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Abstract: The Internet of Things (IoT) and Industrial Internet of Things (IIoT) have drasti-
cally transformed industries by enhancing efficiency and flexibility but have also introduced
substantial cybersecurity risks. The rise of zero-day attacks, which exploit unknown vul-
nerabilities, poses significant threats to these interconnected systems. Traditional signature-
based intrusion detection systems (IDSs) are insufficient for detecting such attacks due to
their reliance on pre-defined attack signatures. This study investigates the effectiveness of
Adaptive SAMKNN, an adaptive k-nearest neighbor with self-adjusting memory (SAM),
in detecting and responding to various attack types in Internet of Things (IoT) environ-
ments. Through extensive testing, our proposed method demonstrates superior memory
efficiency, with a memory footprint as low as 0.05 MB, while maintaining high accuracy
and F1 scores across all datasets. The proposed method also recorded a detection rate
of 1.00 across all simulated zero-day attacks. In scalability tests, the proposed technique
sustains its performance even as data volume scales up to 500,000 samples, maintaining low
CPU and memory consumption. However, while it excels under gradual, recurring, and
incremental drift, its sensitivity to sudden drift highlights an area for further improvement.
This study confirms the feasibility of Adaptive SAMKNN as a real-time, scalable, and
memory-efficient solution for IoT and IIoT security, providing reliable anomaly detection
without overwhelming computational resources. Our proposed method has the potential
to significantly increase the security of IoT and IIoT environments by enabling the real-time,
scalable, and efficient detection of sophisticated cyber threats, thereby safeguarding critical
interconnected systems against emerging vulnerabilities.

Keywords: iInternet of Things; Industrial Internet of Things; cybersecurity; online machine
learning; zero-day attacks; intrusion detection system

1. Introduction
The Internet of Things (IoT) and the Industrial Internet of Things (IIoT) have rev-

olutionized how industrial systems are designed, operated, and managed, increasing
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efficiency, reliability, and flexibility. However, these systems’ increased connectivity and
interconnectivity have also presented new and complex security challenges, as they are
more vulnerable to cyber-attacks that can disrupt critical infrastructure and compromise
sensitive data [1].

In recent years, there has been a surge in the number of cyber-attacks targeting indus-
trial systems, raising concerns about the security of the IIoT [2,3]. Cyber-attacks pose a
significant threat to the IIoT and IoT, leading to several studies trying to solve this prob-
lem [4–7]. Cyber-attacks like malware can infiltrate an IIoT system and remain undetected
for long periods, leading to significant economic losses, safety risks, and potential environ-
mental damage. Malware can also spread rapidly across interconnected systems, making
detecting and containing the attack even more challenging. Designing effective and efficient
systems for detecting these attacks in the IIoT is essential for mitigating these risks.

The proliferation of IoT devices across diverse domains has significantly increased
the frequency and complexity of cyber-attacks targeting these networks [8]. A particularly
concerning threat is the emergence of zero-day attacks, which exploit previously unknown
vulnerabilities before they can be detected and mitigated [8]. Traditional signature-based in-
trusion detection systems (IDSs) struggle to detect such novel attacks effectively, as they rely
on prior knowledge of attack patterns [9]. Researchers have explored machine learning (ML)
techniques to develop more adaptive and intelligent IDSs for IoT environments [10].

Most intrusion detection methods are not well suited to the unique requirements
of the IoT and IIoT because they are computationally expensive, need to be retrained
in an off-production mode to adapt to new attack trends, and cannot detect zero-day
attacks. Additionally, most intrusion detection methods are based on offline ML techniques.
Offline ML-based approaches are often too complex and computationally expensive to
be implemented in computationally constrained devices like the IoT and IIoT. Secondly,
ML-based intrusion detection systems are not real-time adaptive. Because they are trained
using historical data, they cannot adapt to the dynamic nature of the IIoT ecosystem. Finally,
updating offline models requires the models to be retrained on new data, which introduces
delays between when a new attack sample appears and when the model is updated to
detect those new samples. Due to the critical nature of IIoT systems, this short delay can
make these systems vulnerable to zero-day attacks, which may end up causing damage to
these production systems.

Based on the above-mentioned drawbacks of current systems that detect cyber-attacks
in the IoT and IIoT, it is important to use a more effective and efficient solution to detect
attacks within these ecosystems. This solution should be able to detect zero-day attacks
and be computationally inexpensive. Online ML models, in particular, offer a promising
approach for detecting zero-day attacks in resource-constrained IoT systems [11]. By
continuously learning from network traffic data, these models can adapt to evolving attack
patterns without the need for extensive retraining [11].

This paper proposes an IDS for the IoT and IIoT using an online ML technique to
build an adaptive IDS capable of identifying previously unseen threats in real time, thereby
enhancing the security of IoT and IIoT networks.

This article is a revised and expanded version of a paper entitled “An Online Adaptive
Approach to Detecting Zero-day Attacks in IoT and IIoT Systems” [12], which will be
presented at a workshop at the IEEE Global Communications Conference in Cape Town,
South Africa from 8 to 12 December 2024. This expanded version contains about 60%
new work, which includes the addition of a new dataset used for validating this study. In
the workshop paper, we used a generative adversarial network (GAN) to introduce some
synthetic attacks into the respective datasets. However, this work presents two types of zero-
attacks, the first being unseen attack classes and the second being synthetic attacks created
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using a conditional tabular generative adversarial network (CTGAN). The expanded work
also includes an expanded validation that focuses on scalability, false positive and detection
rate, performance under drift, resource utilization, ablation study, and expanded statistical
analysis. This study also analyzed the complexity of the proposed classifier.

The contributions of this research can be summarized as follows:

• Development of an Adaptive Online k-Nearest Neighbors (kNN) with Self Adjusting
Memory (SAM) Classifier: Introduces the proposed classifier, an enhanced version of
the SAMKNN classifier tailored for online learning scenarios. Our proposed adaptive
SAMKNN dynamically adjusts its memory allocation between short-term memory
(STM) and long-term memory (LTM) based on real-time performance metrics, enabling it
to effectively handle evolving data distributions inherent in IoT and IIoT environments.

• Dynamic Memory Allocation Based on Performance Metrics: Implements a mech-
anism where the proportion of memory allocated to STM and LTM is dynamically
adjusted based on the classifier’s recent performance. By monitoring metrics such as
accuracy over a sliding window, the system can allocate more resources to STM during
periods of rapid concept drift and shift toward LTM when data distributions stabilize.

• Efficient Memory Management for Resource-Constrained Environments: Employs
Python’s double-ended queue (deque) for managing STM, allowing for efficient ap-
pend and pop operations with fixed maximum lengths. Additionally, it uses NumPy
arrays for LTM to facilitate rapid computations and memory compression, making the
system suitable for the resource-constrained nature of IoT and IIoT devices.

• Comprehensive Performance Evaluation and Memory Adjustment Strategies: Utilizes
both performance-based increases and decreases in memory allocation, supported by
predefined thresholds and a cool-down mechanism. This bidirectional adjustment
ensures that the classifier can balance adaptability with stability, maintaining high
accuracy even as threat patterns evolve.

The remainder of this paper is organized as follows: Section 2 gives an overview of the
related works considered in this study. In Section 3, we present our proposed methodology.
Section 4 presents the experimental design of this study, with the experimental results
presented in Section 5 and discussions presented in Section 6. This study is concluded
in Section 7.

2. Related Work
Detecting zero-day attacks in IoT environments has been an area of concern for many

years. As such, several works have been carried out in the quest to solve this problem.
Popoola et al. [13] proposed an optimal deep neural network (DNN) architecture to
detect zero-day attacks in IoT systems. The DNN was used with federated ML, where
the federated algorithm is used to aggregate local model updates. Similarly, ref. [14]
developed a framework based on federated learning to detect zero-day botnet attacks
in IoT systems. As part of the contributions of their work, ref. [14] also developed a
novel aggregation algorithm that handles model aggregation better in IoT systems. Due
to the limited computational power, memory, and battery life of IoT devices, training and
updating complex DNN models or performing federated learning on these devices can be
resource-intensive.

Hairab et al. [15] evaluated the performance of convolutional neural networks (CNNs)
in detecting zero-day attacks in the IoT using two regularization techniques. The authors
reported that the use of regularization techniques increased the performance of the pro-
posed system, with an ability to detect zero-day attacks. Similarly, ref. [16] also proposed
an anomaly detection system for IoT systems using a CNN with regularization methods.
In another study, ref. [17] proposed an IDS based on a CNN that could detect seen and
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unseen attacks in the Internet of Vehicles ecosystem. The proposed IDS was developed at
the data processing layer of the Internet of Vehicles ecosystem. The rationale behind the
development of the IDS at this layer is to speed up the rate of detection of the IDS. The
authors also compared the proposed method to an SVM and RF, of which the proposed
method recorded a higher detection accuracy. IoT devices are highly heterogeneous, vary-
ing in terms of hardware, software, and functionality. A CNN model trained on one type of
device or environment may not perform well on others.

