?

• How can insights from these relationships be utilized in practical applications to
optimize the performance of modular robots in real-world industrial conditions?

This study aims to address these gaps by investigating the relationship between
modular configurations, load conditions, and positioning accuracy in a systematic and
experimentally validated manner. By building on prior research and focusing on four-,
five-, and six-module configurations, this work seeks to provide actionable guidelines for
optimizing modular robots for real-world industrial tasks.

The selected configurations represent a balance between real-world industrial re-
quirements and experimental constraints. The analysis of the results provides actionable
guidelines for optimizing modular robots in various industrial environments.

2. Materials and Methods
2.1. Evaluation of Robot Positioning Accuracy

Robot positioning accuracy is a critical factor influencing its performance and suitabil-
ity for various industrial applications. The number of axes in a robotic system significantly
affects positioning accuracy. The relationship between the number of axes and the achiev-
able positioning accuracy is crucial, providing essential information for selecting the robot,
configuring it, and designing applications. Robots are classified based on their configura-
tion, commonly defined by the number and arrangement of their axes. The number of axes
or degrees of freedom (DOFs) determines the robot’s ability to move and position itself in
three-dimensional space [18].

Positioning accuracy is quantified using various indicators to assess the robot’s ability
to achieve precise and repeatable positions. Two commonly used indicators are repeatability
and positioning accuracy [19,20].

Repeatability measures the robot’s ability to return to a specified position after multiple
commands (Figure 1) [21]. It reflects the robot’s capacity to achieve consistent results under
the same operating conditions. Repeatability is typically expressed as the distance or
deviation from the target position and is influenced by factors such as mechanical backlash,
control system dynamics, and sensor noise [19,20].

Accuracy, on the other hand, refers to the difference between the robot’s actual po-
sition and its intended target position. It represents systematic error or deviation in the
robot’s positioning [21]. Accuracy is affected by various factors, including mechanical
compliance, calibration errors, sensor precision, and kinematic inaccuracies. Accuracy is
usually expressed as a percentage or an absolute distance error [19].

The number of axes in a robot system obviously impacts its positioning accuracy
and repeatability. Generally, an increase in the number of axes provides greater flexibility
and enables more complex movements. However, this increased flexibility can introduce
additional sources of error and reduce overall positioning accuracy [22]. The relationship
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between the number of axes and positioning accuracy depends on various factors, including
the robot’s configuration, mechanical design, control system, and calibration techniques.
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Figure 1. Repeatability and positioning accuracy.

2.2. Characteristics of the Examined Modular Industrial Robot

The modular industrial robot used in this study offers a range of features that con-
tribute to its versatility and efficiency in industrial applications. The robot has a payload
capacity of up to 20 kg (Table 1), enabling it to handle and transport heavy objects. This
makes it suitable for a wide range of industrial tasks, including material handling, assembly,
and packaging [21].

Table 1. Modular robot configuration.

Degrees of freedom (DOFs) From 1 to 8
Payload capacity Up to 20 kg

Range 200 mm–2000 mm
Repeatability ±0.1 mm

Max speed 180◦/s or 2 m/s
Workspace ±270◦

Base area 191 mm × 175 mm
Power consumption 250 W

Materials Aluminum, polypropylene
Ambient temperature 0–50 ◦C

Standards 10218-1; EN ISO 13849-1, PL d, Cat. 3
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The robot can be programmed by manually moving its individual modules. However,
it is not classified as a cobot due to the lack of appropriate certification. It is designed for
seamless integration with existing automation systems and production lines. The robot sup-
ports various communication protocols and interfaces (Table 2), facilitating interoperability
and integration in industrial environments [21].

Table 2. Control unit parameters.

Dimensions L 400 mm, W 200 mm, H 300 mm
Operating voltage 100–240 V AC/50–60 Hz; 48 V DC

Protection class IP 54
Interfaces 8 × digital I/O, IO-Link, ethernet, Modbus TCP

Communication sockets—RJ45
Programming 12′ ′ control panel, MATLAB, ROS, HTTP API

It has been designed with the flexibility to adjust the number of modules according
to the application in which it will be used. A smaller number of modules contributes to
energy efficiency (Table 3).

Table 3. Drive modules.

M (D86) L (D116) XL (D148)

Diameter 86 mm 116 mm 148 mm
Nominal torque 29.7 Nm 55 Nm 120 Nm

Maximum torque 70 Nm 178 Nm 374 Nm
Nominal power 131 W 141 W 165 W
Maximum speed 230◦/s 180◦/s 180◦/s
Protection class IP 54 IP 54 IP 54

The modular design of the robot allows for easy customization and adaptation to
specific tasks (Table 4) and operational requirements. Modules such as arms, end effec-
tors, sensors, and control units can be quickly replaced and reconfigured, enhancing the
flexibility of its functionality.

Table 4. Connecting modules.

Diameter 86 mm 116 mm 148 mm
Length type—I 200, 300, 400 300, 350, 600, 750 400, 600, 800
Length type—L 240, 340, 440 350, 500, 650, 800 470, 670, 870
Protection class IP 54 IP 54 IP 54

2.3. Testing Station

The testing station (Figure 2) was designed to minimize the impact of vibrations and
other external factors on the operation of the robot and measuring devices. The station was
built using aluminum profiles and a wooden plate. The structure was anchored to the floor.

Before starting the tests, programs with various applications were developed. The
first was a program designed to heat the robot to its operating temperature. It involved
simultaneous movement of all the robot’s axes to eliminate potential inaccuracies caused by
temperature changes during operation. The program consisted of three blocks: a start block,
an infinite loop, and a motion block comprising two positions. The robot was warmed up
for 15 min immediately prior to testing. Below is an image of the temperature measurement
taken after the warm-up process (Figure 3).
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The maximum measured temperature of the robot module was 56.2 ◦C (Figure 4). This
temperature was recorded on the first robot module. The ambient temperature was 24 ◦C.
The measurement was taken during robot testing.

