
Academic Editor: Félix Hernández

del Olmo

Received: 15 November 2024

Revised: 17 December 2024

Accepted: 31 December 2024

Published: 2 January 2025

Citation: Moreno, A.C.; Hernandez-

Suarez, A.; Sanchez-Perez, G.; Toscano-

Medina, L.K.; Perez-Meana, H.;

Portillo-Portillo, J.; Olivares-Mercado,

J.; García Villalba, L.J. Analysis of

Autonomous Penetration Testing

Through Reinforcement Learning and

Recommender Systems. Sensors 2025,

25, 211. https://doi.org/10.3390/

s25010211

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Analysis of Autonomous Penetration Testing Through
Reinforcement Learning and Recommender Systems
Ariadna Claudia Moreno 1 , Aldo Hernandez-Suarez 1 , Gabriel Sanchez-Perez 1 , Linda Karina Toscano-Medina 1 ,
Hector Perez-Meana 1 , Jose Portillo-Portillo 1 , Jesus Olivares-Mercado 1 and Luis Javier García Villalba 2,*

1 Instituto Politecnico Nacional, ESIME Culhuacan, Mexico City 04440, Mexico;
amorenor2300@alumno.ipn.mx (A.C.M.); alhernandezsu@ipn.mx (A.H.-S.); gasanchezp@ipn.mx (G.S.-P.);
ltoscano@ipn.mx (L.K.T.-M.); hmperezm@ipn.mx (H.P.-M.); jportillop@ipn.mx (J.P.-P.);
jolivares@ipn.mx (J.O.-M.)

2 Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de
Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain

* Correspondence: javiergv@fdi.ucm.es

Abstract: Conducting penetration testing (pentesting) in cybersecurity is a crucial turning
point for identifying vulnerabilities within the framework of Information Technology (IT),
where real malicious offensive behavior is simulated to identify potential weaknesses and
strengthen preventive controls. Given the complexity of the tests, time constraints, and
the specialized level of expertise required for pentesting, analysis and exploitation tools
are commonly used. Although useful, these tools often introduce uncertainty in findings,
resulting in high rates of false positives. To enhance the effectiveness of these tests, Machine
Learning (ML) has been integrated, showing significant potential for identifying anomalies
across various security areas through detailed detection of underlying malicious patterns.
However, pentesting environments are unpredictable and intricate, requiring analysts to
make extensive efforts to understand, explore, and exploit them. This study considers these
challenges, proposing a recommendation system based on a context-rich, vocabulary-aware
transformer capable of processing questions related to the target environment and offering
responses based on necessary pentest batteries evaluated by a Reinforcement Learning
(RL) estimator. This RL component assesses optimal attack strategies based on previously
learned data and dynamically explores additional attack vectors. The system achieved an
F1 score and an Exact Match rate over 97.0%, demonstrating its accuracy and effectiveness
in selecting relevant pentesting strategies.

Keywords: penetration testing; reinforcement learning; recommender systems

1. Introduction
With the continuous advancement of technology, cybersecurity has become crucial

for protecting digital assets against threats, vulnerabilities, malicious artifacts, and other
sophisticated cyber risks that impact their environment [1]. In this context, underpinned by
the principles of Confidentiality, Integrity, and Availability (CIA), offensive cybersecurity is
proposed as a range of dynamic techniques to robustly assess whether the applied controls
and policies are effectively maintained within the targeted infrastructure [2].

In accordance with the National Institute of Standards and Technology (NIST)
Special Publication (SP) 800-115, Technical Guide to Information Security Testing and
Assessment [3], pentesting constitutes a fundamental component of offensive security.

Sensors 2025, 25, 211 https://doi.org/10.3390/s25010211

https://doi.org/10.3390/s25010211
https://doi.org/10.3390/s25010211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4705-9929
https://orcid.org/0000-0002-4867-2717
https://orcid.org/0000-0002-4735-205X
https://orcid.org/0000-0002-9555-4705
https://orcid.org/0000-0002-7786-2050
https://orcid.org/0000-0001-8863-7804
https://orcid.org/0000-0002-0337-5364
https://orcid.org/0000-0001-7573-6272
https://doi.org/10.3390/s25010211
https://www.mdpi.com/article/10.3390/s25010211?type=check_update&version=1

Sensors 2025, 25, 211 2 of 40

Through the execution of tests that simulate active attacks, mimicking the real behavior
of a malicious actor, vulnerabilities in various information assets can be assessed, either
manually or automatically. This process ultimately facilitates the identification of the most
effective defense-response strategies.

While various methodologies and techniques for pentesting exist, the SysAdmin,
Audit, Networking, and Security (SANS) Institute [4] has articulated a set of refined steps to
conduct a comprehensive audit. This process begins with target identification, also referred
to as the discovery phase, and proceeds through service reconnaissance, vulnerability
analysis, exploitation, post-exploitation activities, and the generation of findings reports.
Figure 1 illustrates a summary of these stages.

Figure 1. Phases of pentesting execution according to the best practices guide from SANS [4]. Note
that the stages of reconnaissance, vulnerability analysis, exploitation, and post-exploitation are
designated as attack phases, as these activities are actively engaged during the exercise. Additionally,
the cycle may repeat if lateral movement opportunities arise during the exploitation stage.

In this context, the backbone of the pentesting process lies in the careful design of
tests, as the environments in which they are conducted often operate under a black-box
premise. This means the analyst has only minimal knowledge of the environment and
must dynamically uncover the relevant assets according to a structured reconnaissance and
execution plan. This poses a constant challenge, as environments are typically dynamic and
unpredictable, requiring a high level of expertise, finely calibrated tools, and substantial
time windows, which frequently turns into a race between detection and mitigation due to
the critical nature of the assets involved [5].

As argued in [6], while the expertise of the pentester and the adaptability of tools to
agile methodologies enhance the design of test batteries based on key infrastructure compo-
nents of the target environment, no approach can definitively anticipate the complexity or
duration of the exercise. This unpredictability may, in turn, increase the likelihood of false
positives stemming from unexplored gaps, unsuccessful proofs of concept, or imprecisions
in testing.

Conversely, to address the previously mentioned challenges, there has been a growing
interest in applying ML techniques within the pentesting design and execution process.
This approach seeks a more automated, precise, and efficient perspective adaptable to
various domains, specifically in the planning and attack phases of testing, thereby enabling
experts to more comprehensively cover the targeted exploitation objectives [7].

Although various branches of ML have applied different algorithms to classify, cluster,
or predict aspects of the pentesting process, Reinforcement Learning (RL) has distinguished
itself by its ability to rapidly adapt to diverse reconnaissance surfaces and construct attack
vectors in a more realistic manner. This adaptability allows RL to broaden its reach toward
new horizons of exploration and exploitation in vulnerable scenarios, redefining pentesting
practices [8].

The literature has thoroughly examined the benefits and challenges of using RL
in cybersecurity, highlighting its ability to adapt to constantly evolving offensive and
defensive technologies [9,10]. However, relying exclusively on an RL agent in pentesting
is challenging due to the dynamic nature of environments and the exponential growth

Sensors 2025, 25, 211 3 of 40

in tests required to optimize reconnaissance and attack phases. This challenge presents a
prohibitive computational problem of order O(SAT), where S represents the target state
space, A denotes the set of test actions, and T is the time horizon for executing potential
attacks. The combination of these factors significantly increases the learning time and the
trajectory required to find an optimal solution in vulnerable environments [8,11].

As indicated in [12], this situation has led pentesters, despite the wide availability
of ML and RL tools, to continue relying on established databases such as the Common
Vulnerability and Exposures (CVE) and the National Vulnerability Database (NVD). These
resources allow them to identify vulnerable artifacts and focus on the proof-of-concept
(PoC) tests needed to validate findings.

In this context, according to [13], the continuous pentesting process should rely on a
balance between the estimation provided by the RL algorithm, the accuracy of intelligent
testing, and expert validation, ensuring that results align with the environment require-
ments. Defining a general space for target attributes within the environment a finite domain
for detecting vulnerabilities is essential. Calibrating the scope of the RL agent based on
the probable number of tests is also crucial to prevent excessive generalization during the
exploratory process. Additionally, consolidating results through pentester monitoring is
fundamental to ensuring the quality of the procedure.

Within this framework, the present study addresses the limitations of current RL
approaches in pentesting by proposing a resource-efficient architecture that maintains
effectiveness while aligning closely with the skills of pentesters. The proposed model
not only monitors all ecosystem components but also guides the analyst in precisely
identifying the necessary tests and executing them optimally within a Question–Answer
(QA) recommendation system (RS).

This approach leverages the synergy between RL and the text transformer BERT (Bidi-
rectional Encoder Representations from Transformers) [14]. RL emulates the pentesting
process within the desired domain and feeds a QA-based RS with tuples of question, con-
text, and answer, enabling the pentester to consult and optimize the design, identification,
and assessment of vulnerabilities. This integration allows the RL agent to learn from
the evaluation environment and generate contextually relevant, actionable recommenda-
tions designed to guide the effective implementation of offensive tests, thereby avoiding
system overload.

The structure of this manuscript is organized as follows: Section 2 examines related
works that have explored traditional RL approaches, Quality Learning (QL), Deep Learning
(DL) combined with RL (DRL), and hybrid models that manage one or more estimators or
algorithms depending on the type of environment and the intended scope of exploitation for
pentesting activities. Section 3 describes the methods and materials employed in developing
the proposed RL system for QA-based recommendations within the pentesting process,
hereafter referred to as BERT QA RL + RS, which is an acronym for Reinforcement Learning
plus BERT plus Recommender System. Subsequently, Section 4 evaluates and discusses
the results of RL+BERT+RS and compares them with other state-of-the-art studies. Finally,
Section 6 presents the conclusions and suggests possible directions for future research.