Federated learning has emerged as a promising approach to enhance detection ca-
pabilities against zero-day attacks by sharing attack information among multiple IoT net-
works [14,18]. By utilizing federated learning, researchers have developed frameworks that
improve the detection of zero-day attacks while preserving user privacy and minimizing
communication overhead [19]. These frameworks leverage deep learning (DL) algorithms
to detect and resist botnet attacks in IoT networks, showcasing superior performance in
identifying new and evolving threats compared to traditional centralized approaches [14].
The use of federated learning in intrusion detection systems not only enhances detection
performance but also addresses resource constraints in IoT devices, offering scalable and
cost-effective solutions for early attack detection and patch creation [20]. To detect zero-
day attacks, ref. [21] developed an IDS model based on federated incremental learning
that aggregates knowledge from different detectors and then updates the model in an
incremental manner. IoT devices often generate heterogeneous data due to differences in
device types, manufacturers, and deployment environments. Aggregating models effec-
tively in federated learning to account for this heterogeneity is complex and can lead to
sub-optimal performance.

To combat zero-day attacks, a hybrid approach combining ML and DL techniques has
been proposed for effective detection and mitigation [22–24]. By leveraging ML classifiers
and deep neural networks (DNNs) trained on diverse data streams, along with deep
reinforcement learning (DRL) for dynamic model selection, a robust defense mechanism
against zero-day malware in IoT devices is established. This hybrid framework not only
enhances detection rates but also minimizes false positives and false negatives, achieving
a remarkable 99% detection rate with minimal errors [22]. Saurabh et al. [25] proposed a
hybrid IDS using supervised and unsupervised ML approaches that can detect both known
and unknown attacks. Hybrid models combining ML, DL, and DRL are computationally
intensive. IoT devices often have limited processing power, memory, and battery life,
making it challenging to run these complex models locally.

Research has shown the effectiveness of ensemble learning in detecting zero-day at-
tacks in IoT networks [14,26,27]. By combining different base anomaly detectors using
conventional ML algorithms, ensemble learning can provide highly accurate zero-day
attack detection even without prior labeled attack data. Moreover, the use of ensemble
learning, particularly with random forest (RF) and extreme gradient boosting (XGB) algo-
rithms, has been identified as top-performing in detecting zero-day attacks in IoT systems,
outperforming previous methods and enhancing the performance of machine learning
models [27]. In an earlier study, ref. [28] developed an ensemble classifier using processed
data packets that can detect anomalies and protect IoT systems against zero-day attacks.
Additionally, leveraging ensemble learning in a federated framework for IoT networks can
achieve superior model aggregation without compromising user privacy, showcasing its
efficacy in zero-day botnet attack detection [14]. Ahmad et al. [29] used an ensemble of
DL classifiers to build an IDS. The proposed IDS is trained using four benchmark datasets
while testing the model with unknown attacks to validate the system’s performance in de-
tecting zero-day attacks. Ensemble learning models, particularly those involving multiple
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algorithms like RF and XGB, can be computationally intensive. This complexity increases
the resource requirements, which can be problematic for resource-constrained IoT devices.

Farrukh et al. [30] focused on proposing a framework based on packet-level data by
extracting spatial and temporal patterns from network traffic. The authors also used stack-
ing and sub-clustering techniques to help to effectively detect unknown attacks. Ref. [27]
proposed a computational framework that includes feature selection through fuzzification.
The authors reported that RF and extreme gradient boosting (XGB) were the top-performing
algorithms that could detect zero-day attacks. In another study, ref. [31] used online re-
inforcement learning (RL) to propose a framework that learns the correct moving target
defense (MTD) to mitigate heterogeneous zero-day attacks in single-board computers
(SBCs). The proposed framework works by considering behavioral fingerprinting to repre-
sent SBCs’ states and RL to learn MTD techniques that mitigate each malicious state. The
results of the study show that the proposed framework mitigates all attacks except rookits
while consuming less than 1 MB of storage and approximately 10% of RAM. Ref. [32]
designed an IDS framework using transfer learning (TL) that could detect both known
and zero-day attacks. The transfer learning model used in their study was based on a
CNN. Techniques such as stacking, sub-clustering, and TL with CNNs are computationally
intensive. IoT devices, especially single-board computers (SBCs), typically have limited
processing power, memory, and storage.

Zero-day attacks targeting IoT devices have become a significant concern due to the
vulnerabilities in interconnected devices [33]. To combat these threats, researchers have
proposed innovative solutions, like a fine-grained central processing unit (CPU) security
engine, µThingNet, which leverages DL and power analysis to detect unknown malware
variants, with a high detection rate of 97.49% [34]. Additionally, ref. [33] used honeypot
systems to detect malicious activities and analyze zero-day attacks, benefiting from filtering
malicious traffic to identify and thwart attacks effectively. Furthermore, a game-theoretic
approach has been introduced to strategically allocate honeypots over networks, consider-
ing the deceptive nature of attackers and the impact of zero-day vulnerabilities on defense
mechanisms [35]. ML techniques have also emerged as a powerful tool for detecting
zero-day attacks by analyzing patterns in network traffic and user behavior, enhancing
cybersecurity defenses against these elusive threats [24]. Implementing a fine-grained CPU
security engine may require specialized hardware modifications, making it difficult to
deploy on existing IoT devices.

Tables 1 and 2 provide a summary that compares existing methods to our pro-
posed method.
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Table 1. Comparison of existing methods and the proposed Adaptive SAMKNN for zero-day attack detection in IoT and IIoT environments.

Reference Approach Zero-Day Detection Resource Requirements Performance Metrics Strengths Limitations

[14]

Novel aggregation
algorithm for federated

learning to detect
zero-day botnet attacks

Effective Moderate
computational resources

Superior model
aggregation and

detection performance

Enhances detection
while preserving

privacy, minimizes com-
munication overhead

Complexity in handling
heterogeneous data

across different
IoT devices

[15]

Utilizes CNN with
regularization
techniques for

anomaly detection

Effective Moderate to high
computational resources

Improved detection
performance

with regularization

Enhanced detection
capability

with regularization

May not generalize well
across heterogeneous

IoT environments

[16]

Anomaly detection
using CNN

enhanced with
regularization methods

Effective Similar to
Hairab et al., 2022

High detection accuracy
for zero-day attacks

Improved robustness
against overfitting and
better generalization

High resource
consumption makes it

less suitable
for resource-

constrained devices

[17]

IDS at the data
processing layer of the

Internet of Vehicles,
compared with SVM

and RF

Effective Moderate
computational resources

Higher detection
accuracy than SVM and

RF

Faster detection rate by
operating at the data

processing layer

Performance may
degrade on different
device types due to

CNN’s dependency on
specific architectures

[31]

Uses online RL for
moving target defense
(MTD) with behavioral

fingerprinting

Effective (except
rootkits)

Low storage (1 MB) and
10% RAM usage

Successfully mitigates
all tested attacks except

rootkits

Low resource
consumption, adaptable

MTD strategies

Unable to mitigate
rootkits, limited by RL
model’s adaptability to

certain attack types

[32]

IDS framework using TL
based on CNN to detect

known and
zero-day attacks

Effective
High computational

resources due to CNN
and TL

High detection rates for
both known and
zero-day attacks

Leverages pre-trained
models for improved
detection capabilities

High resource demands
make it unsuitable for

many IoT devices
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Table 2. Comparison of existing methods and the proposed Adaptive SAMKNN for zero-day attack detection in IoT and IIoT environments.

Reference Approach Zero-Day Detection Resource
Requirements Performance Metrics Strengths Limitations

[22–24]

Combines ML
classifiers, DNNs, and

DRL for dynamic
model selection

Highly Effective Highly computation-
ally intensive

99% detection rate
with minimal errors

Robust defense
mechanism with high

detection rates and
minimal false

positives/negatives

Computationally
intensive, challenging

for deployment on
resource-constrained

IoT devices

[29]

Builds IDS using an
ensemble of deep

learning classifiers
trained on

benchmark datasets

Effective High computational
and memory usage

High performance in
detecting

zero-day attacks

Validated on multiple
datasets, effective

against
unknown attacks

High resource
consumption limits

deployment on
resource-constrained

IoT devices

Proposed Method

Adaptive k-nearest
neighbors with

self-adjusting memory
(SAM) for

anomaly detection

Highly Effective
Low CPU and memory
consumption (as low

as 0.05 MB)

High accuracy and F1
scores; Detection rate

of 1.00 for
zero-day attacks

Real-time, scalable,
memory-efficient,

maintains
performance with
large data volumes

Sensitive to sudden
data drift, requiring

further enhancement
for handling

abrupt changes
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3. Proposed Methodology
The proposed IDS is designed to identify zero-day attacks in IoT and IIoT environ-

ments by leveraging the proposed classifier. The system is structured into five key modules:
preprocessing, proposed classifier, attack detection, alert and response, and performance
monitoring. Each module performs a distinct function to ensure the accurate, efficient, and
adaptable detection of known and unknown attacks. The following sections describe each
module in detail. Figure 1 represents a block diagram of our proposed system.

Figure 1. An architectural diagram of our proposed IDS.

3.1. Preprocessing Module

The initial step involves loading the dataset and performing essential preprocessing to
enhance its suitability for machine learning applications. This includes the following:

• Feature Selection:Irrelevant and non-informative columns such as source and destina-
tion IP addresses, attack types, and redundant labels are removed to streamline the
feature set. This focuses the analysis on the most pertinent variables that contribute to
intrusion detection.

• Data Shuffling: To eliminate any inherent order or bias present in the dataset, the data
are randomly shuffled. This ensures that the training and evaluation processes are
not influenced by the sequence of the data, promoting a more generalized and robust
model performance.