2.4. Accuracy Testing of Selected Configurations

Positioning accuracy testing was conducted with three loads in the form of carbon
steel blocks of varying masses: 5603.5 g, 9630.4 g, and 15,607.74 g. The weight of the
blocks was supplemented by the mass of fastening screws: 75 g for 4 screws securing
the 6 kg and 10 kg weights, and 135 g for 7 screws securing the 16 kg load. Additionally,
an aluminum flange weighing 240 g was used. The total weight, including screws and
flange, was 5918.5 g, 9945.4 g, and 15,922.74 g, respectively. For simplicity, the loads will be
referred to as 6 kg, 10 kg, and 16 kg in the text. The purpose of using different loads was to
examine their impact on the robot’s accuracy and repeatability.
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For the purpose of this study, four optical sensors from Micro-Epsilon company from
USA, model optoNCDT ILD1420, with different measurement ranges were mounted on
the testing station:

- IDL1420—10 (Figure 5a);
- IDL1420—50 (Figure 5b);
- IDL1420—100 (Figure 5c).
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Selected technical parameters of the sensors are presented in Table 5.

Table 5. Parameters of ILD1420 sensors.

Model: ILD1420-10 ILD1420-50 ILD1420-100
Range: 10 mm 50 mm 100 mm

Frequency: 4 kHz/2 kHz/1 kHz/0.5 kHz/0.25 kHz
Linearity: <±8 µm <±0 µm <±80 µm

Repeatability: 0.5 µm 2 µm 4 µm
Temperature range: 0–50 ◦C

Range start: 20 mm 35 mm 50 mm
Mid-range: 25 mm 60 mm 100 mm
Range end: 30 mm 85 mm 150 mm

The ILD1420-100 sensor, mounted underneath the structure (Figure 5b), served as
a measurement trigger. When the robot’s end effector with the attached weight passed
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through the sensor’s beam within its measurement range, it triggered the measurement.
Two ILD1420-50 sensors measured deviations and the position of the end effector along the
tool’s X- and Y-axes. The ILD1420-10 sensor measured along the Z-axis. The sensors were
connected to a data acquisition (DAQ) module, specifically the NI PXIe module, installed in
a PXIe-1075 chassis. The entire setup was powered by a GW Instek GPD laboratory power
supply. The station also included a monitor and a laptop connected to the robot (Figure 6).
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2.5. Four-, Five-, and Six-Axis Configuration

The initial measurements were conducted in a 6-axis configuration with a 6 kg load.
The robot was positioned in its first starting position (Figure 7a). Then, it performed an axial
movement, reaching the measurement position (Figure 7b) and triggering the measurement.
The robot remained in the measurement position for 5.5 s.
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Figure 7. Starting position (a) and the robot’s first measurement position (b).

The approach to the measurement position was repeated 30 times in accordance with
the PN-EN ISO 9283 standard. The robot operated at a speed and acceleration set to 100%.
After completing the measurements, the robot was placed in the service position (Figure 8),
where the load was replaced.
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The test was repeated for a 10 kg load (Figure 9a) and a 16 kg load (Figure 9b).
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Figure 9. Measurement position of the robot with a 10 kg load (a) and a 16 kg load (b).

In the 6-axis configuration, measurement with a 16 kg load proved impossible. The
robot was unable to reach and maintain the target position. Reducing operating parameters
did not improve the robot’s performance. After completing tests in Position I, the tests
were repeated in the same manner for Positions II, III, and IV (Figure 10a–c).
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Figure 10. Measurement position of the robot: II (a), III (b), and IV (c).

Positions I, II, and III were offset by 90 degrees relative to each other on the robot’s
first axis. Due to the robot’s limitations, Position IV could not be offset from Position III by
the same value. Therefore, a 70-degree offset was set instead.

After completing measurements in the 6-module configuration, the robot was returned
to the service position, reconfigured, and the tests described above were conducted with
five modules (Figure 11a) and four modules (Figure 11b).
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Figure 11. Robot in the measurement position with five modules (a) and four modules (b).

With five modules, the robot was able to repeatedly reach the target positions at
maximum operating parameters with both the 6 kg and 10 kg loads. However, when a
16 kg load was mounted, the robot could not consistently reach the measurement positions.
In the 4-module configuration, the robot was able to reliably reach the target position with
every load.

3. Results
During the accuracy testing of the robot, data were collected from three sensors

across various configurations and loads. Each measurement lasted 5 s, during which
10,000 individual readings were gathered per sensor (Figure 12). Data were collected from
30 approaches for each position.
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In the data analysis process, it was decided to select 30 readings from the center of the
range of collected data for each measurement (10.000 values). These readings were within
±15 of the 5000th measurement (Table 6). After selecting the 30 readings, their average was
calculated and used for further data analysis.

Table 6. Example table for determining values for further analysis.

6 kg × 4_1 NCD 50 mm A NCD 50 mm B NCD 10 mm

4985 37.71527 28.5353 7.199787
4986 37.70297 28.52607 7.199172
4987 37.72449 28.53222 7.199992
4988 37.71732 28.52095 7.197122
4989 37.70502 28.53837 7.200402
4990 37.71834 28.53017 7.199992
4991 37.70809 28.53325 7.200402
4992 37.72757 28.52095 7.197122
4993 37.70399 28.53427 7.200402
4994 37.71834 28.52402 7.199787
4995 37.71014 28.53427 7.199582
4996 37.71629 28.523 7.197327
4997 37.70502 28.52915 7.200812
4998 37.72142 28.5271 7.199787
4999 37.70912 28.52812 7.199582
5000 37.70297 28.52197 7.197737
5001 37.71424 28.5312 7.201223
5002 37.69887 28.5271 7.199992
5003 37.71117 28.53632 7.199787
5004 37.71322 28.5189 7.198147
5005 37.71834 28.53325 7.200607
5006 37.71629 28.52812 7.199787
5007 37.70399 28.53735 7.199992
5008 37.71117 28.51787 7.198147
5009 37.70604 28.53222 7.200197
5010 37.71834 28.5271 7.199992
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Table 6. Cont.