2. Related Work
In [15], one of the first works to employ a traditional RL approach, the Intelligent

Automated Penetration Testing (IAPT) approach is described. This approach utilizes a
solution model based on the Partially Observable Markov Decision Process (POMDP),
where an agent seeks the most optimal path to exploit vulnerabilities and earn rewards in a
controlled environment with various network failures.

Sensors 2025, 25, 211 4 of 40

Further in [16], the authors enhanced the solution of the IAPT agent by adding more
exploration/exploitation actions within the range of already identified gaps from the Com-
mon Vulnerability and Exploits (CVE), expanding their repertoire of policies and rewards.
The results demonstrated that incorporating solutions of the Generalized Value Iteration
Pruning (GIP) type in the simulated environment can uncover multiple exploitation paths
while minimizing the complexity of the policies associated with POMDP.

In references [9,17], the classic RL problem is reformulated with a focus on QL, where
an off-policy temporal difference is assumed, meaning the agent estimates actions and
values starting with an initial hypothesis about the environment to be exploited. In line
with the findings of [17], a Capture the Flag (CTF) scenario can be envisioned, where the
agent incremental learning can track seasonal and nonseasonal ports, server attacks, and
the exploitation of web vulnerabilities, typically requiring between 100 to 500 iterations to
achieve successful reward outcomes. Similarly, Ref. [9] concluded that work by integrating
a layer known as the Double-Deep-Q-Network (DDQN), wherein the agent is able to
develop more observational routes towards the attack objective, converging in fewer
reward–penalty episodes.

In another context, the authors of [18] applies the concept of QL to the post-exploitation
phase, where the agent learns under the premise of environments already compromised
in Microsoft Windows and Linux operating systems. The QL estimation results indicate
that the agent can converge towards processes for discovering plaintext credentials and
privilege escalation (PEsc) with minimal policies and actions.

From the perspective of DL layers, the studies presented in [10,19] suggest that incor-
porating classifiers for optimal exploitation environments is a timely addition to determine
whether the agent will be capable of injecting a payload into the vulnerable target. In [19],
it is described that the desired characteristics originate from the types of operating systems,
service versions, and exploitation modes, which—depending on the generalization of
the output layer—can guide the RL agent in executing the most ideal attack during the
transition of actions and policies, thereby increasing the desired reward. Similarly, Ref. [10]
posits that by promoting the use of payloads from common exploitation tools such as
Metasploit, SQLmap, and Weevely, the selection in the classification of test batteries can be
more efficient and cost-effective in discovering optimal conditions for agent attacks.

Within simulation environments where all phases of pentesting are completed, projects
such as Network Attack Simulator (NASim) [20] and PenGym [21] are noteworthy. Both
projects operate within a quasi-real configuration spectrum, incorporating network environ-
ments with hosts, network topology, compromise actions, defensive devices, and vulnerable
targets. NASim leverages a classic RL approach, where the agent bases its actions on a
kill chain driven by satisfactory exploitation probabilities, assuming the maximum reward
value for the agent. Conversely, PenGym enhances the effectiveness of the entire pentesting
process through modules called ’tiny,’ where the RL algorithm focuses on session-based
transition actions, achieving a faster exploratory reward value than its counterpart.

In [22], a novel architecture named Cascaded Reinforcement Learning Agents (CRLA)
was introduced. This architecture addresses the challenge of discrete action spaces in an
autonomous pentest simulator, where the number of actions exponentially increases with
complexity across various network exploitation scenarios. It was demonstrated that CRLA
identified optimal attack strategies in scenarios with large action spaces more rapidly and
robustly than conventional QL agents.

Also regarding the use of BERT models in the field of cybersecurity, in [23], they
proposed an approach, VE-Extractor, to extracting vulnerability events from textual de-
scriptions in vulnerability reports, including the extraction of the vulnerability event trigger

Sensors 2025, 25, 211 5 of 40

and the event arguments (such as consequence or operation), and they used a BERT QA
model for this purpose.

The studies [24,25] show that Large Language Models (LLMs) offer many advantages
over traditional classification methods. In [24], a BERT-based Vulnerability Detection
(BBVD) method was proposed to detect software vulnerabilities from the source code level
using the high-level programming language C/C++, obtaining superior results to average
models based on traditional classifications. The authors of [25] presented an automated
categorization of vulnerability data using DL. In this paper, they found that BERT designs
fitted with LSTM outperformed standard models in precision, F1 score, accuracy, and recall,
also demonstrating the advantage of using LLM models in the field of cybersecurity.

Ultimately, in reference [26], a dataset of 1813 CVEs annotated with all corresponding
MITRE ATT&CK techniques was presented, and models were proposed to automati-
cally link a CVE to one or more techniques based on the textual description of the CVE
metadata. Therein, they established a robust baseline that considers classical machine
learning models and state-of-the-art pre-trained BERT-based linguistic models while coun-
tering the highly imbalanced training set with data augmentation strategies based on the
TextAttack framework.

3. Methods and Materials
In Figure 2, the workflow of BERT QA RL + RS is illustrated.

Figure 2. General diagram of the proposed architecture showing the interaction between the RL
agent and the recommender system to obtain as output a suggestion of attacks to be performed on
the available machine.

To describe the proposal represented in Figure 2, consider a traditional scenario where
a pentester follows the guidelines established by NIST SP 800-115, which define a structured
methodology for conducting black-box penetration tests. Initially, as in any work with
estimators during the BERT-based QA training phase, a pre-trained model is unfrozen and
fine-tuned with a dataset related to the necessary QA context to recalibrate the weights
and customize it for the specific task. In this case, the training involves various historical
CWE cases across multiple domains, including recognition, vulnerability analysis, and
exploitation. These cases are diverse and objective-driven, organized into tuples consisting

Sensors 2025, 25, 211 6 of 40

of questions (Q) specifying objectives to test, contexts (C) detailing how the solution to Q is
formulated, and A ∈ C, which is the contextualized answer that directly addresses Q.

Once the BERT QA model is generated, the pentester might begin with limited in-
formation about the target, such as IP addresses, URLs, domain names, or topological
layouts. Based on this information, the pentester would determine and experiment with
various tests to identify service infrastructure and preliminary vulnerabilities, assess their
exploitability, and propose mitigation measures. By querying the trained BERT QA model,
an inferred RS response to the question may be obtained. However, if the response is
unsatisfactory or not present, the following scenario involving the Reinforcement Learning
(RL) phase can be considered:

The workflow begins when the pentester defines the evaluation objectives as a query
Q, which structures the input for the BERT QA system while aligning with the recommen-
dation of NIST SP 800-115 to clearly establish the scope and objectives. For example,

Q = What tests do you recommend f or a Class C IP address, with Ubuntu 20.0
operating system, running an Apache PHP 5.2.4 server?

According to the guidelines of NIST SP 800-115, this query initiates the recognition
phase by focusing on the target’s characteristics. If Q matches a context C already present
in the knowledge base of BERT QA RL + RS, an inferred response A ∈ C is generated.
For example,

C = According to CWE-116, CWE-79, and CWE-94, with improper neutralization
o f resource inputs enabling potential remote code execution, it is possible to use a proo f

o f concept f or XSS and then inject arbitrary code by modi f ying f unctions.lib.php.

The response A includes actionable insights into vulnerabilities and aligns with the emphasis
of NIST SP 800-115 on identifying and documenting specific risks.

In cases where no response can be inferred, the query Q is transferred to the RL
agent (A). Based on the decomposition of Q, A identifies which pentesting attributes
are most suitable for reconnaissance, vulnerability analysis, and exploitation within a
controlled environment D. A training process is initiated, where Q represents the matrix of
states s and actions a that Amust observe to determine successful interaction episodes for
evaluating the desired objective. Over successive iterations, the RL agent A maximizes the
effectiveness of the reward sequence across the pentesting steps. When no further paths
remain to be explored, the output of A provides a new tuple (Q, C, A) to recalibrate the
weights of the BERT QA model, incorporating new information for future recommendations.
This iterative process ensures a dynamic and adaptive penetration testing approach.

When BERT QA RL + RS is integrated with new (Q, C, A) tuples, the pentester benefits
from the combination of NIST SP 800-115 and the BERT QA RL system, resulting in potential
new RS recommendations, as demonstrated in the following phases:

• Planning and Preparation: NIST SP 800-115 emphasizes defining clear objectives and
scoping the penetration test. In this workflow, Q establishes these objectives, while the
BERT QA RL + RS system aligns them with pre-trained contexts C, offering immediate
actionable insights or delegating tasks to A when novel scenarios arise.

• Recognition: According to NIST SP 800-115, identifying active hosts, open ports, and
running services is critical. The RL agent A operationalizes this by automating
reconnaissance tasks using tools such as Nmap, correlating findings with known
configurations in the BERT QA RL + RS system. This accelerates the discovery phase
while ensuring consistency.

Sensors 2025, 25, 211 7 of 40

• Vulnerability Identification: NIST SP 800-115 recommends correlating reconnaissance
data with known vulnerabilities. The RL agent A cross-references identified software
versions and services against CWE and CVE databases, enriched by the contextual
understanding provided by the BERT QA RL + RS system, to identify vulnerabilities
with actionable clarity.