• Dataset Iterator Preparation: For online learning scenarios, where models are updated
incrementally as new data arrive, the dataset is prepared for streaming. An iterator is
created to simulate real-time data flow, allowing the model to process data sequentially
in an online manner.

3.1.1. Feature Extraction

In developing the proposed system, a set of features was extracted from the datasets
to effectively capture the characteristics of network traffic. The feature extraction process
involved selecting variables that are indicative of normal and malicious network behavior
while excluding those that could introduce noise or redundancy. The dataset initially
contained several columns, including IPV4_SRC_ADDR, IPV4_DST_ADDR, Attack, and
Label. These columns were excluded from the feature set for the following reasons:

• IP Addresses (IPV4_SRC_ADDR and IPV4_DST_ADDR): The IP addresses were
removed to ensure that the model focuses on behavioral patterns rather than spe-
cific network endpoints, enhancing the generalization of the IDS across different
network configurations.

• Attack Type (Attack): The ’Attack’ column, which specifies the type of attack, was
excluded to prevent the model from being biased toward known attack signatures.
This exclusion is crucial for maintaining the model’s ability to detect zero-day attacks
that may not conform to predefined attack types.



Sensors 2025, 25, 216 9 of 35

• Label (Label): The ’Label’ column serves as the target variable indicating whether a
network flow is benign or malicious. It was separated from the feature set to facilitate
supervised learning.

The remaining columns after the exclusion are L4_SRC_PORT, L4_DST_PORT, PRO-
TOCOL, L7_PROTO, IN_BYTES, OUT_BYTES, IN_PKTS, OUT_PKTS, TCP_FLAGS, and
FLOW_DURATION_MILLISECONDS.

The selection of features was driven by the need to balance comprehensiveness and
computational efficiency, particularly given the resource-constrained nature of IoT and IIoT
devices. The rationale for selecting the aforementioned features includes the following:

• Relevance to Intrusion Detection: The chosen features are closely related to net-
work behavior and are effective in capturing anomalies indicative of cyber-attacks.
For instance, unusual patterns in flow duration or packet counts can signal
potential intrusions.

• Avoidance of Redundancy: By excluding IP addresses and specific attack types, the
feature set minimizes redundancy and prevents the model from overfitting to par-
ticular network endpoints or known attack signatures. This approach enhances the
model’s capability to generalize and detect novel threats.

• Efficiency in Processing: The retained features are sufficient for representing the essen-
tial aspects of network traffic without imposing excessive computational overhead,
which is crucial for real-time processing in IoT and IIoT environments.

3.1.2. Feature Scaling

To ensure that all features contribute equally to the learning process and to improve
the performance of distance-based classifiers like kNN, feature scaling was employed. We
used a standard scaler approach to standardize the feature set. This method standardizes
the features by removing the mean and scaling them to unit variance. Specifically, each
feature x is transformed using the following formula:

xscaled =
x− µ

σ

where µ is the mean and σ is the standard deviation of the feature.
The benefits of standardizing the feature sets include;

• Uniform Feature Contribution: By standardizing the features, the model ensures
that no single feature dominates due to its scale, which is particularly important for
algorithms sensitive to feature magnitudes.

• Improved Convergence: Standardization can lead to faster and more stable conver-
gence during the training process, enhancing the overall efficiency of the model.

• Compatibility with Distance-Based Algorithms: For classifiers like kNN, standardized
features ensure that distance calculations are meaningful and not skewed by disparate
feature scales.

3.2. Adaptive SAMKNN Module

The core detection engine of the IDS relies on the proposed classifier, which dynam-
ically balances between recent and historical data through two types of memory: STM
and LTM.

3.2.1. Short-Term Memory (STM)

STM holds recent data samples, allowing the classifier to adapt quickly to emerging
attack patterns. It is essential for recognizing and responding to novel attacks that may not
match historical attack signatures.
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3.2.2. Long-Term Memory (LTM)

LTM contains aggregated historical data, providing a stable base of knowledge for the
classifier. LTM enables the system to retain context from past experiences, enhancing its
ability to identify well-known attack patterns.

3.2.3. Dynamic Memory Adjustment

The classifier dynamically adjusts the balance between STM and LTM based on model
performance. If the accuracy improves, the LTM size increases to retain more historical
data. Conversely, if performance drops, the LTM size is reduced, allowing the model to
focus on recent data. The model’s performance is tracked through a sliding window of
recent predictions, and memory adjustments are made when sufficient data are available,
regulated using a cool-down period. The cool-down technique ensures efficient memory
usage and maintains accuracy in stationary and non-stationary environments, adapting to
concept drift over time.

3.3. Attack Detection Module

The attack detection module is responsible for identifying anomalous behavior that
may indicate an attack. It processes incoming data using classifiers to distinguish between
benign and malicious activity. The module leverages mechanisms like memory adjustment
to handle zero-day attacks effectively. This module includes the following:

3.3.1. Attack Detector

The proposed classifier processes incoming data and classifies each instance as benign
or malicious based on learned patterns. In the case of zero-day attacks, the classifier’s
memory adjustment mechanism enhances its capacity to detect previously unseen attack
types without prior knowledge.

3.3.2. Zero-Day Analysis

This component emphasizes the identification of novel attack instances by leveraging
the classifier’s STM. By prioritizing recent data, the classifier can respond to emerging
threats that deviate from normal patterns or known attack signatures, thereby improving
the detection of zero-day attacks.

3.4. Alert and Response Module

This module is essential for real-time threat handling by promptly notifying adminis-
trators of detected threats and automatically responding to them to mitigate damage. It
ensures a proactive approach to minimize the impact of attacks.

3.4.1. Alert Manager

The alert manager triggers an alert whenever malicious activity is detected. This alert
can be customized based on the threat level, providing immediate feedback to system
administrators and initiating automated responses if necessary.

3.4.2. Response

The system can execute pre-configured response actions, such as isolating the com-
promised device, restricting access to specific network resources, or blocking traffic from
suspicious sources. These response mechanisms are crucial for containing and mitigating
the impact of detected attacks in IoT/IIoT environments.



Sensors 2025, 25, 216 11 of 35

3.5. Performance Monitoring Module

The performance monitoring module continuously evaluates the system’s performance
to ensure sustained accuracy and adaptability.

Performance Metrics

The system tracks various performance metrics, such as detection accuracy, false
positives, and false negatives, to assess the efficacy of the classifier in real time.

3.6. Adaptive SAMKNN

In this subsection, we explain how we implemented the proposed Adaptive SAMKNN,
a modification of the original SAMKNN proposed by [36].

The proposed classifier is an enhanced KNN algorithm specifically designed for dy-
namic streaming environments where the nature of data may evolve over time. This
adaptation incorporates mechanisms for managing memory resources efficiently, dynami-
cally adjusting between short-term and long-term memory based on observed performance,
and adapting to drifts in data distribution.

The algorithm begins by initializing two memory structures, STM and LTM. STM
is a memory buffer that holds recent data samples, while LTM stores older, stable data
that could still be useful for classification. An initial allocation proportion λLTM is set for
LTM to control the balance between the sizes of STM and LTM. Key parameters are also
initialized, including performance thresholds (δdecrease and δincrease) that determine when
the memory allocation should be adjusted based on classifier performance. Additionally, a
cool-down period is set to prevent frequent adjustments and allow time for performance
changes to become evident. Finally, label encoding dictionaries are prepared, which may
map categorical labels to numerical values.

For each incoming data sample x, the algorithm follows a structured process. If the
label y of the sample is known (i.e., the sample is labeled), the classifier first predicts
the label ŷ for x using both STM and LTM. This prediction is then used to update the
algorithm’s accuracy metric, maintained over a performance window P , tracking how well
the classifier has been performing recently.

The labeled sample (x, y) is then added to STM. However, if the size of STM exceeds
a predefined threshold MSTM, the oldest samples in STM may be shifted to LTM (if such
shifting is enabled). This process ensures that STM remains a reservoir of recent data
without overflow while allowing LTM to accumulate samples that may still hold relevant
information for classification.

The adaptive mechanism of SAMKNN comes into play after every performance
window P reaches a size W and the cool-down period has elapsed. At this point, the
classifier evaluates its recent performance over P by computing an average performance
metric P. This metric is compared against previous performance to detect potential concept
drifts. If P has dropped by a threshold δdecrease, this indicates that the classifier may be
underperforming, possibly due to outdated information in LTM. In response, the algorithm
decreases λLTM, thereby reducing the size of LTM and giving STM a larger proportion
of memory resources. This adjustment helps the classifier to focus more on recent data
(stored in STM), which are likely more relevant to the current data distribution. After
decreasing λLTM, LTM may be compressed, meaning that the oldest samples in LTM are
removed to fit within the new, reduced memory allocation. Conversely, if P has improved
by a threshold δincrease, this suggests that retaining older data might be beneficial. In this
case, the algorithm increases λLTM, enlarging LTM’s memory allocation to preserve more
long-term information. This adjustment helps the classifier to leverage older patterns that
have become relevant again. Once either adjustment is made, the cool-down counter τ is
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reset, ensuring that memory allocation changes are infrequent enough to allow for stable
adaptation to data changes without oscillating due to short-term performance fluctuations.