6 kg × 4_1 NCD 50 mm A NCD 50 mm B NCD 10 mm

5011 37.70502 28.53632 7.199582
5012 37.72142 28.5148 7.199172
5013 37.70707 28.53017 7.199992
5014 37.71527 28.53017 7.200812

Mean: 37.7122 28.5286 7.1995

This average value was recorded in a table. The NCD 50 A sensor measured deviations
close to the X-axis, NCD 50 B measured those close to the Y-axis, while NCD 10 measured
deviations along the Z-axis. Based on the calculated data, graphs were created for each
robot configuration.

The process was then repeated for each iteration of the test.
Statistical data and data analysis for the four-module configuration with a 6 kg load

(Figures 13–16, Tables 7–10).
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Table 7. Statistical data based on measurements for a 6 kg load in the four-axis configuration in
position 1.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 37.718883 28.5229 7.1709
Standard error [mm] 0.0008677 0.00088 0.00296

Median [mm] 37.7199 28.5232 7.17115
First quartile [mm] 37.714075 28.5209 7.162
Third quartile [mm] 37.722525 28.5261 7.18223

Variance [mm2] 2.259 × 105 2.3 × 105 0.00026
Standard deviation [mm] 0.0047524 0.0048 0.01623

Kurtosis −1.131844 5.55451 5.06387
Skewness −0.272817 −1.62746 −1.5958

Range [mm] 0.0165 0.0264 0.0879
Minimum [mm] 37.7099 28.5051 7.1116
Maximum [mm] 37.7264 28.5315 7.1995

Count 30 30 30
Coefficient of variation [%] 0.013% 0.017% 0.226%
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Table 8. Statistical data based on measurements for a 6 kg load in the four-axis configuration in
Position II.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 19.386 22.324 3.35854
Standard error [mm] 0.00296 0.00177 0.00669

Median [mm] 19.3842 22.323 3.3643
First quartile [mm] 19.3749 22.3196 3.3572
Third quartile [mm] 19.39 22.326 3.37675

Variance [mm2] 0.00026 9.4 × 105 0.00134
Standard deviation [mm] 0.01623 0.00971 0.03663

Kurtosis 1.01207 8.05292 14.6828
Skewness 0.8566 1.95445 −3.56547

Range [mm] 0.0742 0.0595 0.1943
Minimum [mm] 19.3578 22.3021 3.1942
Maximum [mm] 19.432 22.3616 3.3885

Count 30 30 30
Coefficient of variation [%] 0.084% 0.043% 1.091%

Table 9. Statistical data based on measurements for a 6 kg load in the four-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 16.4438 43.3914 7.07147
Standard error [mm] 0.00356 0.00192 0.00281

Median [mm] 16.4451 43.3925 7.06983
First quartile [mm] 16.4261 43.3839 7.06321
Third quartile [mm] 16.4616 43.4005 7.08124

Variance [mm2] 0.00038 0.00011 0.00024
Standard deviation [mm] 0.01948 0.01054 0.01542

Kurtosis −1.10221 −0.56311 −0.51898
Skewness −0.30704 −0.61966 −0.04863

Range [mm] 0.0644 0.03786 0.05994
Minimum [mm] 16.4055 43.3672 7.04419
Maximum [mm] 16.4699 43.4051 7.10412

Count 30 30 30
Coefficient of variation [%] 0.118% 0.024% 0.218%

Table 10. Statistical data based on measurements for a 6 kg load in the four-axis configuration in
Position IV.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 39.4326 44.4251 4.68563
Standard error [mm] 0.0128 0.00346 0.00672

Median [mm] 39.4521 44.4222 4.68882
First quartile [mm] 39.4107 44.4146 4.66817
Third quartile [mm] 39.472 44.4378 4.70928

Variance [mm2] 0.00492 0.00036 0.00136
Standard deviation [mm] 0.07011 0.01897 0.03682

Kurtosis 0.70679 0.04735 0.61147
Skewness −1.14153 0.1311 −0.84248

Range [mm] 0.28007 0.08435 0.14633
Minimum [mm] 39.2735 44.384 4.59527
Maximum [mm] 39.5536 44.4684 4.7416

Count 30 30 30
Coefficient of variation [%] 0.178% 0.043% 0.786%
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The deviations for Position I did not exceed 0.1 mm. The range of measurements for
the X-axis is 0.0165 mm, for the Y-axis 0.0264 mm, and for the Z-axis 0.0879 mm. The
positive kurtosis indicates data concentration around the mean, as shown in the chart.
The largest data scatter occurs with measurements from the NCD 10 sensor (Z-axis). The
dataset is characterized by very low coefficients of variation: 0.013% for the X-axis, 0.017%
for the Y-axis, and 0.226% for the Z-axis.

For Position II, deviations for the X- and Y-axes did not exceed 0.05 mm. For the Z-axis,
two measurements fell within a range of 0.15 mm, while the rest were close to 0.05 mm.
The range of measurements is 0.0742 mm for the X-axis, 0.0456 mm for the Y-axis, and
0.1943 mm for the Z-axis. Positive kurtosis is well visualized on the chart, showing that
most data points concentrate around the mean. The largest scatter is observed for the NCD
10 sensor. The coefficients of variation are 0.084% for the X-axis, 0.043% for the Y-axis, and
1.091% for the Z-axis.

Position III is characterized by deviations smaller than 0.04 mm. The most significant
changes occur for the NCD 50 A sensor. The coefficients of variation are 0.118% for the
X-axis, 0.024% for the Y-axis, and 0.218% for the Z-axis. The measurement range does not
exceed 0.08 mm. Negative kurtosis indicates a flattening of the normal distribution, with
data values clustering more toward the extremes than the mean.

In Position IV, the largest scatter is observed in values collected by the NCD 50 A
sensor, with a range of 0.280068 mm. The range for the Y-axis is 0.084354 mm and for the
Z-axis is 0.146333 mm. Kurtosis for the Y-axis indicates data accumulation at the extremes.
The coefficients of variation of 0.178%, 0.043%, and 0.786% suggest low data dispersion.

Statistical data and analysis of the data collected for the four-module configuration
with a 10 kg load (Figures 17–20, Tables 11–14).