• Exploitation: NIST SP 800-115 advises conducting controlled exploitation to validate
findings. Leveraging outputs from BERT QA RL + RS, the RL agent A selects optimal
paths for proof-of-concept attacks using tools such as Metasploit, testing vulnerabilities
like CWE-94 by attempting CI in functions.lib.php.

• Reporting and Recommendations: NIST SP 800-115 underscores the importance of docu-
menting findings and proposing mitigations. Here, the tuple (Q, C, A) consolidates the
test results, integrating newly discovered insights into the BERT QA RL + RS knowl-
edge base. For example, the system may recommend upgrading PHP to version 7.4 to
mitigate CWE-94 or implementing input validation to address CWE-79.

By combining the structured methodology of NIST SP 800-115 with the adaptive
capabilities of the BERT QA RL + RS system, this workflow automates and optimizes key
phases of penetration testing. The state–action matrix Q ensures iterative learning from A,
while continuous updates to the BERT QA RL + RS system incorporate novel scenarios,
enabling effective handling of diverse and previously unseen configurations.

In Sections 3.1–3.3, the steps of the BERT QA RL + RS strategy are described in depth.

3.1. BERT-Based QA Training

BERT [27] represents a series of pre-trained transformer-based models designed for
various natural language understanding tasks. By utilizing a masked language model
(MLM) schema, BERT enables predictions across multiple outputs, including classification,
next-word and next-sentence prediction, term clustering, and inferring questions related to
specific domain contexts.

In the architecture of BERT for QA, the core components consist of a query Q, which is
framed as an argumentative formulation within a knowledge domain. For example, in the
case of a RS tailored for penetration testing, Q could be defined as a set of features linked
to target attributes, aiming to infer the optimal actionable pathway for reconnaissance,
vulnerability assessment, and exploitation.

Associated with Q is a context, which provides detailed information on the presuppo-
sition intended for inference, serving as the referential framework toward a factual response
A. This response A outlines how to conduct asset reconnaissance, identifies recognized
assets that exhibit vulnerabilities, and specifies the steps to exploit these vulnerabilities.
Depending on the target’s unique scenario, A may also include steps for post-exploitation.

The response A ∈ C is a specific statement delineated within the context C by its
starting and ending indices, AS and AE, as shown below:

C = According to CWE-116, CWE-79, and CWE-94, with improper
neutralization o f resource inputs, enabling potential remote code execution,

AS︷︸︸︷
i t is possible to use a proo f o f concept f or XSS and

then inject arbitrary code by modi f ying f unctions.lib.ph p︸︷︷︸
AE

.

where AS = p indicates the starting index at position 115, and AE = p indicates the ending
index at position 210 within the characters of C.

Sensors 2025, 25, 211 8 of 40

Figure 3 schematizes the mechanism by which BERT models, utilized in QA tasks,
train the sample set for RS within the context of penetration testing, thereby enabling the
generation of predictions related to A.

Figure 3. General architecture of BERT for QA. Note how Q and C are included as inputs, separated
by a special token, [SEP], which indicates the boundary between the two sequences. Additionally,
the [CLS] token signifies that the sequence will be used in a masked classification model, facilitating
the emulation of potential answer selection.

The inputs for BERT in QA RS tasks are tuples Q, C, A, with A ∈ C, and the respective
start and end indices AS and AE. At this stage, the sequences Q and C must be tokenized,
including start and separation tokens between Q and C, such as [CLS] and [SEP]. The
[CLS] token is placed at the beginning of the sequence to indicate a classification task,
while the [SEP] token separates different sentences or segments in the text, as shown in
Equation (1):

I = [CLS] + tokenQ1 + · · ·+ tokenQN + [SEP] + tokenC1 + · · ·+ tokenCM (1)

In this equation, I represents the input to the BERT QA RL + RS model. The tokens
tokenQ{1,...,N} and tokenC{1,...,M} denote the N-th and M-th tokens of Q and C, respectively.

Each token tokenQ{1,...,N} and tokenC{1,...,M} is transformed into a high-dimensional em-
bedding vector, capturing the context, order, and relationships among tokens in I. In BERT,
two types of embeddings are calculated: the token embeddings E(tokenQ{1,...,N} , tokenC{1,...,M}),
which capture the vocabulary-based meaning of tokens for Q and C; segment embeddings,
distinguishing between tokens of Q and C and aiding in the interpretation of each sequence,
as shown in Equation (2).

S(tokenQ1 , . . . , tokenQN , . . . , tokenC1 , . . . , tokenCM) ∈ Rd (2)

The segment embedding vector S lies within the sequence dimension d, corresponding
to the maximum length of I.

Positional embeddings analyze the structure and order of each tokenQ{1,...,N} and
tokenC{1,...,M} , enabling identification of positional context within the sequence and the

Sensors 2025, 25, 211 9 of 40

relationships between Q and C to locate the potential answer A embedded in C, as defined
in Equation (3).

P(tokenQ1 , . . . , tokenQN , . . . , tokenC1 , . . . , tokenCM) ∈ Rd (3)

The positional embedding vector P also lies within the sequence dimension d, corre-
sponding to the maximum length of I.

The concatenated representation of tokens, defined by Equation 4, combines the
embeddings as follows:

H{tokenQ1
,...,tokenQN , ...,tokenC1

,...,tokenCM }
= (E + S + P) ∈ R(n+2)×d (4)

This combined embedding, H{tokenQ1
,...,tokenQN , ...,tokenC1

,...,tokenCM }
, represents the con-

catenation of tokens, with (n+ 2) ∈ (N + M) denoting the total number of tokens generated
by E, S, and P, including the special tokens [CLS] and [SEP].

The embeddings H then undergo k layers of transformation, each consisting of several
interconnected elements, including Multi-Head Attention, stabilization via Normalization,
a nonlinear Feed-Forward Network (FNN), and an output activation to generate the proba-
bilistic predictions for the potential output indices of A ∈ C, referred to as the start logits
(λS) and end logits (λE).

The Multi-Head Attention mechanism allows for simultaneous attention to different
parts of the discourse between H of Q and C, facilitating the learning of relationships
between words, both nearby and distant, within a single context. This enhances language
comprehension by utilizing the pre-existing parameters W in the BERT model. For each
attention head, three matrices are computed: The query matrix q = H ·Wq, which trans-
forms H into a query space that establishes relationships and similarities among all tokens
embedded in the sequence, allowing focused attention on each token. The key matrix
K = H ·WK, representing the contextual characteristics of the tokens in H in relation to the
query matrix. The value matrix V = H ·WV , which contains the information transferred
between tokens based on the keys, capturing relevance, context, and the relationships
learned with other tokens.

In this case, the attention in each head is calculated with (q, K, V) ∈ Rd×dk , where dk is
the dimension of the q and K vectors, as shown in Equation (5):

Attention(q, K, V) = softmax
(

qKT
√

dk

)
V (5)

Here,
√

dk acts as a normalization factor, preventing the attention scores from becoming
excessively large and thus stabilizing the learning process.

When using all attention heads, the complete calculation is defined as shown in
Equation (6):

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (6)

where headh denotes the output of the h-th attention head, and WO ∈ R(h·dk)×d is the
parameter matrix used to project the concatenated output into a final dimension of d.

After the MultiHead attention process, the sequential output xMultiHead passes through
a feed-forward neural network (FNN) that applies nonlinear transformations to its repre-
sentations. This process captures the contextual importance and unique characteristics of
each element in the sequence, creating a latent language representation that integrates the
information from Q, C, and the associations of A, as shown in Equation (7).

xFFN = FNN(max(0, xMultiHead ·W1 + θ1) ·W2 + θ2) (7)

Sensors 2025, 25, 211 10 of 40

In this formulation, xFFN is the FNN output; W1 and W2 represent BERT parameters to
be adjusted for the latent language representation, and θ1 and θ2 serve as bias terms that
help maintain the contextual relationships within the vocabulary range of the sequences
in xMultiHead.

Consequently, normalization stabilizes learning and enhances both generalization and
convergence by keeping the internal values resulting from the MultiHead and FNN layers
within an appropriate range. This prevents issues of instability or gradient vanishing during
training, where Norm(H + sublayer(X)) is applied. Here, H represents the embedding
input, and X can refer to the output xMultiHead or xFFN.

The results of the final operation generate an output layer where logits are calculated,
representing the unnormalized scores used to estimate the probabilities for the different
indices corresponding to the correct answer A. Let Norm be the final step following the
FFN, and let the output T = {tS|E1

, . . . , tS|En
} represent a series of token distributions over

start and end positions in T, with weights W calibrated to produce an output based on
the probability of all possible start and end indices for A, referred to as the start logits
λSn = tSn ·W and end logits λEn = tEn ·W.

To transform the logits into numerical indices, a softmax function must be applied.
The argmax denotes the highest probability value corresponding to the predictions of A,
as given by ÂSn = argmax(softmax(λSn)) and ÂEn = argmax(softmax(λEn)), where ÂS is
the predicted start index, and ÂE is the predicted end index.

It is challenging to address all possible Q, C, A values that currently exist, including
legacy, temporary, current, or zero-day vulnerabilities. However, the NIST vulnerabil-
ity repository [28] provides a substantial list of approximately 93,000 records of security
breaches reported by various vendors since 2013. These breaches are classified by impact
level—informative, low, medium, or high—based on temporal, environmental, network,
and exploit complexity factors. Following this line of reasoning, the samples from [28]
include a unique submission identifier, year, characteristics, CVE (if applicable), vendor,
vulnerability type, CWE, affected versions, vulnerability description, and proof of concept
(if applicable).