For each incoming unlabeled sample, the classifier predicts a label by choosing neigh-
bors from either STM only or from both STM and LTM, depending on the specific con-
figuration. If the classifier is configured to use only STM, it selects the nearest neighbors
based on recent data alone, which might be suitable in highly volatile environments where
only recent information is relevant. When using both STM and LTM, the classifier com-
putes distances for x across both memory structures, selects the top k neighbors, and then
uses either majority voting or distance-weighted voting to make a final prediction. This
hybrid approach allows the classifier to balance recent trends with historical patterns when
making decisions.

At regular intervals, the classifier updates the sizes of STM and LTM based on the current
value of λLTM. The size of LTM is set to λLTM ×Mmax, where Mmax is the total available
memory. STM’s size MSTM is then calculated as the remaining memory (Mmax −MLTM).

When LTM’s size exceeds its allocated memory MLTM, the algorithm compresses
LTM by removing the oldest samples until its size fits within MLTM. This ensures that the
classifier maintains memory constraints and prioritizes retaining more recent, potentially
more relevant data within LTM.

The pseudocode of the proposed proposed classifier is shown in Algorithm 1.

Algorithm 1: proposed classifier
Input: New sample x, label y (if available), hyperparameters
Output: Predicted label ŷ for x
Initialization:

Initialize Short-Term Memory (STM) and Long-Term Memory (LTM);
Set initial memory allocation proportion λLTM for LTM;
Define performance thresholds δdecrease and δincrease;
Set cooldown period τ;
Initialize label encoding dictionaries;

For each incoming sample x:
if label y is available then

Predict ŷ for x using STM and LTM;
Update accuracy metric and performance window P ;

Update STM with new sample (x, y);
if |STM| > MSTM then

Shift samples from STM to LTM (if enabled);

if |P| = W and cooldown period has elapsed then
Compute current performance P over P ;
if P has decreased by δdecrease then

Decrease λLTM ← max(λLTM − ∆λ, λmin);
Update memory sizes and compress LTM if necessary;

else if P has increased by δincrease then
Increase λLTM ← min(λLTM + ∆λ, λmax);
Update memory sizes;

Reset cooldown counter τ;
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Algorithm 1: Cont.

Prediction Function
if using STM only then

Return ŷ based on k nearest neighbors in STM;
else if using both STM and LTM then

Compute distances d(x, xi) for xi ∈ STM∪ LTM;
Select top k neighbors based on sorted distances;
Return ŷ based on majority voting or distance-weighted voting;

UpdateMemorySizes()
Set MLTM = ⌊λLTM ×Mmax⌋ and MSTM = Mmax −MLTM;

CompressLTM()
Remove oldest samples from LTM to maintain |LTM| ≤ MLTM;

3.7. Complexity Analysis of the Adaptive SAMKNN

Understanding the computational complexity of Adaptive SAMKNN is crucial for
assessing its scalability and efficiency in practical applications.

3.7.1. Time Complexity

During training, the algorithm processes each incoming sample through several steps:

• Label Encoding: The algorithm assigns a unique numerical index to each new label
encountered. This operation uses a dictionary lookup and insertion, performed in
constant time, O(1), per sample.

• The new sample is appended to the STM, implemented as a deque. Appending to a
deque is an O(1) operation.

• If the STM exceeds its maximum size, the oldest samples are shifted to the LTM. This
involves the following:

• Deque Operations: Removing samples from the STM, which takes O(k), where k is
the number of samples to shift.

• Updating LTM: Adding the shifted samples to the LTM. This may involve concatenat-
ing NumPy arrays, which have a time complexity of O(n + k), where n is the current
size of the LTM.

• If the LTM exceeds its maximum size, the oldest samples are removed to maintain
the size constraint. This involves slicing NumPy arrays, which is an O(1) operation
because slicing creates a view rather than copying data.

• The algorithm updates a performance window (a deque) with the latest prediction
result. This operation is O(1).

• It calculates the mean performance over the window, which is O(w), where w is
the size of the performance window. Since w is a fixed parameter, this operation is
effectively O(1) per sample.

• Based on performance evaluation, the algorithm may adjust the sizes of STM and
LTM. This decision-making process is O(1).

The per-sample training time is dominated by operations that are either constant time
or depend on fixed-size parameters. Therefore, the overall time complexity for training
per sample is effectively O(1), assuming that the sizes of STM, LTM, and the performance
window are bounded and relatively small.

Prediction involves several steps that are more computationally intensive:
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• Calculating distances between the query sample and all samples in STM. This op-
eration is O(s · d), where s is the number of samples in STM and d is the number
of features.

• Similarly, calculating distances to all samples in LTM. This is O(l · d), where l is the
number of samples in LTM.

• The total time for computing distances to both STM and LTM samples is O((s + l) · d).
• Instead of sorting all distances, the algorithm needs to find the top k nearest neighbors.
• Using a partial sort or a min-heap, this can be achieved in O((s + l) · log k).
• Aggregating the labels of the nearest neighbors to make a prediction. This operation

is O(k).

The total time complexity for prediction per sample is

O((s + l) · d + (s + l) · log k + k)

Since k is typically small and log k is negligible compared to s and l, the dominant
term becomes

O((s + l) · d)

This indicates that the prediction time scales linearly with the total number of samples
in STM and LTM and the number of features.

3.7.2. Space Complexity

The space required by the algorithm is determined by the storage of samples, labels,
and auxiliary data structures:

• STM Storage: O(s · d), where s is the maximum size of STM. The space complexity of
the STM storing a label is O(s), storing one label per sample.

• LTM Storage: O(l · d), where l is the maximum size of LTM. The space complexity of
the LTM storing a label is O(l).

• Performance Window: O(w), where w is the size of the performance window.
• Label-to-Index Mapping: O(c), where c is the number of unique classes.

The total space complexity is

O((s + l) · d + s + l + w + c)

Given that s and l are bounded by user-defined parameters (‘maxSTMSize’ and
‘maxLTMSize’), and w and c are relatively small, the space complexity is effectively linear
in the maximum allowed memory sizes and the number of features:

O(maxWindowSize · d)

4. Experimental Design
4.1. Experimental Setup

The experimental validation of the model developed in this work is presented in this
subsection. Python 3.10 was utilized throughout the experimental validation to develop
the proposed system using the River online ML framework [37]. We chose the River online
ML framework because it can process streaming data. We used a MacBook Pro with an M1
chip running on 16 GB RAM and 1 TB disk storage to model the proposed system.
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4.2. Datasets

We used three datasets to build and test our proposed IDS. The datasets are NF-
BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018 proposed by [38]. The NetFlow records
of these datasets were generated from the publicly available pcap files of the respective
datasets. Table 3 shows the summary of the various datasets as proposed by [38]. We chose
two attack classes from each dataset.

Table 3. Summary of the datasets as proposed by [38].

Dataset # Features Benign # Samples

NF-BoT-IoT 12 13,859 (2.31%) 600,100

NF-ToN-IoT 12 179,647 (13.94%) 1,288,642

NF-CSE-CIC-IDS 2018 12 7,373,198 (87.86%) 8,392,401

4.3. Evaluation Metrics

To comprehensively assess the effectiveness and efficiency of the proposed Adaptive
SAMKNN system for zero-day attack detection in IoT and IIoT environments, a diverse set
of evaluation metrics were employed. These metrics provide insights into various aspects
of the system’s performance, including accuracy, reliability, computational efficiency, and
statistical significance. The following sections define each metric and elucidate their
relevance to evaluating the proposed intrusion detection system.

4.4. Accuracy

Accuracy measures the proportion of correctly classified instances (both true positives
and true negatives) out of the total number of instances evaluated. It is calculated as

Accuracy =
True Positives + True Negatives

Total Instances

4.5. F1 Score

The F1 score is the harmonic mean of precision and recall, defined as

F1 Score = 2× Precision× Recall
Precision + Recall

where precision is the ratio of true positives to the sum of true positives and false positives
and recall (or detection rate) is the ratio of true positives to the sum of true positives and
false negatives.

4.6. False Positive Rate (FPR)

FPR quantifies the proportion of benign instances incorrectly classified as malicious. It
is calculated as

FPR =
False Positives

False Positives + True Negatives

4.7. Detection Rate (DR)

Detection rate, also known as recall or sensitivity, measures the proportion of actual
malicious instances correctly identified by the system. It is expressed as

Detection Rate =
True Positives

True Positives + False Negatives
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DR is fundamental in evaluating the system’s effectiveness in identifying real threats.
A high detection rate indicates the system’s proficiency in recognizing and mitigating
malicious activities, which is paramount for maintaining the security integrity of IoT and
IIoT networks.

4.8. Processing Time

Processing time refers to the duration required by the system to analyze and classify
each data instance. It is typically measured in milliseconds or seconds per instance.

In real-time intrusion detection, rapid processing is essential for ensuring timely
responses to threats. Monitoring processing time assesses the system’s capability to operate
efficiently under high-throughput conditions typical of IoT environments.

4.9. Paired T-Test

The paired t-test is a statistical method used to compare the means of two related
groups to determine if there is a significant difference between them.

The formula for the paired t-test:

t =
d̄

sd/
√

n

where
d̄ is the mean of the differences, sd is the standard deviation of the differences, and n is

the number of paired observations.
Applying the paired t-test allows for the evaluation of the statistical significance of

performance improvements achieved by the proposed classifier over baseline classifiers.
It ensures that observed differences in metrics like accuracy or F1 score are not due to
random chance.

4.10. Brier Score

The Brier score measures the accuracy of probabilistic predictions by calculating the
mean squared difference between predicted probabilities and the actual binary outcomes.
It ranges from 0 to 1, with lower scores indicating better calibration.