For the first position with a 10 kg load and four modules, the deviation for the NCD
10 sensor exceeded −0.04 mm. Values for NCD 50 A surpassed −0.02 mm, while NCD 50
B ranged between −0.02 mm and 0.02 mm. The measurement range for the X-axis was
0.0393 mm, for the Y-axis 0.0335 mm, and for the Z-axis 0.0821 mm. The kurtosis values
suggest data clustering around the extremes. The coefficients of variation are below 0.4%.

The second position displays a similar extremum, with values exceeding 0.04 mm on
the X- and Z-axes. The range for the X-axis approaches 0.09 mm, while the Z-axis exceeds
0.1 mm. Both the coefficients of variation and kurtosis suggest strong clustering around
extremes. The Y-axis shows a range of 0.03 mm, and kurtosis close to zero indicates data
concentration near the mean.
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Table 11. Statistical data based on measurements for a 10 kg load in the four-axis configuration in
Position I.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 3.05792 26.9764 7.7523
Standard error [mm] 0.00212 0.00147 0.00366

Median [mm] 3.06018 26.9752 7.75281
First quartile [mm] 3.04998 26.9708 7.7414
Third quartile [mm] 3.06818 26.9807 7.76677

Variance [mm2] 0.00013 6.5 × 10−5 0.0004
Standard deviation [mm] 0.0116 0.00805 0.02004

Kurtosis −0.55366 0.16022 −0.26067
Skewness −0.70295 0.55007 −0.03323

Range [mm] 0.03929 0.03348 0.08216
Minimum [mm] 3.0326 26.9609 7.71563
Maximum [mm] 3.07188 26.9943 7.79779

Count 30 30 30
Coefficient of variation [%] 0.379% 0.030% 0.259%

Table 12. Statistical data based on measurements for a 10 kg load in the four-axis configuration in
Position II.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 9.97326 9.67728 6.47147
Standard error [mm] 0.00462 0.0013 0.00519

Median [mm] 9.97558 9.67771 6.47514
First quartile [mm] 9.95229 9.67275 6.44739
Third quartile [mm] 9.99169 9.68128 6.49241

Variance [mm2] 0.00064 5.1 × 10−5 0.00081
Standard deviation [mm] 0.02529 0.00714 0.02843

Kurtosis −0.89171 0.34663 −0.97865
Skewness −0.0721 0.04769 −0.14989

Range [mm] 0.08783 0.03215 0.10575
Minimum [mm] 9.93149 9.65979 6.41497
Maximum [mm] 10.0193 9.69194 6.52072

Count 30 30 30
Coefficient of variation [%] 0.254% 0.074% 0.439%

Table 13. Statistical data based on measurements for a 10 kg load in the four-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 23.8427 39.7367 7.30772
Standard error [mm] 0.00413 0.00236 0.01186

Median [mm] 23.8405 39.7394 7.3202
First quartile [mm] 23.8257 39.7314 7.30124
Third quartile [mm] 23.8529 39.7454 7.33265

Variance [mm2] 0.00051 0.00017 0.00422
Standard deviation [mm] 0.02262 0.01291 0.06496

Kurtosis 1.26157 0.67405 23.4414
Skewness 1.0467 −0.99441 −4.59365

Range [mm] 0.09695 0.05138 0.3742
Minimum [mm] 23.8091 39.7057 6.98222
Maximum [mm] 23.9061 39.7571 7.35643

Count 30 30 30
Coefficient of variation [%] 0.095% 0.032% 0.889%
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Table 14. Statistical data derived from measurements for a 10 kg load in the four-axis configuration
in Position IV.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 29.5057 48.3368 4.80955
Standard error [mm] 0.00625 0.00944 0.00866

Median [mm] 29.5046 48.3348 4.81498
First quartile [mm] 29.4806 48.2982 4.77281
Third quartile [mm] 29.53 48.375 4.84524

Variance [mm2] 0.00117 0.00268 0.00225
Standard deviation [mm] 0.03425 0.05172 0.04741

Kurtosis −0.36531 −0.36457 −0.5586
Skewness 0.09534 −0.14058 −0.2701

Range [mm] 0.14178 0.21517 0.18473
Minimum [mm] 29.438 48.2258 4.70224
Maximum [mm] 29.5797 48.4409 4.88697

Count 30 30 30
Coefficient of variation [%] 0.116% 0.107% 0.986%

In the third position, measurements for the Y-axis were closest to the mean. The X-
and Z-axes exceeded 0.05 mm. For a single measurement, the deviation on the Z-axis was
over 0.3 mm, potentially a measurement error. The rest of the values were closer to the
mean. Low coefficients of variation and kurtosis suggest that data points are grouped near
the mean for all measurements.

The fourth position shows larger deviations on the Y-axis compared to the X- and
Z-axes, exceeding 0.01 mm. The ranges for the Z- and Y-axes are around 0.2 mm, while the
X-axis is 0.15 mm. Negative kurtosis indicates that values deviate from the mean, with a
tendency to spread toward the extremes.

Statistical data and analysis of the data collected for the four-module configuration
with a 16 kg load (Figures 21–24, Tables 15–18).
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Table 15. Statistical data based on measurements for a 16 kg load in the four-axis configuration in
Position I.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 31.9016 31.6216 8.50332
Standard error [mm] 0.00655 0.00402 0.01346

Median [mm] 31.8993 31.6213 8.51408
First quartile [mm] 31.8785 31.6038 8.48623
Third quartile [mm] 31.9297 31.6386 8.53588

Variance [mm2] 0.00129 0.00049 0.00544
Standard deviation [mm] 0.03585 0.02204 0.07373

Kurtosis −0.65458 −0.71946 16.8252
Skewness 0.04362 0.1352 −3.60037

Range [mm] 0.13856 0.08463 0.42291
Minimum [mm] 31.83 31.5789 8.15993
Maximum [mm] 31.9686 31.6635 8.58284

Count 30 30 30
Coefficient of variation [%] 0.112% 0.070% 0.867%

Table 16. Statistical data based on measurements for a 16 kg load in the four-axis configuration in
Position II.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 29.625 13.2753 6.97267
Standard error [mm] 0.01225 0.00613 0.01071