Of the total 93,000, more than 171 distinct CWE types were captured, spread
across 43,080 well-identified vulnerabilities with proofs of concept. These encompass
40,554 vendors, languages, services, and products, primarily operating systems such as
Ubuntu-Linux, Fedora-Linux, Android-Linux, Windows 7, 8, 10, and Windows Server 2008,
as well as Java Struts, PHP, Apache2, Nginx, C/C++, Python Flask, and OpenSuse, to
generate complete tuples Q, CA. Of the remaining 41,679, only 1 or 2 of VR, VI , or VE were
available, and 8421 were candidates for submission to the RL estimator.

The questions A will be formulated in a closed and argumentative form, containing
characteristics such as the environment, possible versions, ports, and information related to
the target’s surrounding space to be evaluated. On the other hand, the contextual definition
of C will be associated with the vendor, one or more CVEs, the vulnerability, affected
versions, one or more CWEs, vulnerability description, and proof of concept. Conversely,
A ∈ C will only contain proof of concept and the indices AS, AE to denote its boundary
within C. If none exists, then A will be completed with a note indicating it will be sent to
the RL agent for evaluation.

3.2. Reinforcement Learning

To formulate the RL problem in an ideal pentesting scenario, consider an agent A
interacting with an environment D consisting of a set of technologies with vulnerable
services V . For A to conduct pentesting tests over the scope of V , a state space St is
required to represent the possible configurations of the environment based on V , along

Sensors 2025, 25, 211 11 of 40

with an action space Sa that includes recognition (VR), vulnerability identification (VI), and
exploitation (VE) tests. Consequently, at each step, A transitions within D by selecting an
action a ∈ Sa given a state s ∈ St, with the goal of maximizing a reward r : St × Sa → R
through effective recognition, identification, or exploitation of V .

However, the previous formulation from a classical RL perspective can present chal-
lenges in highly dynamic environments, such as penetration testing scenarios, where
incremental changes in technologies, services, and potential vulnerabilities—among other
factors—are common. In such contexts, freedom of interaction with limited prior knowl-
edge of the environment is essential. For this reason, Q-Learning [29] was chosen as the
learning architecture, a type of RL that provides flexibility to handle dynamism and offers
high convergence capabilities.

According to [13,29], Q-learning, also known as quality learning, emerges as an
alternative for infinite horizon environments. This method is ideal for an agent A to
navigate environments with limited knowledge, adapting its decisions as it observes
environmental conditions. In this context, A learns from its actions Sa to maximize the set
of rewards R ∈ R1×n, without being subject to specific adjustment policies ϕϵ.

Within penetration testing, this approach is formulated using a two-dimensional state–
action matrix Q(s, a) for each pair {s, a}, where s denotes the state and a the associated
action. The value of Q estimates the optimal reward r ∈ R obtained by performing an
action a linked to VR, VI , and VE conditioned on s | D. The goal is for A, with preliminary
knowledge of the testing scenario in a given environment D, to accumulate the highest
Q values, representing effective interactions to approximate V . Equation (8) shows the
calculation of these Q values.

Q(s, a) = (1− α) · Q(s, a) + α · [r + γ ·max
a′
Q(s′, a′)] (8)

Therein, we have the following:

1. Q(s, a) represents the Q-value of the current state–action pair. If A is in an initial state
s | D with preliminary knowledge of the environment, s remains unknown, and A
would be in the recognition stage, performing the action a of port or service scanning.

2. α is the learning rate, which regulates the influence of new information on updates.
A high α implies that this information significantly impacts the value adjustments
during the interaction of a within state s, and determining the amount of data a
requires to recognize technologies associated with a specific port or service.

3. r is the reward obtained by performing action a in state s. For instance, A could
receive a high reward for successfully identifying the versions of technologies linked
to a particular port or service.

4. γ is the discount factor for future rewards. If A fails to recognize the port in s | D,
γ governs the importance of future versus immediate rewards, prompting A to
adopt more aggressive strategies to gather information about the port and assess its
potential vulnerabilities.

5. s′ is the resulting state after taking action a. Once the services and technologies
associated with a port are identified, A advances towards V in a new state s′, where
the action a′ will focus on analyzing potential vulnerabilities.

6. maxa′ Q(s′, a′) represents the maximum Q-value across all possible actions in the
subsequent state s′. This value corresponds to the highest expected reward that A
can achieve from s′ by selecting the optimal action a′. In this sequence of actions, it
would indicate that A has accumulated sufficient information to progress from port
identification to service association and, ultimately, to vulnerability exploitation.

Sensors 2025, 25, 211 12 of 40

For the construction of the environment D, the renowned OpenAI Gym library [30],
developed in version 3.x of the Python programming language, was employed. This
library provides essential tools for establishing a Q-learning type reinforcement learning
environment. Consequently, A was configured to train in the action space Sa within an
infrastructure consisting of two virtual machines (VMs), each with its own state space St

and different configurations for V .
Following the recommendations of the Cybersecurity and Infrastructure Security

Agency (CISA) [31], various maturity reports were considered to determine the most
suitable and reproducible scenarios in D. This approach allowed the machines to be
populated with various security breaches based on the most persistent vulnerabilities that,
according to the CISA Advisory AA23-215, continue to impact production systems.

Although the environments D in this RL scenario are intentionally vulnerable, their
configuration reflects common and critical real-world security problems, mimicking possi-
ble attack schemes. However, in most RL problems, observations may be unpredictable, as
in production systems, since the horizon over {s, a} can increase over time.

To replicate back-end production conditions, the reported scenarios are structured to
showcase an incremental progression, starting with network services, transitioning to web
vulnerabilities, and culminating in exploitation through misconfigurations. This approach
ensures the scenarios are both comprehensive and interconnected, demonstrating realistic
attack pathways:

• Network Services: The initial setup includes vulnerabilities in services such as FTP, SSH,
and Telnet. For example, a misconfigured FTP service exposes sensitive directories,
enabling unauthorized access to confidential files. This stage establishes a foundational
exploitation route in network services.

• Web Vulnerabilities: Building upon the network exploitation, the progression incor-
porates web-based weaknesses such as XSS and SQL-injection (SQLi). For instance,
leveraging credentials from the compromised FTP server, an attacker could exploit
an insecure web application to inject malicious SQL queries, gaining unauthorized
database access.

• Misconfiguration Scenarios: The final stage addresses critical configuration failures.
Expanding on the previous exploit, a poorly configured database instance with no
password protection allows for further data extraction. This demonstrates the com-
pounding effect of misconfigurations as a vulnerability multiplier.

According to what has been expressed previously, approximately 1520 vulnerable con-
figurations were assembled for the virtual machines (VMs) in the environments D. While it
is infeasible to cover all existing vulnerabilities due to their dynamic and evolving nature,
these configurations focus on the most common and impactful vulnerabilities observed in
real-world scenarios. This ensures a practical and representative framework for evaluating
penetration testing architectures, emphasizing network services, web vulnerabilities, and
system misconfigurations to simulate realistic attack pathways.

The detailed configurations of the VMs supporting these scenarios for the environ-
ments D are as follows:

• First Machine: This machine contains a series of configurations St based on the Linux
20.04 operating system, built upon the Metasploitable 2 [32] framework, with a set
of intentionally vulnerable underlying services that facilitate practice in command
injection (CI); misconfigurations; brute-force attacks (BFAs); exposed directories (EDs);
outdated components (OCs); and failures in cryptographic flaws (CFs), authentication
bypass (AB), and integrity, enabling various penetration testing exercises. The services
include vulnerable versions of File Transfer Protocol (FTP), Secure Shell (SSH), Telnet,

Sensors 2025, 25, 211 13 of 40

Tomcat, Network File System (NFS), UnrealIRCd, and Apache within the scope of
network services; database management systems with security flaws in MySQL and
PostgreSQL; a minimal version of Damn Vulnerable Web Application (DVWA) [33],
which presents vulnerabilities such as XSS, directory traversal (DT), insecure dese-
rialization (ID), arbitrary CI (ACI), and PEsc; file-sharing services through Samba;
and RPC services—specifically Distcc and RExec—both configured in ways that allow
vulnerability exploitation. In total, this machine offers more than 100 exploitation
paths, 50 CVEs with proof-of-concept exploits, and over 40 reported weaknesses in
the CWE (Common Weakness Enumeration) [34].

• Second Machine: Similarly configured with Ubuntu 20.04, this machine hosts a series
of St, including Metasploitable 3, an updated version of its predecessor featuring
vulnerabilities in Windows 8 and 10 operating systems specifically targeting services
such as Tomcat, Python’s Flask, and Jenkins. Additionally, it offers several exploitation
paths for the new version of Microsoft RDP. On the other hand, it enables handling
PoCs for Fedora with vulnerable applications such as PHP, Apache Struts for Java,
FTP, and Webmin. In total, it allows for the analysis of patterns for RCE, XSS, DT,
information leakage, insecure configuration (IC), ID, API abuse (AA), CF, AB, and
authorization flaws (AFs). Overall, there are 80 paths for reconnaissance, vulnerability
analysis, and exploitation, with 40 identified CVEs and over 50 CWEs.