Brier Score =
1
N

N

∑
i=1

( fi − oi)
2

where fi is the predicted probability and oi is the actual outcome.
The Brier score evaluates the reliability of the probability estimates produced by the

classifier, ensuring that the system not only makes accurate predictions but also provides
well-calibrated confidence levels in its detections.

4.11. Bootstrap Confidence Interval

Bootstrap confidence intervals are statistical intervals estimated by repeatedly re-
sampling the dataset with replacement and computing the metric of interest across these
samples to determine the range within which the true metric value lies with a certain
confidence level.

Bootstrap confidence intervals provide insights into the variability and reliability of the
performance metrics, enabling a more robust understanding of the system’s performance
across different data samples.
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4.12. CPU Usage

CPU usage measures the percentage of central processing unit resources consumed by
the system during operation.

Monitoring CPU usage is essential for evaluating the computational efficiency of the
proposed classifier, especially in resource-constrained IoT devices where excessive CPU
consumption can lead to performance bottlenecks and increased energy consumption.

4.13. Memory Usage

Memory Usage quantifies the amount of RAM utilized by the system during its operation.
Efficient memory usage is critical for deploying intrusion detection systems on IoT

devices with limited memory resources. Assessing memory consumption ensures that
Adaptive SAMKNN can operate effectively without exceeding the device’s memory con-
straints, thereby facilitating broader deployment in diverse IoT environments.

The selected metrics collectively provide a holistic evaluation of the proposed classi-
fier’s performance in detecting zero-day attacks within IoT and IIoT systems. Accuracy
and F1 score offer general performance insights, while FPR and DR specifically address
the balance between detecting true threats and minimizing false alarms, which is crucial
for maintaining system reliability. Processing time, CPU usage, and memory usage assess
the system’s operational efficiency, ensuring its practicality for real-time applications in
resource-constrained environments. Statistical measures like the paired t-test, t-statistic,
Brier score, and bootstrap confidence interval validate the robustness and reliability of the
performance improvements, ensuring that the system’s enhancements are both significant
and consistent. Collectively, these metrics ensure that the proposed classifier not only excels
in identifying novel and emerging threats but also operates efficiently within the stringent
resource limitations typical of IoT and IIoT deployments.

4.14. Experimental Validations

Eight experiments were conducted to test and validate our proposed system. The
experiments are briefly described below.

4.14.1. Baseline Performance Evaluation

The first experiment evaluated the performance of the proposed classifier on the three
datasets while recording the accuracy, F1 score, processing time, and memory usage. As
part of the baseline performance evaluation, we looked at the performance of five popular
offline ML algorithms, namely, random forest (RF), KNN, support vector machines (SVMs),
decision tree (DT), and logistic regression (LR), and compared their performance to our
proposed technique. We also compared the performance of our proposed method with the
original SAMKNN algorithm.

4.14.2. Zero-Day Attack Detection

This experiment aims to evaluate the effectiveness of the proposed classifier in detect-
ing both known and zero-day attacks within IoT network traffic data. Zero-day attacks
are novel threats that have not been previously encountered or included in the training
data, posing significant challenges for intrusion detection systems. By simulating zero-day
attacks and assessing the classifier’s performance, we seek to understand its capability
in real-world scenarios where new types of attacks emerge. Two different experiments
were carried out under this experiment. During the first experiment, we used some attack
classes from the datasets used to validate our system as zero-day attacks. In the second
experiment, we used the conditional tabular generative adversarial network (CTGAN)
proposed by [39] to generate synthetic zero-day attacks into the original datasets. The
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CTGAN is a specialized type of GAN designed to generate realistic synthetic tabular data
by conditioning on specific data features. It consists of two main components: a generator
that creates fake data samples and a discriminator that evaluates whether samples are
real or synthetic, both trained simultaneously to improve the quality of generated data.
Additionally, it employs a training strategy that focuses on capturing the relationships
and dependencies between various features in the dataset, enhancing the fidelity of the
synthetic data. The zero-day attacks were simulated by excluding some attack instances
from the training dataset, ensuring that the classifier had not been exposed to this attack
type during training. These unseen instances were then introduced into the testing dataset
as zero-day attacks, allowing the evaluation of the model’s ability to detect novel and
previously unencountered threats. In the NF-BoT IoT dataset, Reconnaissance, DDoS, and
Theft were used to simulate zero-day attacks. Injection, Malware, and DDoS from the
NF-ToN IoT and NF-CSE datasets were used to simulate zero-day attacks. A crucial metric
for practical applications is indicating how often benign traffic is incorrectly classified as
malicious. The average time taken to predict each instance, indicating the model’s efficiency,
was also measured.

4.14.3. Scalability

In this experiment, we evaluated the scalability and performance of the Adaptive
SAMKNN on a large-scale IoT network traffic dataset. The primary focus was to assess
how the classifier performs in terms of predictive accuracy and resource utilization (CPU
and memory usage) when processing data in a streaming, online learning context. By
monitoring these aspects, we aimed to determine the model’s suitability for real-time
intrusion detection in IoT environments, where accuracy and efficiency are critical. We
measured these metrics over samples of 50,000, 200,000, 350,000, and 500,000.

4.14.4. False Positive Rate Evaluation Under Normal Conditions

This experiment assessed the performance of the proposed technique in terms of its
false positive rate when exposed solely to benign network traffic. Understanding the FPR
under normal operating conditions is crucial for IDSs, as a high rate of false alarms can
lead to alert fatigue, resource wastage, and decreased trust in the system. A low false
positive rate ensures that security personnel can focus on genuine threats without being
overwhelmed by false alarms.

4.14.5. Performance Under Drift

In the rapidly evolving landscape of network security, particularly within the IoT
and IIoT ecosystem, detecting malicious activities is a complex and dynamic challenge.
IDSs must not only identify known threats but also adapt to changes in network behavior
over time. One significant challenge in this domain is concept drift, where the statistical
properties of the target variable change over time in unforeseen ways. This experiment
evaluated the performance of our proposed Adaptive SAMKNN under various types of
drift scenarios simulated in IoT network traffic data. This experiment considered four types
of drifts: gradual, sudden, recurring, and incremental. Our simulated concept drift was
executed by introducing variations in the class label of the dataset.

4.14.6. Resource Utilization

In this experiment, we aimed to compare the resource utilization and processing effi-
ciency of the proposed classifier with the standard SAMKNN classifier when applied to IoT
network traffic data. By evaluating metrics such as CPU usage, memory consumption, and
processing time, we sought to understand the computational overhead introduced by the
adaptive capabilities of the proposed classifier. This comparison is crucial for determining
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the practicality of deploying adaptive models in resource-constrained environments typical
of IoT networks. To obtain a good approximation of the amount of resources that the
proposed model consumes, we ran ten experiments while recording the resource usage and
then calculated the mean of those experiments.

4.14.7. Statistical Analysis

To assess the proposed model’s robustness and ensure that the results are replicable
and not randomized, we performed statistical analysis using the bootstrap confidence
interval, Brier score, paired t-test, and t-statistic.

The bootstrap confidence interval assesses the performance of the proposed classifier
in detecting zero-day attacks within IoT networks by applying 100 bootstrap samples to
each dataset and evaluating the accuracy of each iteration. The resulting accuracies are
used to calculate the mean and 95% confidence interval, which are then visualized with a
histogram to demonstrate the classifier’s reliability and consistency.

Another statistical analysis involves assessing the calibration accuracy of the proposed
classifier on the respective dataset by implementing a custom Brier score metric to evaluate
the precision of predicted probabilities for the positive class. The algorithm iterates over
each instance to obtain probability predictions, and, updating the Brier score accordingly,
this study quantifies the reliability of the classifier’s probabilistic outputs in effectively
detecting zero-day attacks in IoT environments.

On each dataset, we compared the performance of the proposed classifier and original
SAMKNN by conducting five independent runs with randomly shuffled data samples,
measuring each classifier’s accuracy in detecting zero-day attacks. The resulting accuracy
scores were statistically analyzed using a paired t-test to determine the significance of the
performance differences between the two classifiers.

4.14.8. Ablation Study

In machine learning, an ablation study is a crucial experimental approach used to
assess the contribution of individual components or features within a model. By systemati-
cally removing or altering these components, researchers can determine their impact on
the overall performance of the system. This experiment involves conducting an ablation
study on the proposed classifier within the context of IoT network intrusion detection. The
goal is to understand how different aspects of the classifier influence its ability to detect
malicious activities in network traffic data. The components removed are the adaptiveness,
LTM, and SAM.

5. Results
5.1. Baseline Performance Evaluation

The experimental results presented in Tables 4–7 demonstrate the performance of the
SAMKNN, Adaptive SAMKNN, and five offline ML algorithms across three benchmark
datasets: NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018. The Adaptive SAMKNN
consistently outperforms the SAMKNN in memory efficiency across all datasets, achieving
substantial reductions in memory usage while maintaining comparable accuracy and F1
scores. Specifically, Adaptive SAMKNN achieves memory savings of over 99% compared
to SAMKNN without compromising detection accuracy, demonstrating its suitability for
resource-constrained environments. Additionally, compared with traditional machine
learning algorithms such as RF, KNN, SVM, DT, and LR, the Adaptive SAMKNN shows
competitive accuracy and a low processing time, making it a viable option for real-time
attack detection in IoT environments. These results highlight the effectiveness of Adaptive
SAMKNN in balancing accuracy, memory efficiency, and processing speed.
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Table 4. Comparing the accuracy, F1 score, and model memory footprint (KB) of our proposed
classifier against the original SAMKNN algorithm.