Median [mm] 29.621 13.2709 6.97421
First quartile [mm] 29.5942 13.2591 6.9437
Third quartile [mm] 29.6727 13.2813 6.99913

Variance [mm2] 0.0045 0.00113 0.00344
Standard deviation [mm] 0.0671 0.03359 0.05864

Kurtosis 0.33195 3.29499 5.14502
Skewness −0.45496 1.08422 −1.27299

Range [mm] 0.27891 0.18357 0.33591
Minimum [mm] 29.4547 13.1967 6.76201
Maximum [mm] 29.7336 13.3802 7.09792

Count 30 30 30
Coefficient of variation [%] 0.227% 0.253% 0.841%

Table 17. Statistical data based on measurements for a 16 kg load in the four-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 32.9311 30.2359 7.74041
Standard error [mm] 0.01265 0.00395 0.00534

Median [mm] 32.9274 30.2352 7.74191
First quartile [mm] 32.8816 30.2278 7.71402
Third quartile [mm] 32.9898 30.2496 7.76506

Variance [mm2] 0.0048 0.00047 0.00086
Standard deviation [mm] 0.06931 0.02161 0.02927

Kurtosis −0.77444 0.97815 −0.99284
Skewness 0.19653 −0.78529 −0.30699

Range [mm] 0.26903 0.09365 0.10226
Minimum [mm] 32.7989 30.1754 7.68494
Maximum [mm] 33.0679 30.2691 7.78721

Count 30 30 30
Coefficient of variation [%] 0.210% 0.071% 0.378%
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Table 18. Statistical data based on measurements for a 16 kg load in the four-axis configuration in
Position IV.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 21.3359 34.9952 5.5432
Standard error [mm] 0.01315 0.00275 0.0109

Median [mm] 21.3439 34.9959 5.54094
First quartile [mm] 21.2676 34.9847 5.49837
Third quartile [mm] 21.4006 35.0058 5.58471

Variance [mm2] 0.00519 0.00023 0.00357
Standard deviation [mm] 0.07204 0.01508 0.05973

Kurtosis −1.14673 −0.74126 −1.05913
Skewness −0.17353 −0.04443 −0.05274

Range [mm] 0.23173 0.0548 0.2157
Minimum [mm] 21.2182 34.9684 5.42549
Maximum [mm] 21.45 35.0232 5.64119

Count 30 30 30
Coefficient of variation [%] 0.338% 0.043% 1.077%

For the first position with a 16 kg load, the NCD 10 sensor recorded one measurement
significantly deviating from the mean, with a value of −0.3 mm from the mean. The rest
of the measurements ranged from 0.1 mm to −0.1 mm from the mean. The kurtosis and
coefficient of variation values indicate data concentration near the extremes.

In the second position, the kurtosis values are positive. Measurements from the NCD
50B sensor are the closest to the mean. The Z-axis values exhibit the highest coefficient
of variation.

The third position is characterized by the greatest scatter on the X- and Z-axes, while
the Y-axis values are the closest to the mean.

In the fourth position, there is a noticeable difference in the spread of values among the
X-, Z-, and Y-axes. The lowest coefficient of variation is observed for the NCD 50B sensor.

Statistical data and analysis of the data collected for the five-module configuration
with a 6 kg load (Figures 25–28, Tables 19–22).
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Table 19. Statistical data based on measurements for a 6 kg load in the five-axis configuration in
Position I.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 38.7099 28.965 7.67354
Standard error [mm] 0.00529 0.00338 0.00718

Median [mm] 38.7122 28.9613 7.66963
First quartile [mm] 38.692 28.9548 7.66139
Third quartile [mm] 38.7296 28.9777 7.69051

Variance [mm2] 0.00084 0.00034 0.00155
Standard deviation [mm] 0.02895 0.01852 0.03933

Kurtosis 1.4106 0.15006 0.07969
Skewness −0.74179 0.34068 0.02251

Range [mm] 0.1402 0.07933 0.1584
Minimum [mm] 38.6226 28.9296 7.59699
Maximum [mm] 38.7628 29.0089 7.7554

Count 30 30 30
Coefficient of variation [%] 0.075% 0.064% 0.512%

Table 20. Statistical data based on measurements for a 6 kg load in the five-axis configuration in
Position II.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 15.1622 21.4378 0.70221
Standard error [mm] 0.00967 0.00156 0.00954

Median [mm] 15.1679 21.4364 0.70246
First quartile [mm] 15.1305 21.4338 0.66509
Third quartile [mm] 15.1885 21.4443 0.74

Variance [mm2] 0.00281 7.3 × 10−5 0.00273
Standard deviation [mm] 0.05299 0.00852 0.05227

Kurtosis −0.39576 0.11389 0.01963
Skewness 0.17837 0.08537 0.01935

Range [mm] 0.20535 0.03676 0.22999
Minimum [mm] 15.069 21.4195 0.59426
Maximum [mm] 15.2744 21.4562 0.82425

Count 30 30 30
Coefficient of variation [%] 0.349% 0.040% 7.444%

Table 21. Statistical data based on measurements for a 6 kg load in the five-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 13.1049 45.9177 2.29231
Standard error [mm] 0.00701 0.00431 0.00859

Median [mm] 13.1066 45.9227 2.29168
First quartile [mm] 13.0802 45.8997 2.25082
Third quartile [mm] 13.1341 45.9323 2.33538

Variance [mm2] 0.00148 0.00056 0.00222
Standard deviation [mm] 0.03841 0.02358 0.04708

Kurtosis −0.42289 −0.85947 −1.01892
Skewness −0.06478 −0.30853 0.10483

Range [mm] 0.15602 0.08391 0.1739
Minimum [mm] 13.0298 45.8736 2.21633
Maximum [mm] 13.1858 45.9575 2.39023

Count 30 30 30
Coefficient of variation [%] 0.293% 0.051% 2.054%
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Table 22. Statistical data based on measurements for a 6 kg load in the five-axis configuration in
Position IV.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 19.2403 40.1262 9.08838
Standard error [mm] 0.01185 0.00628 0.00906