When D is in its initial state and the series of transitions between the different con-
figurations of s | D with various presentations of V begins, A is preconfigured with three
sensors aligned to the pairs {s, a} at any given moment. For the recognition phase, Net-
work Mapper (Nmap) [35] was employed, a well-known analyzer of technologies, services,
and protocols associated with network ports using both passive and aggressive scanning
techniques. In the vulnerability analysis states, an extension called Nmap Vulners [36] was
used, which compares the data collected in the recognition phase with previously reported
V patterns in the CVE database. When a is in the exploitation block, it directs operations
toward various Metasploit [37] modules, a suite that integrates confirmed V payloads, to
establish the target, attack path, and exploitation method.

To ensure gradual and continuous learning, an exploration-exploitation strategy was
implemented as part of the Q-Learning algorithm, which operates iteratively, progressively
refining the estimates of the Q(s, a) values. Over multiple episodes of interaction with
D, A adjusts its policies ϕϵ, when necessary, to maximize the cumulative rewards r of the
state–action process (s, a) [38], as detailed in Algorithm 1.

Each successful a yields a specific reward, ranging from {1, 3}, depending on the
complexity of the attack, with a maximum cumulative reward of 3: 1 for VR stage, 2 for
VI , and 3 for VE. In the event of failed attempts, γ adjusts to enable A to return to the
exploration–exploitation process at the current state s but with improved control over the
search path through a more flexible ϕϵ while recalculating ϵ to optimize the desired path
until it converges at Q(s′, a′).

The RL agent does not rely on any preexisting dataset for training. Instead, it learns
through direct interaction with a simulated environment D, which includes the two inten-
tionally vulnerable virtual machines (VMs) described above. The agent uses trial-and-error
exploration to improve its policy, receiving rewards based on the success of its actions.
This design ensures that the training process adapts to dynamic scenarios rather than static
data, mitigating risks of overfitting. Furthermore, the VM configurations were periodically
altered to introduce variability, enhancing the generalization capabilities of the RL agent.

Sensors 2025, 25, 211 14 of 40

Algorithm 1 Q-Learning for VR, VI , and VE tests.

1: Initialization:
2: Initialize the Q-table Q(s, a) with zeros for all state-action pairs (s, a)
3: Set the learning rate α, discount factor γ, and the parameter ϵ for the policy ϕϵ

4: for each episode do
5: Initialize the state s with the initial configuration of D. In the initial state s, A

performs a reconnaissance process of all available virtual machines
6: while the state s is not terminal do
7: Select the action a based on the policy ϕϵ

8: Execute action a, observe reward r and the new state s′

9: if a pertains to VR then
10: Perform reconnaissance using Nmap
11: else if a pertains to Vulnerability VI then
12: Conduct vulnerability identification using Nmap Vulners
13: else if a pertains to VE then
14: Conduct exploitation using Metasploit
15: end if
16: Select a′ as the action that maximizes Q(s′, a′)
17: Update Q(s, a) using the Bellman equation:

Q(s, a)← Q(s, a) + α
[
r + γQ(s′, a′)−Q(s, a)

]
18: Update the state s← s′

19: end while
20: end for

The iteration episodes for A conclude under two conditions: the first is the successful
completion of ∀{VR,VI ,VE}, and the second is truncation, which occurs if the agent cannot
complete any of the specified actions toward Q(s′, a′).

This strategy defines a parameter ϵ to guideA in selecting effective a for each s. At each
stage, A evaluates the probability of exploring a new action or leveraging a known one. If
this probability exceeds ϵ, A selects the most effective a|a′ learned so far. If lower, A selects
a random a ∈ Sa, ensuring broad exploration of the action space. As training advances,
exploration gradually decreases, enabling A to converge toward optimal Q(s′, a′). A decay
rate ϵdecay is applied to ϵ, steadily reducing the probability of random selection until it
reaches zero, at which point A will consistently execute only the most effective actions.

After executing A and completing the Q(s, a) table, the pairs (s, a) with the highest
rewards r ∈ R over multiple episodes are compiled into a JSON interaction dataset. The
output will consist of four keys: target to evaluate, contextual characteristics of the target,
parameters used for VR, identified vulnerabilities in VI , and steps for successful exploita-
tion of VE. Some rows will contain complete data for all three stages—reconnaissance,
vulnerability identification, and exploitation—while others may contain only the first two
stages or just the initial stage. In cases where A did not reach its goal, these columns will
be marked as failed attempts, which will serve the RS in determining that, according to a
given Q, there is no A capable of responding to the query.

Once A completes its exploration/exploitation in D, all JSON objects are consolidated
into a single dataset for subsequent ingestion by the BERT QA RL + RS. Figure 4 provides
an example of a JSON object generated as a result of the RL process.

Sensors 2025, 25, 211 15 of 40

Figure 4. The JSON format begins with an objective key to define the target, followed by essential
characteristics in the features key, required to initialize the RL estimator. When A completes its
training, it outputs reconnaissance results VR in the V_R key, identifies of one or more vulnerabilities
VI in the V_I key, and outputs from the exploitation episode VE in the V_E key, which serve as input
for the BERT QA RL + RS.

3.3. BERT QA RL + RS

In order to integrate BERT QA RL + RS into the RL estimator, and under the assumption
that a question Q does not yield a satisfactory answer Â, it is essential to define a transition
function, as outlined in [39]. Initially, it is assumed that the RL process starts with an empty
table Q(s, a) in its first iteration.

Let δ be a confidence threshold based on a specific performance metric for BERT
QA RL + RS. If the predicted answer Â ∈ {ÂS, ÂE} has a probability P(Â|Q, C) < δ

of adequately addressing the question Q in the context C, then the RL estimator, using
the mapping M : (Q, C) → D, will seek the optimal environment D to initialize the
state–action pairs in the table Q(s, a){Q,C}.

In this scenario, A starts in an initial state s0 and performs an action a0. After the
first iteration,M re-evaluates (Q, C) to confirm or adjust D, allowing the RL estimator to
proceed to the next iteration (si+1, ai+1) until it converges at (s′, a′). If convergence is not
achieved—that is, if there are no values within the spaces St and SA that yield a new A—a
context C and an answer A will be returned, indicating that there are no routes for question
Q in any of the spaces VR, VI , and VE.

Conversely, if a transition to VR, VI , or VE is feasible, then the output keys from the
RL estimator will be concatenated within context C, with VR assigned to the V_R key, VI to
V_I, and VE to V_E, forming a new tuple (Q, C, A), which will be added to the BERT QA
RL + RS model.

The Bellman equation for updating the value of Q(s, a) for a new question Q with an
uninferred answer Â is expressed in Equation (9):

Q(s{1,...,u}, a{1,...,u}){Q{1,...,u} ,C{1,...,u}} = (1− α) · Q(s, a) + α ·
[

r + γ ·max
a′
Q(s′, a′)

]
, (9)

where Q(s{1,...,u}, a{1,...,u}){Q{1,...,u} ,C{1,...,u}} represents the updated value for contexts Q and

C in the u-th iteration of an uninferred Â, α is the learning rate, r is the reward obtained,
and γ is the discount factor that values future rewards. This iterative process continues

Sensors 2025, 25, 211 16 of 40

until each new answer Â reaches an acceptable confidence level or until the RL estimator
A completes its training in environment D, as defined byM.

Since the weights of the BERT model are frozen after the last training process, it is
necessary to incorporate the new inputs Qu, Cu, and Au. As discussed in Section 1, new
inputs Iu are generated to construct a u-th version of the tokens:

I = [CLS] + tokenQNu
+ · · ·+ [SEP] + · · ·+ tokenCMu

This yields a new representation with segment embeddings Su, positional embeddings
Pu, and a final concatenated representation H now using the latest BERT parameters W, as
shown in Equation (10).

H = BERT(Qu, Cu, W) (10)

In this equation, BERT represents the latest trained model, Qu and Cu refer to the new
question and context for the u-th input, and W denotes the updated model weights.

As a next step, the weights W can be unfrozen for the u-th inputs and recalibrated
through a fine-tuning layer that utilizes the new representations H and the answers Au,
with their start and end indices, {ASu , AEu}, as specified in Equation (11).

Âu = σ(WT H + W0) (11)

Here, WT represents the weights to be recalibrated based on the new prediction Au, σ

is the softmax function, and W0 serves as the bias term. To complete the calibration of the
weights W with respect to the new answers Au, Equation (11) is decomposed into the new
logits distributions for the start (λSu) and end (λEu) indices, generating a cross-entropy
loss function L, as expressed in Equation (12).

L(WASu
, WAEu

) = − log(ÂSu)− log(ÂEu) (12)

In this context, WASu
and WAEu

denote the decomposed weights for the start and end
indices. The normalized predictions of these indices are calculated as

ÂSu = argmax(softmax(λSu)) and ÂEu = argmax(softmax(λEu))

The weights {WASu
, WAEu

∈W} and the bias W0 will be iteratively readjusted as new
u tuples are ingested from the RL estimator, optimizing their recalibration as outlined in
Equations (13) and (14).

W := W − η∇WL(W) (13)

W0 := W0 − η∇W0L(W0) (14)

where η represents the learning rate, and ∇ denotes the gradient change applied to update
the BERT weights as new values of Qu, Cu, and Au are added.