Algorithm Accuracy F1 Memory (KB)

NF-BoT-IoT

SAMKNN 98.52% 98.50% 5539.84

Adaptive
SAMKNN 98.90% 98.89% 62.51

NF-ToN-IoT

SAMKNN 95.76% 95.61% 59002.88

Adaptive
SAMKNN 96.34% 96.23% 63.31

NF-CSE-CIC-IDS 2018

SAMKNN 99.91% 99.91% 57477.12

Adaptive
SAMKNN 99.92% 99.92% 55.11

Table 5. Comparing the accuracy, processing time (s), and model memory footprint (MB) of our
proposed classifier against five other popular ML algorithms when evaluated on NF BoT IoT dataset.

Algorithm Accuracy Time (s) Memory (MB)

RF 98.93% 14.98 1436.41

KNN 99.13% 26.47 1439.48

SVM 98.81% 2550.37 2043.38

DT 98.96% 1.62 1366.13

LR 98.69% 2.70 982.86

Our method 98.90% 11 0.06

Table 6. Comparing the accuracy, processing time (s), and model memory footprint (MB) of our
proposed classifier against five other popular ML algorithms when evaluated on NF ToN IoT dataset.

Algorithm Accuracy Time (s) Memory (MB)

RF 99.93% 79.51 1152.52

KNN 99.34% 102.49 896.75

SVM 97.94% 10364.42 2547.66

DT 999.91% 3.57 2101.47

LR 995.98% 2.54 2053.06

Our method 96.34% 187 0.06

Table 7. Comparing the accuracy, processing time (s), and model memory footprint (MB) of our
proposed classifier against five other popular ML algorithms when evaluated on NF CSE 2018 dataset.

Algorithm Accuracy Time (s) Memory (MB)

RF 99.99% 23.71 1515.58

KNN 99.99% 106 1544.66



Sensors 2025, 25, 216 21 of 35

Table 7. Cont.

Algorithm Accuracy Time (s) Memory (MB)

SVM 99.98% 2428.68 1792.39

DT 99.99% 2.40 1743.98

LR 99.96% 1.82 1754.58

Our method 99.92% 141 0.05

5.2. Zero-Day Attack Detection

Tables 8 and 9 present the performance of the proposed classifier in detecting zero-
day attacks across three datasets (NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018).
The Adaptive SAMKNN demonstrates robust accuracy, achieving over 99% across all
attack classes, with a consistent zero-day detection rate (DR) of 1.00, indicating that it
successfully identified all simulated zero-day attacks. The classifier maintains a low FPR,
particularly for NF-ToN-IoT and NF-CSE-CIC-IDS 2018, while the NF-BoT-IoT dataset
shows slightly higher FPR values, especially for Theft and DDoS attacks. Additionally, the
average detection latency remains minimal at 0.0001 s across all datasets, supporting its
suitability for real-time applications. These results illustrate that the Adaptive SAMKNN
can effectively identify and respond to novel threats with high precision and minimal delay,
making it a promising solution for dynamic IoT and IIoT security challenges.

Table 8. The proposed model’s accuracy, the detection rate of a zero-day attack, false positive rate
of the zero-day attack, and the average detection latency when some unseen attack classes from the
three datasets are used as zero-day attack.

Zero-Day Accuracy DR FPR Detection Latency

NF-BoT-IoT

Theft 99.62% 1.00 0.1496 0.0001

DDoS 99.70% 1.00 0.1356 0.0001

Recon 99.46% 1.00 0.0385 0.0001

NF-ToN-IoT

Injection 99.84% 1.00 0.0037 0.0001

Malware 99.76% 1.00 0.0108 0.0001

DDoS 99.76% 1.00 0.0089 0.0001

NF-CSE-CIC-IDS 2018

DDoS 99.92% 1.00 0.0037 0.0001

Malware 99.99 % 1.00 0.0030 0.0001

Injection 99.99% 1.00 0.0032 0.0001

Table 9. The proposed model’s accuracy, detection rate of zero-day attack, false positive rate of the
zero-day attack, and the average detection latency when unseen attack classes that contain synthetic
zero-day attacks created using CTGAN from the three datasets are used as zero-day attacks.

Zero-Day Accuracy DR FPR Detection Latency

NF-BoT-IoT

Theft 99.48% 1.00 0.1678 0.0001

DDoS 99.50% 1.00 0.1487 0.0006

Recon 99.16% 1.00 0.0671 0.0001
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Table 9. Cont.

Zero-Day Accuracy DR FPR Detection Latency

NF-ToN-IoT

Injection 99.90% 1.00 0.0040 0.0001

Malware 99.82% 1.00 0.0119 0.0001

DDoS 99.88% 1.00 0.0097 0.0001

NF-CSE-CIC-IDS 2018

DDoS 99.94% 1.00 0.0035 0.0001

Malware 99.96 % 1.00 0.0030 0.0001

Injection 99.96% 1.00 0.0028 0.0001

5.3. Scalability

The scalability assessment of Adaptive SAMKNN, as shown in Figures 2–4 and Table 10,
demonstrates its capability to maintain consistent performance across increasing data volumes
on three datasets: NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018. With sample sizes
growing from 50,000 to 500,000, Adaptive SAMKNN achieves stable accuracy, retaining
over 98% accuracy on NF-BoT-IoT, 96% on NF-ToN-IoT, and 99% on NF-CSE-CIC-IDS 2018.
CPU usage remains minimal (around 12.4%) across all datasets, and memory usage is kept
consistently low, especially on NF-BoT-IoT with 45.84 MB, and slightly higher on the other
datasets. Processing times increase proportionally with sample size but remain manageable
for large datasets. The scalability test confirms that Adaptive SAMKNN maintains high
accuracy, low CPU usage, and efficient memory management, underscoring its effectiveness
for real-time applications even as data volume scales.

Table 10. The model’s processing time, CPU usage (%), device memory usage (MB), and accuracy
when the number of samples is increased.

# Samples Time (s) CPU (%) Memory (MB) Accuracy

NF-BoT-IoT

50,000 24.25 12.40 45.84 98.10%

200,000 97.41 12.44 45.85 98.04%

350,000 171.12 12.45 45.85 98.13%

500,000 245.00 12.44 45.85 98.05

NF-ToN-IoT

50,000 24.82 12.40 80.06 96.25%

200,000 98.41 12.47 80.06 96.22%

350,000 172.30 12.48 80.06 96.38%

500,000 245.99 12.49 80.06 96.42

NF-CSE-CIC-IDS 2018

50,000 21.46 12.44 80.05 99.91%

200,000 85.99 12.45 80.06 99.92%

350,000 151.11 12.48 80.06 99.93%

500,000 216.30 12.38 80.06 99.96
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(a) The accuracy and F1 score with respect to the growth of the processing time of the proposed

method as the number of samples is increased (scalability) when the NF BoT IoT dataset is used to

evaluate the model

(b) The CPU and memory usage with respect to the growth of the processing time of the proposed

method as the number of samples is increased (scalability) when the NF BoT IoT dataset is used to

evaluate the model

Figure 2. The accuracy, F1 score, CPU, and memory usage with respect to the growth of the processing
time of the proposed method as the number of samples is increased (scalability) when the NF BoT
IoT dataset is used to evaluate the model.

(a) The accuracy and F1 score with respect to the growth of the processing time of the proposed

method as the number of samples is increased (scalability) when the NF ToN IoT dataset is used to

evaluate the model

Figure 3. Cont.
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(b) The CPU and memory usage with respect to the growth of the processing time of the proposed

method as the number of samples is increased (scalability) when the NF ToN IoT dataset is used to

evaluate the model

Figure 3. The accuracy, F1 score, CPU, and memory usage with respect to the growth of the processing
time of the proposed method as the number of samples is increased (scalability) when the NF ToN
IoT dataset is used to evaluate the model.

5.4. False Positive Rate Evaluation Under Normal Conditions

Table 11 shows the false positive rate (FPR) of the proposed classifier under normal
conditions across three datasets: NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018.
The results indicate that Adaptive SAMKNN achieved an FPR of 0.00% on all datasets,
demonstrating its ability to identify normal traffic without false alarms correctly. With
13,858, 179,646, and 62,466 normal samples in the NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-
CIC-IDS 2018 datasets, respectively, the classifier consistently maintained perfect FPR
performance. These findings underscore Adaptive SAMKNN’s precision in distinguishing
benign and malicious activities under stable, non-attack conditions. The absence of false
positives is a significant outcome, as it highlights the model’s reliability in recognizing
genuine network behavior, minimizing the risk of alert fatigue in real-world monitoring
environments where excessive false positives can hinder security operations.

(a) The accuracy and F1 score with respect to the growth of the processing time of the proposed

method as the number of samples is increased (scalability) when the NF CSE dataset is used to

evaluate the model

Figure 4. Cont.
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(b) The CPU and memory usage with respect to the growth of the processing time of the proposed

method as the number of samples is increased (scalability) when the NF CSE dataset is used to

evaluate the model

Figure 4. The accuracy, F1 score, CPU, and memory usage with respect to the growth of the processing
time of the proposed method as the number of samples is increased (scalability) when the NF CSE
dataset is used to evaluate the model.