Median [mm] 19.2409 40.1395 9.09129
First quartile [mm] 19.1775 40.0982 9.05231
Third quartile [mm] 19.2994 40.1508 9.11428

Variance [mm2] 0.00421 0.00118 0.00246
Standard deviation [mm] 0.06489 0.03439 0.04961

Kurtosis −1.48252 1.34768 0.19464
Skewness 0.15099 −1.03601 0.12989

Range [mm] 0.21055 0.15569 0.2285
Minimum [mm] 19.1432 40.021 8.98108
Maximum [mm] 19.3538 40.1767 9.20958

Count 30 30 30
Coefficient of variation [%] 0.337% 0.086% 0.546%

Statistical data and analysis of the data collected for the five-module configuration
with a 10 kg load (Figures 29–32, Tables 23–26).
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Table 23. Statistical data based on measurements for a 10 kg load in the five-axis configuration in
Position I.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 39.0596 31.6914 5.74858
Standard error [mm] 0.00878 0.00379 0.01889

Median [mm] 39.0616 31.6909 5.73755
First quartile [mm] 39.0158 31.6788 5.67816
Third quartile [mm] 39.0996 31.7044 5.80045

Variance [mm2] 0.00231 0.00043 0.0107
Standard deviation [mm] 0.04807 0.02078 0.10345

Kurtosis −1.12169 −0.53584 −0.37427
Skewness 0.04533 0.15213 0.23922

Range [mm] 0.17252 0.07629 0.4078
Minimum [mm] 38.9756 31.6579 5.56867
Maximum [mm] 39.1481 31.7342 5.97647

Count 30 30 30
Coefficient of variation [%] 0.123% 0.066% 1.800%
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Table 24. Statistical data based on measurements for a 10 kg load in the five-axis configuration in
Position II.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 21.831 4.16627 7.86292
Standard error [mm] 0.01559 0.00583 0.01855

Median [mm] 21.8319 4.16711 7.8908
First quartile [mm] 21.7543 4.13619 7.7929
Third quartile [mm] 21.9065 4.19728 7.94155

Variance [mm2] 0.00729 0.00102 0.01032
Standard deviation [mm] 0.08539 0.03193 0.10161

Kurtosis −1.38781 −1.83675 −0.66094
Skewness −0.16755 0.02365 −0.46891

Range [mm] 0.27846 0.08688 0.38207
Minimum [mm] 21.6832 4.12312 7.66351
Maximum [mm] 21.9616 4.21 8.04558

Count 30 30 30
Coefficient of variation [%] 0.391% 0.766% 1.292%

Table 25. Statistical data based on measurements for a 10 kg load in the five-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 13.5129 10.1821 2.0524
Standard error [mm] 0.01223 0.00447 0.01401

Median [mm] 13.5059 10.1852 2.06785
First quartile [mm] 13.4623 10.163 2.00576
Third quartile [mm] 13.5727 10.2011 2.10238

Variance [mm2] 0.00449 0.0006 0.00589
Standard deviation [mm] 0.067 0.0245 0.07672

Kurtosis −0.92241 −0.3202 0.11071
Skewness 0.02243 −0.27433 −0.7236

Range [mm] 0.24929 0.10267 0.29531
Minimum [mm] 13.3939 10.1241 1.86148
Maximum [mm] 13.6432 10.2268 2.15678

Count 30 30 30
Coefficient of variation [%] 0.496% 0.241% 3.738%

Table 26. Statistical data based on measurements for a 10 kg load in the five-axis configuration in
Position IV.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 23.9531 32.0037 2.89637
Standard error [mm] 0.00689 0.00286 0.01495

Median [mm] 23.9575 32.0038 2.90767
First quartile [mm] 23.9271 31.9945 2.84038
Third quartile [mm] 23.982 32.0186 2.96462

Variance [mm2] 0.00142 0.00025 0.00671
Standard deviation [mm] 0.03771 0.01566 0.08189

Kurtosis −0.31038 −0.41216 −0.82637
Skewness 0.20653 −0.51366 −0.52583

Range [mm] 0.15281 0.05535 0.28227
Minimum [mm] 23.8922 31.9712 2.73734
Maximum [mm] 24.045 32.0266 3.01962

Count 30 30 30
Coefficient of variation [%] 0.157% 0.049% 2.827%
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Statistical data and analysis of the data collected for the six-module configuration with
a 6 kg load (Figures 33–36, Tables 27–30).
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Table 27. Statistical data based on measurements for a 6 kg load in the six-axis configuration in
Position I.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 33.518762 24.7965 5.22126
Standard error [mm] 0.0092384 0.00925 0.01325

Median [mm] 33.512323 24.779 5.22313
First quartile [mm] 33.477904 24.7624 5.17245
Third quartile [mm] 33.562722 24.8337 5.25144

Variance [mm2] 0.0025604 0.00257 0.00527
Standard deviation [mm] 0.0506007 0.05067 0.07257

Kurtosis −1.215567 −0.67197 1.92114
Skewness 0.263029 0.44423 0.60616

Range [mm] 0.1633671 0.18678 0.36299
Minimum [mm] 33.445585 24.7203 5.08031
Maximum [mm] 33.608952 24.9071 5.4433

Count 30 30 30
Coefficient of variation [%] 0.151% 0.204% 1.390%

Table 28. Statistical data based on measurements for a 6 kg load in the six-axis configuration in
Position I.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 16.6546 23.8457 3.52075
Standard error [mm] 0.01566 0.01123 0.01861

Median [mm] 16.6551 23.8338 3.48511
First quartile [mm] 16.5895 23.7873 3.42777
Third quartile [mm] 16.72 23.9088 3.61178

Variance [mm2] 0.00735 0.00378 0.01039
Standard deviation [mm] 0.08576 0.06149 0.10192

Kurtosis −0.80961 −1.51619 −1.40078
Skewness −0.31733 0.37391 0.20228

Range [mm] 0.3087 0.17103 0.32899
Minimum [mm] 16.4689 23.7755 3.38789
Maximum [mm] 16.7776 23.9465 3.71688