Ultimately, while the reliance on static datasets such as CVE and CWE serves as a
foundation, the system’s iterative interaction between the RL estimator and the dynamically
updated contextual knowledge ensures adaptability. This process leverages new inputs Qu,
Cu, and Au, as described, to enhance the model’s ability to address novel attack vectors.
By refining the weights W and recalibrating the fine-tuning layer for each new iteration,
the system mitigates limitations associated with static data reliance, ensuring that it can
adapt to evolving security landscapes. Such adaptability aligns with best practices for
reinforcement learning systems, as outlined in [40], enabling continuous learning and
improved response generation.

Sensors 2025, 25, 211 17 of 40

4. Results
In this study, the results are systematically divided into three subsections to emphasize

the distinct contributions of the proposed BERT QA RL + RS framework. This structure
facilitates a detailed analysis of each component, highlighting their respective contributions
and performance. The subsections and principal findings are outlined as follows:

• Section 4.1 Computational Efficiency of the Reinforcement Learning Agent: This subsection
evaluated the RL agent’s learning behavior, convergence, and computational efficiency
across 16 hyperparameter configurations. Configuration 12 emerged as the most
optimal, achieving the highest cumulative rewards and the shortest episode lengths.
These findings highlight the agent’s ability to effectively balance exploration and
exploitation within the state-action space, as well as its robustness under varying
initial conditions

• Section 4.2 Performance Analysis of BERT QA Models: The study compared the compu-
tational efficiency and QA accuracy of three BERT-based models: BERT, RoBERTa,
and DistilBERT. While DistilBERT demonstrated superior computational efficiency,
requiring less training time and resources, RoBERTa achieved the highest QA accuracy
with an F1-Score of 99.99%. These results emphasize the trade-offs between computa-
tional resource demands and QA precision, enabling informed decisions about model
selection based on specific application needs.

• Section 4.3 Combined RL and BERT QA RL + RS Framework: The integration of the
RL agent with BERT QA RL + RS demonstrated its practical utility in prioritiz-
ing critical vulnerabilities within an automated penetration testing environment.
The system effectively prioritized the most important vulnerabilities, with 14 out
of 23 recommendations aligning with the top vulnerabilities in the CVE dataset. Ad-
ditionally, the total training time for the integrated framework was approximately
1129.4 min, and the average task execution time was 23 min, which included RL
decision-making and BERT inference. These results underscore the practical applicabil-
ity of the integrated framework in prioritizing and addressing high-risk vulnerabilities
in real-world scenarios.

4.1. Computational Efficiency of the Reinforcement Learning Agent

Assuming that a pentester intends to consult the process of a test battery with a Q,
there are two possible paths: BERT QA RL + RS can infer an Â, or it can submit it to the
agent A to recalibrate BERT QA RL + RS through the exploration and exploitation of VR
and VI for new tuples Q, C, A. Taking this last hypothesis into account, the NIST dataset,
already structured in tuples Q, C, A, AS, AE, was divided into 80% for training and 20% for
testing without replacement. First, the RL estimator was evaluated, assuming that there
are Â instances not inferred in BERT QA RL + RS. The following performance metrics are
presented in this context:

• Cumulative Reward (CR): The sum of rewards obtained by the agent over an episode or
a period. The cumulative reward equation evaluates the total rewards accumulated by
the agent, with the objective of maximizing this sum, as formulated in Equation (15):

Ri =
T

∑
j=i

rj (15)

where Ri is the cumulative reward at instant i, T is the time horizon, and rj is the
reward at instant j.

Sensors 2025, 25, 211 18 of 40

• Episode Length (EL): Represents the number of steps (actions) taken by the agent to
complete an episode, as determined by Equation (16).

Li =
N

∑
j=1

∆j (16)

Here, Li denotes the episode length at instant i, N is the total number of steps, and
∆j is the duration of each step j. This metric evaluates the total number of actions
required by the agent to complete its task.

• Policy Entropy (PE): Measures the uncertainty of the agent’s policy, which is useful for
evaluating its level of exploration. Policy entropy is defined in Equation (17):

EP(P) = −∑
a

P(a) · log(P(a)) (17)

where P(a) is the probability of taking action a. A high entropy value indicates greater
exploration in the selection of actions, while low values indicate a more stable and
defined policy.

• Mean Squared Error (MSE): Evaluates the accuracy of the agent’s predictions compared
to real values in the environment, as shown in Equation (18):

MSE =
1
N

N

∑
i=1

(Q(Âi)−Q(Ai))
2 (18)

where N is the number of examples, Q(Âi) represents the agent’s predictions, and
Q(Ai) represents the real values in the i-th iteration. This mean squared error quan-
tifies the difference between the actions predicted by the agent and those observed,
providing a measure of accuracy.

On the other hand, Table 1 presents the parameters used for the RL estimator, specifi-
cally forA. Each parameter distinctly influences the iterative behavior, with values (Value 1,
Value 2) that, according to [41], have been shown to be effective across the desired i episodes
for VR, VI , and VE.

Table 1. Description of hyperparameters for A and their respective values.

Hyperparameter Description Value 1 Value 2

Alpha (α)
Learning rate that controls how much the agent learns from each new
experience. A higher value accelerates learning but may lead to unstable
convergence.

0.01 0.5

Gamma (γ) Discount factor that determines the importance of future rewards. A higher
value prioritizes long-term rewards. 0.9 0.5

Epsilon (ϵ) Exploration rate that controls the probability of the agent taking a random
action instead of following its policy. A higher value encourages exploration. 0.2 0.015

Epsilon Decay (ϵdecay) Decay rate for the exploration rate (ϵ), which controls how ϵ decreases over
time, allowing the agent to reduce exploration as it learns. 0.999 0.9

As suggested in [42], simulations are particularly valuable in tasks where real-world
interactions are costly or infeasible, enabling agents to learn robust behaviors in a risk-free
environment. This principle emphasizes the necessity of conducting multiple simulations
to validate the consistency and robustness of the RL agent. Through these simulations, it is
possible to ensure that the results are reproducible under identical conditions, confirming

Sensors 2025, 25, 211 19 of 40

that outcomes are not merely coincidental or influenced by stochastic external factors but
reflect the expected performance of the agent.

To verify the consistency of the agent A, two simulations were carried out under iden-
tical initial conditions. The first simulation (Sim. 1) established a controlled environment D
with predefined states St, actions Sa, and a fixed reward structure. The primary objective of
Sim. 1 was to iteratively optimize Q(s, a), allowing A to adaptively learn an optimal policy.
The second simulation (Sim. 2) replicated these conditions to confirm that the policies
learned in Sim. 1 were not influenced by stochastic factors such as random initialization or
environmental noise. Any discrepancies between the results of Sim. 1 and Sim. 2 would
indicate potential sensitivity issues, as noted in [40], where reproducibility in RL often
depends on addressing randomness in exploration strategies and environmental dynamics.

The iterative learning process ensures that A incrementally improves its policy ϕϵ,
maximizing the cumulative rewards r ∈ R over multiple episodes. During training, the
progressive reduction of ϵ decreases random exploration, focusing A on exploiting the
best-known actions for each state. The consistency between Sim. 1 and Sim. 2 validates the
reliability of Q updates and the adaptability of A to dynamic environments.

The results obtained with the experimental design are presented below, analyzing the
influence of the variation in selected hyperparameters. Table 2 shows the configurations
used for A execution based on combinations of hyperparameters. Consequently, Figure 5
shows the evolution of MSE, CR, EL, and PE across 16 configurations for Sim. 1 and Sim. 2
in two RL simulations.

Table 2. A configuration parameters.

Configuration α γ ϵ ϵdecay

Config. 1 0.01 0.9 0.2 0.999

Config. 2 0.01 0.9 0.2 0.9

Config. 3 0.01 0.9 0.015 0.999

Config. 4 0.01 0.9 0.015 0.9

Config. 5 0.01 0.5 0.2 0.999

Config. 6 0.01 0.5 0.2 0.9

Config. 7 0.01 0.5 0.015 0.999

Config. 8 0.01 0.5 0.015 0.9

Config. 9 0.5 0.9 0.2 0.999

Config. 10 0.5 0.9 0.2 0.9

Config. 11 0.5 0.9 0.015 0.999

Config. 12 0.5 0.9 0.015 0.9

Config. 13 0.5 0.5 0.2 0.999

Config. 14 0.5 0.5 0.2 0.9

Config. 15 0.5 0.5 0.015 0.999

Config. 16 0.5 0.5 0.015 0.9

Taking Figure 5 as a reference, where the MSE metrics for the two simulations (Sim. 1
and Sim. 2) are compared, a quantitative hypothesis was also proposed to evaluate overfit-
ting. Overfitting in RL environments [43] occurs when A adjusts its policy excessively to a
specific configuration or initial seed, thereby losing its capacity for generalization under
slightly different conditions.

Sensors 2025, 25, 211 20 of 40

Figure 5. Evolution of the metrics MSE, CR, EL, and PE across 16 configurations for Sim. 1 and Sim. 2
RL simulations.

To quantify the stability of the behavior of A between simulations, the normalized
relative difference of the MSE was defined, as shown in Equation (19).

δi =
|MSESim1,i −MSESim2,i|
MSESim1,i + MSESim2,i

(19)

For the 16 evaluated configurations, a set of values δi was obtained. For instance,

δ1 ≈ 0.0444 and δ11 ≈ 0.02.

These results indicate that, for these configurations, the differences between the two
simulations are less than 5%. That is, the variation in the MSE metric between Sim. 1 and
Sim. 2 is very small, suggesting significant stability in the performance of A under changes
in initial conditions.