Table 11. False positive rate evaluation under normal conditions.

# Normal Samples FPR

NF-BoT-IoT

13,858 0.00

NF-ToN-IoT

179,646 0.00

NF-CSE-CIC-IDS 2018

62,466 0.00

5.5. Performance Under Drift

Tables 12–14 present the performance of Adaptive SAMKNN in handling different
types of concept drift across three datasets: NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS
2018. The classifier exhibits varied accuracy and F1 scores based on the nature of the drift.
Adaptive SAMKNN achieves the highest performance for gradual drift, with accuracy and
F1 scores exceeding 90% across all datasets. Sudden drift poses a greater challenge, resulting
in the lowest performance, particularly on the NF-ToN-IoT dataset, where accuracy and F1
scores drop to around 81%. Performance under recurring and incremental drift remains
stable, with accuracy and F1 scores generally above 87%. These results indicate that while
Adaptive SAMKNN is capable of adapting to gradual changes in data distribution, its
sensitivity to sudden changes suggests potential areas for improvement in environments
with abrupt shifts. Overall, the classifier demonstrates robust adaptability to diverse drift
types, which is essential for real-world IoT applications with dynamic data patterns.

Table 12. The accuracy and F1 score of the proposed classifier when evaluated with NF BoT IoT
dataset containing different kinds of Drift.

Type of Drift Accuracy F1

Gradual 90.95% 90.81%

Sudden 82.52% 82.38%
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Table 12. Cont.

Type of Drift Accuracy F1

Recurring 87.66% 87.46%

Incremental 89.33% 88.97%

Table 13. The accuracy and F1 score of the proposed classifier when evaluated with NF ToN IoT
dataset containing different kinds of Drift.

Type of Drift Accuracy F1

Gradual 89.55% 89.43%

Sudden 81.34% 81.20%

Recurring 86.31% 86.15%

Incremental 87.90% 87.69%

Table 14. The accuracy and F1 score of the proposed classifier when evaluated with NF CSE 2018
dataset containing different kinds of Drift.

Type of Drift Accuracy F1

Gradual 92.56% 92.56%

Sudden 83.77% 83.76%

Recurring 89.12% 89.11%

Incremental 90.81% 90.74%

5.6. Resource Utilization

Table 15 presents a comparative analysis of resource utilization between SAMKNN and
Adaptive SAMKNN across the NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018 datasets.
The Adaptive SAMKNN consistently demonstrates a lower mean CPU usage, memory
consumption, and processing time compared to the standard SAMKNN. For instance, in the
NF-BoT-IoT dataset, Adaptive SAMKNN achieves a mean CPU usage of 86.51% and mem-
ory consumption of 3.20 KB, whereas SAMKNN requires 94.51% CPU usage and 76.80 KB
memory. Across all datasets, Adaptive SAMKNN maintains a processing time of 0.07 s,
slightly faster than SAMKNN’s 0.10 s. These findings emphasize Adaptive SAMKNN’s
computational and memory resource efficiency, making it more suitable for real-time ap-
plications in resource-constrained environments like IoT networks. The reduced resource
demands of Adaptive SAMKNN, without sacrificing detection accuracy, underscore its
advantage for deployment in practical, high-frequency data processing scenarios.

5.7. Statistical Analysis

The bootstrap confidence intervals for the proposed classifier demonstrate high ac-
curacy across the three datasets, as shown in Figures 5–7, with narrow ranges indicating
consistent performance. For the NF-BoT-IoT dataset, the classifier achieves a mean accu-
racy of 0.9813, with a 95% confidence interval between 0.9800 and 0.9826. Similarly, on
the NF-ToN-IoT dataset, the mean accuracy is 0.9635, with a 95% confidence interval of
0.9612 to 0.9658. The NF-CSE-2018 dataset shows the highest accuracy, with a mean of
0.9968 and a 95% confidence interval from 0.9962 to 0.9972.
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Table 15. Comparing the mean CPU usage in percentage (%), the mean memory usage in kilo-
bytes (KB), and the mean processing time in seconds (s).

Algorithm CPU Usage (%) Memory (KB) Time (s)

NF-BoT-IoT

SAMKNN 94.51 76.80 0.10

Adaptive SAMKNN 86.51 3.20 0.07

NF-ToN-IoT

SAMKNN 90.27 548.20 0.10

Adaptive SAMKNN 83.61 51.20 0.07

NF-CSE-CIC-IDS 2018

SAMKNN 87.25 619.20 0.10

Adaptive SAMKNN 81.12 70.40 0.07

Additionally, the Brier scores indicate strong calibration, as shown in Table 16, with
values of 0.0166, 0.0260, and 0.0028 for the NF-BoT-IoT, NF-ToN-IoT, and NF-CSE-2018
datasets, respectively.

The t-tests, as shown in Table 17, revealed significant differences between the proposed
classifier and SAMKNN, with p-values below 0.001 across all datasets.

Table 16. The Brier score of the proposed classifier when evaluated with each of the datasets.

Dataset Brier Score

NF-BoT-IoT 0.0166

NF-ToN-IoT 0.0260

NF-CSE-2018 0.0028

Table 17. The t-statistic and p-value when the accuracy of the proposed classifier is compared with
SAMKNN.

Dataset t-Statistic p-Value

NF-BoT-IoT 20.9729 0.0000

NF-ToN-IoT 24.1197 0.0000

NF-CSE-2018 8.5327 0.0010

5.8. Ablation Study

The ablation study results in Table 18 compare the performance of Adaptive SAMKNN
and SAMKNN with and without long-term memory (LTM) across three datasets: NF-
BoT-IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018. Adaptive SAMKNN without LTM
consistently achieves high accuracy and F1 scores, comparable to the SAMKNN configu-
rations, while maintaining minimal memory usage (approximately 73.91 KB). Including
LTM in SAMKNN leads to a substantial increase in memory consumption, with up to
59,002.88 KB for NF-ToN-IoT, highlighting the efficiency of Adaptive SAMKNN with-
out LTM for memory-constrained environments. Moreover, Adaptive SAMKNN and
SAMKNN without LTM demonstrate faster processing times than KNN, significantly re-
ducing the computational load. These findings emphasize Adaptive SAMKNN’s capability
to provide a balanced trade-off between accuracy, processing speed, and memory effi-
ciency, making it suitable for real-time IoT applications where computational resources are
often limited.
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Figure 5. The bootstrap confidence interval for the proposed classifier accuracy on the NF BoT
IoT dataset.

Figure 6. The bootstrap confidence interval for the proposed classifier accuracy on the NF ToN
IoT dataset.

Table 18. The accuracy, F1 score, processing time, and memory footprint when different components
of the proposed classifier, such as adaptiveness, LTM, and SAM, are removed (ablation study).

Ablation Study Accuracy F1 Time (s) Memory (KB)

NF-BoT-IoT

Adaptive SAMKNN
w/o LTM 98.09% 97.68% 110 73.91

SAMKNN with LTM 97.95% 97.39% 207 39,782.40

SAMKNN w/o LTM 98.09% 97.68% 93 33,024

KNN 97.74% 97.57% 911 5079.04
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Table 18. Cont.

Ablation Study Accuracy F1 Time (s) Memory (KB)

NF-ToN-IoT

Adaptive SAMKNN
w/o LTM 96.34% 96.23% 193 73.91

SAMKNN with LTM 95.76% 95.61% 344 59,002.88

SAMKNN w/o LTM 96.34% 96.23% 165 55,101.44

KNN 94.87% 94.80% 1528 5109.76

NF-CSE-CIC-IDS 2018

Adaptive SAMKNN
w/o LTM 99.92% 99.92% 194 73.91

SAMKNN with LTM 99.91% 99.91% 346 59,002.88

SAMKNN w/o LTM 99.92% 99.92% 165 55,101.44

KNN 98.96% 98.96% 1528 5038.08

Figure 7. The bootstrap confidence interval for the proposed classifier accuracy on the NF CSE
2018 dataset.

6. Discussions
The findings highlight the proposed classifier as a viable solution for real-time anomaly

detection in IoT networks, effectively addressing critical constraints in resource-limited
environments. Unlike the traditional SAMKNN, which demands substantial memory
resources, Adaptive SAMKNN significantly reduces memory consumption while maintain-
ing high accuracy. This efficiency enhances its suitability for dynamic, high-throughput
data streams typical in IoT systems. Comparative analyses with standard classifiers reveal
Adaptive SAMKNN’s competitive advantage, especially in scenarios that require rapid, reli-
able decision making with minimal computational overhead. These performance attributes
position Adaptive SAMKNN as a key component for scalable and sustainable IoT security
frameworks. Future research may focus on its application to larger, more heterogeneous
datasets and its integration with other adaptive learning frameworks to bolster resilience
against evolving cyber threats within IoT ecosystems.
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Experimental results demonstrate Adaptive SAMKNN’s proficiency in detecting zero-
day attacks with exceptional accuracy and low false positive rates (FPRs) across various
IoT datasets. Notably, the classifier achieved a perfect detection rate of 1.00 for zero-day
attacks, underscoring its robustness in identifying previously unseen threats. Although the
NF-BoT-IoT dataset showed a slightly higher FPR, the rates remained within manageable
limits, indicating that minor model adjustments could further enhance performance. The
classifier’s minimal detection latency underscores its applicability in real-time security
applications, where swift responses are essential. Adaptive SAMKNN’s adaptive nature
ensures sustained high accuracy and efficiency compared to traditional classifiers that
may falter with evolving threats. Future studies could aim to refine the model to reduce
the FPR across diverse datasets further and improve its adaptability in more complex
IoT environments.