Count 30 30 30
Coefficient of variation [%] 0.515% 0.258% 2.895%
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Table 29. Statistical data based on measurements for a 6 kg load in the six-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 28.897 12.8214 0.90873
Standard error [mm] 0.02659 0.00589 0.0282

Median [mm] 28.9164 12.8177 0.88995
First quartile [mm] 28.7704 12.7949 0.82727
Third quartile [mm] 29.026 12.8519 0.94218

Variance [mm2] 0.0212 0.00104 0.02386
Standard deviation [mm] 0.14561 0.03228 0.15447

Kurtosis −1.22059 −1.12565 7.44615
Skewness −0.13247 −0.06511 2.21585

Range [mm] 0.49502 0.10933 0.80914
Minimum [mm] 28.6709 12.7628 0.70363
Maximum [mm] 29.1659 12.8721 1.51277

Count 30 30 30
Coefficient of variation [%] 0.504% 0.252% 16.998%

Table 30. Statistical data based on measurements for a 6 kg load in the six-axis configuration in
Position III.

NCD 50 A NCD 50 B NCD 10

Mean [mm] 19.8174 3.09805 3.53404
Standard error [mm] 0.0109 0.00209 0.01758

Median [mm] 19.8281 3.09809 3.54761
First quartile [mm] 19.7737 3.08949 3.4707
Third quartile [mm] 19.8589 3.10579 3.61222

Variance [mm2] 0.00356 0.00013 0.00927
Standard deviation [mm] 0.0597 0.01143 0.09629

Kurtosis 0.23433 −0.6626 −0.67573
Skewness −0.67939 0.35859 −0.53119

Range [mm] 0.24505 0.04336 0.33813
Minimum [mm] 19.6621 3.07957 3.35185
Maximum [mm] 19.9072 3.12292 3.68998

Count 30 30 30
Coefficient of variation [%] 0.301% 0.369% 2.725%

4. Discussion
4.1. Analysis of the Impact of Load Variation on the Four-Module Configuration

Comparing the charts for Position I, a noticeable difference in deviations from the
mean can be observed depending on the load. For the 6 kg load (Figure 13), most points,
except for two outliers, are concentrated between −0.02 and 0.02. The points for the X- and
Y-axes are clustered around the mean, while those for the Z-axis are more dispersed. For
the 10 kg load (Figure 17), the Z-axis range increases significantly, frequently exceeding 0.02
and −0.02, with four points approaching −0.04. The points are also much more scattered
for the Z-axis, as well as the X- and Y-axes, whose ranges have also increased. The 16 kg
load (Figure 21) shows the most significant changes. The chart scale has changed, with
some points oscillating around 0.07 for the Z- and X-axes. The largest deviations are
observed on the Z-axis. For Position II, a similar trend is evident: as the load increases, the
range expands, and the clustering around the mean decreases. With 6 kg (Figure 14), most
values remain close to 0, not exceeding 0.025 and −0.025. With 10 kg (Figure 18), values
fluctuate around 0.04 and −0.04, while for 16 kg (Figure 22), deviations reach around 0.1
and −0.05. The charts clearly show that load variations have a more significant impact
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on the fluctuations in the X- and Z-axes compared to the Y-axis. In Position III, the same
pattern occurs. Deviations from the mean range from 0.03 to −0.03 for 6 kg (Figure 15), and
from 0.05 to −0.05 for 10 kg (Figure 19). For 16 kg (Figure 23), the most significant changes
are observed on the X-axis, where values approach 0.1 and −0.1, exceeding this range in
three instances. Deviations for the Z- and Y-axes are similar to those for 10 kg but slightly
larger. Analyzing the charts for Position IV, for 6 kg (Figure 16), large fluctuations in the
X-axis are evident, greater than those observed for 16 kg (Figure 23) and 10 kg. For 10 kg
(Figure 20), deviations for the Y- and Z-axes fall within a broader range than for 6 kg. For
16 kg, the range is similar, but the points are closer to the extremes.

4.2. Analysis of the Impact of Load Variation on the Five-Module Configuration

In the five-module configuration with a 6 kg load (Figure 20), the robot’s deviations
from the mean ranged between −0.075 and 0.075 for the Z-axis, and ±0.05 for the X- and
Y-axes. The Y-axis showed the smallest fluctuations. With a 10 kg load (Figure 29), the
range for the Z- and X-axes was nearly twice as large as in the 6 kg configuration. Z-axis
values approached −0.15 and 0.15, with occasional exceedances. The X-axis range for
most measurements was around −0.05 to 0.05, while the Y-axis range also doubled to
±0.05. For the robot’s second position with a 6 kg load (Figure 26), a significant scatter was
observed for the X-axis. Some values fluctuated between −0.1 and 0.1, while others stayed
closer to the mean around ±0.05. The Y-axis remained concentrated near the mean, with
a range not exceeding ±0.02. The Z-axis showed high variability, with a range between
−0.1 and 0.1. With a 10 kg load (Figure 30), most X-axis measurements clustered near
the extremes, occasionally approaching the mean. Y-axis values were evenly distributed
within −0.05 to 0.05, a range twice as large as with the 6 kg load. For the third position
with a 6 kg load (Figure 27), the X-axis exhibited significant scatter around the mean,
with a range exceeding ±0.075. Most values were concentrated within ±0.05. The Y-axis
had the smallest range, approximately ±0.05, while Z-axis values were centered around
−0.075. With a 10 kg load (Figure 31), X-axis deviations reached above 0.1 and below −0.1.
Most Z-axis measurements clustered around the extremes of ±0.1, occasionally exceeding
−0.2. Y-axis values remained within ±0.05 of the mean. In the fourth approach position
with a 6 kg load (Figure 28), all axes showed greater fluctuations compared to previous
measurements. Most X-axis values ranged between 0.05 and 0.1 on both sides of the zero
axis, and the same applied to the Z-axis. Y-axis values were within −0.05 to 0.05. For 10 kg
(Figure 32), the Z-axis showed the greatest scatter, with values exceeding −0.15 and 0.1. X-
and Y-axis values were similar to those recorded for the 6 kg load.