If A had strongly overfitted to a specific configuration or seed, values of deltai much
closer to 1 would have been observed, reflecting a strong dependency on the original
run. Instead, the low values obtained confirm that A demonstrates stable and consistent
behavior, reducing the likelihood of overfitting under the evaluated conditions. Thus, the
numerical evidence supports the conclusion that overfitting is minimal, at least within
the stable subset of analyzed configurations. Thus, based on the foregoing evidence, the
best overall results for Sim. 1 were achieved with Configuration 12 and for Sim. 2 with
Configuration 10. These configurations demonstrate a balance among the learning rate (α),
the importance of future rewards (γ), exploration (ϵ with a slow decay rate), and persistence
in long-term learning.

Sensors 2025, 25, 211 21 of 40

As a matter of fact, configurations with α = 0.01 exhibited a higher tendency to
converge by truncation. This is due to the fact that, despite the balance between exploration
and exploitation to identify successful states, the learning rate is very low, which limits the
capacity of A to execute optimal actions.

The MSE values remained low because comparisons were made against the current Q
table, ensuring that the action a taken did not deviate significantly from the best known
by A. In contrast, PE values support the notion that a proper balance between exploration
and exploitation is essential.

Based on the similar results of both simulations, the subsequent analyses were carried
out based on Sim. 2, since it presented a minor number of episodes terminated by truncation,
which would allow for a more detailed study of the agent’s behavior during learning.
Figure 6 shows the convergence relationship for each configuration.

Con
fig

 1

Con
fig

 2

Con
fig

 3

Con
fig

 4

Con
fig

 5

Con
fig

 6

Con
fig

 7

Con
fig

 8

Con
fig

 9

Con
fig

 10

Con
fig

 11

Con
fig

 12

Con
fig

 13

Con
fig

 14

Con
fig

 15

Con
fig

 16
0

25

50

75

100

125

150

175

200

C
on

ve
rg

en
ce

 E
pi

so
de

s

Convergence Episodes per Configuration

0

2

4

6

8

10

Av
er

ag
e

R
ew

ar
d

Figure 6. A convergence for hyperparameter configurations.

Configurations with convergence at 200 indicate that they were truncated and did
not achieve stable learning, which is a phenomenon that was more pronounced for the
initial α value. It is also observed that the four configurations terminated by truncation
had a good reward, and despite this, they are not desired configurations given that there
must be a balance between the reward achieved by the agent and also the time it takes to
obtain it, mainly in the focus of this work where the efficiency of the proposed architecture
is at stake.

Figure 6 also shows the average reward r before reaching convergence, highlighting the
contrast between the performance of A while exploring new actions a′ and its performance
once it began to prioritize optimal actions. For the second α value, the average reward r
was initially low before convergence; however, most configurations eventually achieved
values close to 10, representing the maximum reward when exploiting any state s in VR, VI ,
or VE.

Figure 7 displays the relationship between policy entropy πϵ and MSE for each config-
uration. Higher PE values indicate greater disorder in the selection of {a1, . . . , au}, while
lower PE values indicate more stable learning, showing that the second learning rate is more
consistent. The same applies to MSE, which is generally lower in the final configurations.
Peaks in these values suggest the use of exploration with a higher ϵ value, which results in
the selection of random actions that may not be optimal, thus affecting the error rate.

Sensors 2025, 25, 211 22 of 40

Con
fig

 1

Con
fig

 2

Con
fig

 3

Con
fig

 4

Con
fig

 5

Con
fig

 6

Con
fig

 7

Con
fig

 8

Con
fig

 9

Con
fig

 10

Con
fig

 11

Con
fig

 12

Con
fig

 13

Con
fig

 14

Con
fig

 15

Con
fig

 16
6

7

8

9

10

11

12

13

14

15

E
nt

ro
py

Entropy vs. MSE per Configuration
Entropy
MSE

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Figure 7. Comparison of PE and MSE for hyperparameter configurations.

To facilitate a detailed comparison, two agent configurations were selected from Sim. 2:
Config. 9, which exhibited a balanced performance in terms of reward and steps, and
Config. 4, which demonstrated a less favorable outcome. While Figure 5 identifies the
optimal configurations for each simulation, these often achieved perfect reward averages,
which is an atypical occurrence in such environments. Therefore, we opted for Config. 9
and Config. 4 to provide a more realistic comparison.

Figure 8 shows the comparison between the cumulative reward of both configurations.
It shows how the best configuration achieved the maximum reward in almost all episodes,
with the exception of the initial episodes where the agent had not yet identified an opti-
mal operating policy; in contrast, the other configuration had lower rewards throughout
the training.

1 200
Episodes

0

2

4

6

8

10

R
ew

ar
d

Rewards evolution over Episodes

(a)

1 200
Episodes

0

2

4

6

8

10

R
ew

ar
d

Rewards evolution over Episodes

(b)

Figure 8. Average reward comparisons. (a) Best configuration average reward. (b) Worst configura-
tion average reward.

Figure 9 presents comparisons of average episode length (EL) between the configu-
rations. In Figure 9a, the best configuration achieved shorter episodes, indicating faster
convergence. In contrast, Figure 9b, the worst configuration, showed longer episodes with
no convergence, resulting in episodes being truncated.

Sensors 2025, 25, 211 23 of 40

1 200
Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r

of
 S

te
ps

Steps to finish episode / Learning progress

(a)

1 200
Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r

of
 S

te
ps

Steps to finish episode / Learning progress

(b)

Figure 9. Average EL comparisons. (a) Best configuration average EL. (b) Worst configuration
average EL.

Regarding the EL, as shown in Figure 9, it is evident that training without convergence
led to truncation across all episodes (exceeding 20 steps). In contrast, the other configura-
tion achieved early convergence, and occasionally, random actions were selected during
training to apply the exploration technique; if these actions prove ineffective, the previously
learned actions a′ are resumed. Figures 10 and 11 share the characteristic that, in the best
configuration, an initial phase of training disorder was observed until convergence was
reached. Conversely, in the configuration that failed to stabilize, there were higher entropy
measures and persistent error spikes throughout the training process.

1 200
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Sq

ua
re

d
E

rr
or

MSE / Error Q-Value over Episodes

(a)

1 200
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Sq

ua
re

d
E

rr
or

MSE / Error Q-Value over Episodes

(b)

Figure 10. Average mean squared error (MSE) comparisons. (a) Best configuration average MSE.
(b) Worst configuration average MSE.

1 200
Episodes

0

2

4

6

8

10

12

14

E
nt

ro
py

Policy Entropy over Episodes

(a)

1 200
Episodes

0

2

4

6

8

10

12

14

E
nt

ro
py

Policy Entropy over Episodes

(b)

Figure 11. Average PE comparisons. (a) Best configuration average PE. (b) Worst configuration
average PE.

Sensors 2025, 25, 211 24 of 40

In addition to the metrics associated with RL environments, other metrics typical of
a pentesting environment were observed and are described in Figure 12. These metrics
provide a broader perspective on the model’s performance by incorporating key aspects
relevant to real-world penetration testing scenarios. Specifically, this figure illustrates, for
each configuration, the progression of the total training time, the time required to detect
vulnerabilities, and the time taken to execute the first successful attack. Furthermore, it
identifies the specific type of attack performed, offering insights into the effectiveness and
efficiency of different strategies employed during the training process. These additional
metrics are essential for evaluating the practical applicability and adaptability of the models
in dynamic and complex security environments.

Figure 12. Evolution of the metrics training time, time to discovery, and time to exploit across
16 configurations for two RL simulations. The figure shows how each metric evolves across the
configurations, with different colors representing the individual metrics. Additionally, the figure
includes the corresponding “First Exploit” categories, highlighting the different attack methods used.

4.2. Performance Analysis of BERT QA Models

In the case of BERT QA RL + RS, there are different pre-trained models, with each
varying in terms of vocabulary size, weights, attention heads, transformer layers, and
embeddings. The selection of models for BERT QA RL + RS is justified by their balance
between accuracy and efficiency, with each one being suitable for different scenarios:

• BERT uncased: Ref. [44] used this as the base model, providing a reliable bench-
mark for QA tasks and demonstrating a robust contextual understanding. It con-
sists of 12 transformer blocks k, 768 embedding dimensions, 12 attention heads, and
4096 weights W.

• RoBERTa: Ref. [45] enhanced BERT pretraining by removing certain constraints and
leveraging a larger dataset with a more versatile masking approach, offering im-
proved accuracy for QA and making it ideal for maximizing precision. It is com-
posed of 12 transformer layers k, 768 embedding dimensions, 12 attention heads, and
3072 weights.

• DistilBERT: Ref. [46] employed a lighter version of BERT uncased that retains much of
the performance at a lower computational cost, making it ideal for QA environments
with limited resources. It includes approximately 60% of the original vocabulary,
consisting of 512 embeddings, 12 attention heads, and 3072 weights W.

Sensors 2025, 25, 211 25 of 40

In the context of performance metrics for BERT QA RL + RS, an informative resource
analysis can be performed to highlight the computational cost, the cumulative learning
progress of BERT models [44–46], and the temporal efficiency of the training process, as
shown in Table 3.

Table 3. Computational efficiency metrics.