Scalability analysis reveals Adaptive SAMKNN’s capability to manage large-scale data
effectively, making it ideal for IoT environments with continuously growing data streams.
The classifier maintains high accuracy despite increasing sample sizes, demonstrating
stability and reliability in monitoring extensive datasets without performance degradation.
Its low CPU and memory usage emphasize its efficiency, which is crucial for resource-
constrained IoT settings where excessive resource consumption can impede practical
deployment. Although processing time gradually increases with larger datasets, Adaptive
SAMKNN remains responsive within acceptable limits, preserving its real-time applicability.
These results confirm Adaptive SAMKNN’s ability to scale efficiently, adapting to high-
throughput data while maintaining accuracy and resource efficiency. Future work could
explore further optimizations in processing speed to handle even larger data volumes,
enhancing its applicability across broader IoT and cybersecurity applications.

Under normal conditions, Adaptive SAMKNN exhibits a zero false positive rate (FPR)
across all tested datasets, indicating exceptional reliability in distinguishing legitimate
network activity without generating unnecessary alerts. This zero FPR is particularly
valuable in practical deployments, where false positives can disrupt operations and cause
alert fatigue among security personnel. The classifier’s precision in differentiating benign
traffic from potential threats underscores its effectiveness for real-time IoT deployments,
where accurate monitoring is critical for maintaining network integrity. These results
suggest that Adaptive SAMKNN can be reliably deployed in production environments
with minimal risk of false alarms, enhancing efficient and focused anomaly detection.
Future research could investigate its resilience under dynamic conditions to ensure a
sustained low FPR in varying operational contexts.

Adaptive SAMKNN demonstrates robust performance under various drift conditions,
effectively handling gradual, recurring, and incremental drifts, common in IoT data pat-
terns. This adaptability aligns well with the evolving nature of IoT environments. However,
the classifier experiences performance declines in sudden drift scenarios, highlighting
a need for enhanced mechanisms such as improved memory adjustment or rapid drift
detection to better respond to abrupt changes. While Adaptive SAMKNN is well suited for
stable and gradually changing IoT environments, further research is necessary to bolster
its robustness against sudden drifts, ensuring broader applicability across diverse IoT
security contexts.

Resource utilization comparisons indicate that Adaptive SAMKNN is more efficient
than traditional SAMKNN, making it well suited for IoT environments with limited compu-
tational and memory resources. Its lower CPU and memory usage across all datasets enable
effective real-time operation without overburdening system resources, which is critical for
IoT network deployments. Its reduced processing time supports its adaptability to high-
speed data streams, ensuring rapid anomaly detection and response. These efficiency gains
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align with the goals of IoT security, which prioritize minimizing resource consumption to
enable continuous monitoring and analysis. Adaptive SAMKNN’s demonstrated efficiency
suggests its practicality for real-time anomaly detection in IoT applications. Future investi-
gations could assess its scalability in even more constrained environments and explore its
integration into lightweight IoT frameworks for broader deployment.

The statistical analysis underscores the robustness and reliability of the proposed
classifier, as evidenced by its high accuracy and tight confidence intervals across diverse
IoT datasets. The low Brier scores reflect the model’s strong predictive calibration, which
is particularly critical for IoT applications that demand reliability. The statistically signif-
icant t-tests suggest that the classifier consistently outperforms the SAMKNN baseline,
highlighting its superiority in real-world scenarios. Furthermore, the performance on the
NF-CSE-2018 dataset, with its near-perfect accuracy, suggests that the classifier is highly ef-
fective in scenarios with minimal noise or well-structured data. These findings collectively
emphasize the potential of the proposed approach for accurate and reliable IoT network
traffic classification.

The ablation study emphasizes the role of long-term memory (LTM) in SAMKNN and
the proposed classifier, particularly regarding memory usage and processing efficiency.
While LTM enhances SAMKNN’s adaptability, it introduces significant memory over-
head, making it less feasible for resource-limited IoT environments. In contrast, Adaptive
SAMKNN without LTM offers a more memory-efficient solution without sacrificing accu-
racy, making it preferable for dynamic IoT networks. Additionally, Adaptive SAMKNN
shows a substantial reduction in processing time compared to the KNN baseline, reinforc-
ing its suitability for real-time applications that require swift decision making. These results
indicate that Adaptive SAMKNN without LTM strikes an optimal balance for IoT anomaly
detection, providing reliable performance while minimizing resource demands.

6.1. Limitations

Despite its promising performance, the proposed technique exhibits several limitations
that warrant attention. Firstly, the classifier is sensitive to sudden drifts in data distribu-
tions, leading to temporary declines in detection accuracy during abrupt changes. This
sensitivity underscores the necessity for more robust drift detection mechanisms to enhance
responsiveness to rapid shifts in network behavior. Secondly, the proposed classifier’s effec-
tiveness is somewhat dependent on the specific datasets used for training and evaluation.
The model may not generalize uniformly across all types of IoT and IIoT datasets, particu-
larly those with unique features, potentially limiting its applicability in diverse real-world
scenarios. Additionally, while the proposed algorithm is designed to be resource-efficient,
it still requires a baseline level of computational and memory resources that may be chal-
lenging for some extremely low-resource-constrained IoT devices. This constraint can limit
the deployment of the classifier on lower-end devices or in environments where resources
are highly limited. Addressing these limitations through targeted enhancements, such as
incorporating advanced drift detection algorithms and optimizing resource utilization, is
essential for improving the robustness and versatility of the proposed algorithm in practical
IoT deployments.

6.2. Real-World Deployment Scenarios and Challenges

Deploying the proposed algorithm in real-world IoT and IIoT environments presents
a multitude of promising opportunities alongside significant challenges. In practical
scenarios, the proposed algorithm can be integrated into diverse applications such as smart
grids, industrial automation systems, healthcare monitoring networks, and smart home
infrastructures. For instance, in smart grids, the model can continuously monitor network
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traffic to detect and mitigate cyber threats that could disrupt power distribution and critical
services. Similarly, in industrial automation, the model can protect automated machinery
and control systems from malicious intrusions that could lead to operational downtimes or
safety hazards.

However, the deployment of the proposed classifier is not without its challenges.
One of the primary obstacles is the integration with existing legacy systems, which may
have limited compatibility with modern machine learning frameworks. Additionally, the
resource-constrained nature of many IoT devices poses another challenge, as deploying
even lightweight models can strain limited computational and memory resources. Al-
though the proposed classifier is designed for efficiency, optimizing its deployment to
operate within the stringent constraints of edge devices necessitates further refinement.

Real-time processing requirements add another layer of complexity, as the model must
deliver prompt detection and response to threats without introducing latency that could
disrupt critical operations. Achieving this necessitates robust optimization techniques and
possibly distributed processing architectures to balance the load effectively.

Scalability is also a critical factor, as real-world IoT deployments often involve vast
and continuously growing networks of devices. The proposed algorithm must main-
tain its performance and accuracy across expanding datasets and increasingly complex
network topologies.

7. Conclusions
This study demonstrates that Adaptive SAMKNN is a highly effective and efficient

solution for anomaly detection in IoT environments. Through extensive evaluations,
Adaptive SAMKNN proves its robustness in handling various datasets, including NF-BoT-
IoT, NF-ToN-IoT, and NF-CSE-CIC-IDS 2018, achieving high accuracy, low memory usage,
and minimal CPU consumption. The model’s consistent performance across these datasets,
even with large data volumes, underscores its scalability, making it a suitable candidate for
real-time applications in resource-constrained IoT networks.

One of the key strengths of Adaptive SAMKNN is its ability to maintain a zero false
positive rate under normal conditions, a critical factor in ensuring the reliability of IoT
security frameworks. This capability reduces alert fatigue, enabling security teams to focus
on genuine threats without being overwhelmed by false alarms. The model’s low false
positive rate and high detection rate make it a dependable choice for distinguishing between
benign and malicious network activities, even in dynamic and evolving environments.

This study also explores the impact of different types of concept drift, revealing
that Adaptive SAMKNN effectively adapts to gradual, recurring, and incremental drifts.
However, it encounters challenges in sudden drift scenarios, where performance slightly
declines. This limitation suggests an opportunity for further improvements, such as
incorporating rapid drift detection mechanisms to enhance responsiveness in highly
volatile environments.

Ablation studies further reveal that Adaptive SAMKNN’s performance remains robust
even without long-term memory, significantly reducing memory usage while maintaining
accuracy and F1 scores. This makes the model highly efficient for real-time applications,
where minimizing resource consumption is essential. Additionally, the scalability assess-
ment confirms that Adaptive SAMKNN can handle increasing data volumes without
sacrificing performance, highlighting its potential for broader IoT deployments.

Future research directions include improving the model’s adaptability to sudden drift
and exploring its integration with other adaptive learning frameworks. To achieve this
and integrate seamlessly with lightweight IoT devices, we can incorporate advanced drift
detection algorithms like ADWIN and DDM into the Adaptive SAMKNN framework
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to swiftly identify abrupt data distribution changes. Additionally, we can further opti-
mize the model for resource-constrained environments through techniques such as model
pruning, quantization, and the use of lightweight data structures to reduce memory and
processing requirements.
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