4.3. Analysis of the Impact of Configuration Changes on the Robot’s Performance with a 10 kg Load

Comparing the two charts for Position I in the four-module and five-module config-
urations reveals significant differences in the ranges of measured values. Measurements
for each axis in the five-module configuration (Figure 29) differ by an order of magnitude
compared to their counterparts in the four-module configuration (Figure 17). The same
trend is observed in Position II. The values for the five-module configuration (Figure 30)
oscillate around an absolute value of 0.1–0.15 from the zero axis, whereas for the four-
module configuration (Figure 18), the values are much closer to 0.02. For Position III, the
ranges for the five-module configuration (Figure 30) are twice as large as those for the
four-module configuration (Figure 18). Position IV is an exception, as the deviations for
both the four-module (Figure 19) and five-module (Figure 31) configurations fall within
similar ranges.
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4.4. Analysis of the Impact of Configuration Changes on the Robot’s Performance with a 6 kg Load

Analyzing the charts for 6 kg in different configurations, changes in deviations from
the mean can be observed. For Position I and the four-module configuration (Figure 13),
values for the X- and Y-axes rarely exceeded ±0.015. Values for the Z-axis ranged between
−0.02 and 0.02. In the five-module configuration (Figure 26), the range of values for the
Y-axis increases and exceeds ±0.025. The X-axis data reach values three times higher than in
the four-module measurement, while Z-axis values double. In the six-module configuration
(Figure 34), a further doubling of values compared to the previous configuration is observed.
Many measurements for each axis approach levels of 0.1 and −0.1. For the second and third
positions, the same trend was observed. Changing from the four-module configuration
(Figures 14 and 15) to the five-module configuration (Figures 27 and 28) results in doubled
values. Then, changing from five to six modules (Figures 35 and 36) repeats this pattern.
An exception is Position IV reached by the robot. In this case, the change in values is not as
dramatic, and the values for four modules (Figure 16) are close to those recorded during
operation with five (Figure 29) and six modules (Figure 36). Deviations for six modules
reach the highest values.

The results of this study offer substantial practical insights for industries utilizing mod-
ular robots. The relationship between module configuration, load capacity, and positioning
accuracy provides actionable guidelines for optimizing robotic performance in real-world
settings. Firstly, manufacturing industries that require high precision in tasks such as
assembly, welding, or inspection should prioritize configurations with fewer modules
when handling lighter loads. This approach minimizes errors, reduces system complexity,
and enhances repeatability. Secondly, industries dealing with variable load conditions,
such as logistics or palletizing, can benefit from adaptive reconfiguration of robot modules.
For instance, a reconfiguration strategy that balances the number of modules with load
requirements can maintain operational accuracy while optimizing energy consumption.

Furthermore, the findings highlight the potential for integrating modular robots into
Industry 4.0 frameworks. Their adaptability to dynamic production lines makes them ideal
for smart manufacturing environments. The ability to reconfigure robots for diverse tasks
without substantial hardware modifications aligns well with the growing trend of mass
customization in production. The scalability of modular robots makes them suitable for
businesses aiming to reduce operational costs. By optimizing module configurations based
on task-specific needs, industries can lower energy consumption, prolong equipment life,
and improve overall efficiency.

5. Conclusions
Comparison of charts and statistical data revealed changes in positioning accuracy

depending on the weight mounted on the robot and the number of its modules. Comparing
the data collected for four positions, with a 6 kg load, adding one module doubled the range
of accuracy-related data. With six modules, the robot demonstrated worse repeatability
than with four or five modules. The greatest fluctuations were observed in the Z-axis,
which aligns with the direction of gravitational force. The Y-axis showed the smallest
changes. It was also noted that working at the robot’s extreme range (position 4) impacted
its repeatability. Deviations for this position were comparable to other positions in configu-
rations with a higher number of modules. A similar situation was observed during tests on
four- and five-module configurations with a 10 kg load. In this case, increasing the number
of modules also increased deviations from the mean. Position IV again showed higher
deviations compared to other positions. The impact on specific axes corresponded to the
data collected during the 6 kg tests. When comparing data collected for the four-module
configuration with different loads (6 kg, 10 kg, and 16 kg), a significant impact of increased
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end-module weight on the positioning accuracy of the industrial robot was demonstrated.
Increasing the weight caused the most substantial changes in the X- and Z-axes. The
modular robot is suitable for tasks that do not require high precision, such as palletizing
and material handling. This product is constantly evolving and being updated, so tests
should be repeated after significant updates and structural modifications. Future research
should examine the impact of the number of axes and load on power consumption and
changes in module temperature during prolonged operation.
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21. Available online: https://www.flipsnack.com/czasopismahoreca/nowoczesny_przemys-_-1-_1_2022.html (accessed on 1
June 2023).

22. Available online: https://eng.libretexts.org/bookshelves/mechanical_engineering/introduction_to_autonomous_robots_
(correll)/02:_locomotion_and_manipulation/2.03:_degrees-of-freedom (accessed on 1 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.17531/ein.2018.3.15
https://www.flipsnack.com/czasopismahoreca/nowoczesny_przemys-_-1-_1_2022.html
https://eng.libretexts.org/bookshelves/mechanical_engineering/introduction_to_autonomous_robots_(correll)/02:_locomotion_and_manipulation/2.03:_degrees-of-freedom
https://eng.libretexts.org/bookshelves/mechanical_engineering/introduction_to_autonomous_robots_(correll)/02:_locomotion_and_manipulation/2.03:_degrees-of-freedom

	Introduction 
	Materials and Methods 
	Evaluation of Robot Positioning Accuracy 
	Characteristics of the Examined Modular Industrial Robot 
	Testing Station 
	Accuracy Testing of Selected Configurations 
	Four-, Five-, and Six-Axis Configuration 

	Results 
	Discussion 
	Analysis of the Impact of Load Variation on the Four-Module Configuration 
	Analysis of the Impact of Load Variation on the Five-Module Configuration 
	Analysis of the Impact of Configuration Changes on the Robot’s Performance with a 10 kg Load 
	Analysis of the Impact of Configuration Changes on the Robot’s Performance with a 6 kg Load 

	Conclusions 
	References