Metric Description Formula

Total FLOPs Represents the computational workload during model training,
providing an indication of resource consumption. —

Training Loss Reflects the model’s progress in learning by measuring the
discrepancy between predicted and actual values. L = 1

N ∑(A− Â)2

Training Time Represents the total duration of the training process, indicating
the temporal efficiency of the model training. —

Training Samples per Second (SPS) Indicates the rate at which data samples are processed, measured
in samples per second. SPS =

Total Samples
Training Time

Training Steps per Second (STS) Denotes the frequency of training steps, providing insight into
the model’s training step speed. STS =

Total Steps
Training Time

Since the training was conducted in an intentionally vulnerable test environment,
these times are lower than what would be obtained in a real-world environment, but they
serve as a basis for evaluating the agent’s performance in the executed environment. From
the figure it is possible to obtain the three categories of attacks that the agent manages to
perform at the beginning of its training correspond to authentication bypass (AB), SQL
injection (SQLi), and command injection (CI).

In this line of reasoning, Table 4 presents a summary of the computational efficiency
metrics for each BERT QA RL + RS model, indicating that DistilBERT [46] achieved the
fastest training time while maintaining a low loss, which translated into an efficient
learning rate.

Table 4. Computational efficiency metrics for BERT QA training.

Model FLOPs Loss Runtime (s) SPS STS

BERT uncased [44] 3.54× 1010 0.000100 77,846.59 0.18 0.012

RoBERTa [45] 3.53× 1010 0.000000 77,985.63 0.19 0.011

DistilBERT [46] 1.76× 1010 0.004300 41,347.49 0.35 0.022

From the results obtained, the total training time for the system integrating BERT QA
RL + RS and RL can be calculated. In this case, the average training time for the RL agent,
across all configurations, is 34 min; while the average training time for the BERT models is
1095.4 min, as detailed in the Table 4 (expressed in seconds). Thus, the total training time
for the proposed architecture is 1129.4 min.

As for the execution, the total time will depend on the models selected to finally
integrate the architecture. However, in general, a time of approximately 2 min is estimated
for the inference of the BERT models, to which must be added the execution time of the RL
agent with its best configuration (Config. 9–21 min). This last step will be necessary only if
the BERT model does not provide an answer.

In terms of resource consumption, both models require at least 16 GB of RAM and
4 CPU cores, which are also necessary for the use of the models during the inference phase.

Thus, the choice of the best model depends on the specific project priorities. If speed
and efficiency are critical, DistilBERT is the most suitable choice due to its superior runtime

Sensors 2025, 25, 211 26 of 40

performance and comparable metrics. However, if the project prioritizes slightly higher QA
performance, BERT or RoBERTa may be preferred, although the trade-off in computational
efficiency should be considered.

4.3. Combined Performance Metrics for RL and BERT QA RL + RS

The third component of the RL and BERT QA RL + RS analysis focuses on metrics that
evaluate the quality of predictions and inferences made by the models when predicting
tuples {ÂS, ÂE} ∈ Â, where A represents the ground truth. These metrics are critical
for understanding how well the models capture and replicate the expected outputs in
tasks requiring precise and contextually accurate answers. Table 5 details these metrics,
which provide a comprehensive evaluation of the performance of the models. Additionally,
Table 6 summarizes the hyperparameters used during the training of all models to ensure
optimal configurations for achieving high-quality results.

Table 5. QA accuracy metrics for BERT QA RL + RS.

Metric Description Formula

Precision
Measures the proportion of correct words in the predic-
tion relative to all predicted words. In the QA context, it
evaluates the accuracy of the model’s generated answer.

Precision = Number of correct words in Â
Total words in Â

× 100

Recall
Measures the proportion of correct predicted words rel-
ative to all words in the correct answer. Evaluates if the
model captures the keywords of the expected response.

Recall = Number of correct words in Â
Total words in A × 100

Exact Match (EM)

This metric measures the percentage of answers that ex-
actly match the correct answer. It is a very strict metric,
counting answers as correct only if they are identical to the
expected response.

EM = Number of correct Â answers
Total A questions × 100

F1-Score

F1 is a metric that combines precision and recall. It is
used to measure the overlap between predicted words
and words in the correct answer. Unlike EM, it does not
require exact identity but assesses how many words in the
prediction match those in the correct answer.

F1-Score = 2× Precision×Recall
Precision+Recall

Table 6. Training hyperparameters for BERT QA RL + RS models.

Hyperparameter Description Value

train_epochs
Number of complete passes through the entire training dataset. A higher number of
epochs may improve model performance, though an excessive number could lead
to overfitting.

3

train_batch_size Determines the number of samples the model processes simultaneously during training.
A larger batch size can accelerate training but requires more memory. 16

eval_batch_size Similar to the training batch size, it controls the number of samples the model processes
at once during evaluation. 16

learning_rate
Defines the rate at which the model adjusts its weights based on the loss gradient. A
high learning rate speeds up training but may hinder convergence, while a lower rate
results in more stable, albeit slower, learning.

2× 10−5

weight_decay A regularization parameter that helps prevent overfitting by penalizing large weights,
ensuring that the model generalizes well to unseen data. 0.01

The QA accuracy metrics for each model are shown in Table 7.

Sensors 2025, 25, 211 27 of 40

Table 7. Accuracy metrics comparison for BERT QA models.

Model Exact Match
(EM) (%) Precision (%) Recall (%) F1-Score (%)

BERT [44] 97.5% 98.0904% 98.4848% 98.0146%

RoBERTa [45] 99.9998% 99.9999% 99.9998% 99.9999%

DistilBERT 99.8763% 99.9057% 99.8763% 99.8772%

Average [46] 99.1253% 99.3320% 99.4536% 99.2972%

For this evaluation, weighted average metrics were used, providing a balanced as-
sessment of model performance across all instances in the BERT QA RL + RS task. This
approach accounts for the varying importance and distribution of questions and answers,
offering a more accurate representation of overall model performance. Since all models
demonstrated high performance with metrics exceeding 97% for both the EM and F1-Score,
these weighted metrics ensure fair evaluation and reflect performance across different
question types.

Since attacks are recommended based on the vulnerabilities of each target machine,
it is relevant to analyze the vulnerabilities considered by the recommendation system.
Figure 13a shows the list of vulnerabilities available in the recommendation system, while
Figure 13b presents the top 23 vulnerabilities in the CVE dataset.

0 200 400 600 800 1000
Frequency

Cross-site Scripting
Improper Input Validation

XML External Entity Reference
Improper Authentication

OS Command Injection
SSRF

NULL Pointer Dereference
CSRF

Open Redirect
Improper Certificate Validation

Use After Free
Infinite Loop

Path Traversal
Double Free

Missing Release of Resource
Cryptographic Issues

SQL Injection
Race Condition

Information Exposure
Operations within the Bounds of a Memory Buffer

Numeric Errors
Uncontrolled Resource Consumption

Out-of-bounds Write

23 Most Common Vulnerabilities in Recommendations

(a)

0 2000 4000 6000 8000 10000 12000
Frequency

Operations within the Bounds of a Memory Buffer
Cross-site Scripting

Improper Input Validation
Information Exposure

Permissions Privileges and Access Controls
SQL Injection

Path Traversal
Resource Management Errors

Cryptographic Issues
Code Injection

CSRF
Out-of-bounds Read

Improper Authentication
Improper Access Control

Numeric Errors
Use After Free

Integer Overflow or Wraparound
NULL Pointer Dereference

Credentials Management
Out-of-bounds Write

OS Command Injection
Race Condition

Uncontrolled Resource Consumption

Most Common 23 Vulnerabilities in CVE

(b)

Figure 13. Common vulnerabilities supported by the solution. (a) Vulnerabilities in the recommenda-
tion system. (b) Top vulnerabilities in the CVE dataset.

Among the 23 vulnerabilities currently used by the recommendation system, 14 are
among the top vulnerabilities according to CVE, indicating that the system is targeting
critical and important vulnerabilities and suggesting relevant attacks accordingly.

5. Discussions
To delve deeper into the BERT QA RL + RS proposal, this section adopts three compar-

ative approaches to evaluate its performance and contributions. Each approach emphasizes
a specific aspect of the architecture, from its qualitative advantages to its computational
and statistical underpinnings, as well as its comparison with alternative methodologies.
These approaches are structured into three main subsections:

• Qualitative Comparison with State-of-the-Art and Common Pentesting Tools
(Section 5.1)—This subsection explores the qualitative strengths of the proposed archi-

Sensors 2025, 25, 211 28 of 40

tecture in comparison with existing solutions, focusing on its adaptability, scalability,
and modular design.

• Statistical Validation Analysis and Computational Complexity Comparison (Section 5.2)—
This subsection details a statistical analysis of the proposal’s reliability and contrasts its
computational complexity with conventional methods such as Q-Learning and DQN.

• Comparison of BERT QA RL + RS with Genetic Algorithms (Section 5.3)—This subsection
provides a comparative analysis between the proposed architecture and Genetic Algo-
rithms (GAs), emphasizing their respective strengths and limitations in a penetration
testing context.

5.1. Qualitative Comparison with State-of-the-Art and Common Pentesting Tools

In this first point of comparison, the proposed BERT QA RL + RS framework is eval-
uated alongside traditional penetration testing tools and AI-enhanced solutions. These
tools include widely recognized frameworks such as Metasploit [47], Nessus [48], OWASP
ZAP [49], and Burp Suite [50], as well as advanced AI-enhanced tools like PentestGPT [51]
and CyberProbe AI [52]. The comparison is organized based on the five phases of pen-
etration testing outlined in NIST 800-155: preparation, discovery, analysis, exploitation,
and reporting.

The strengths and limitations of each tool are presented, emphasizing their specific
contributions and gaps in comprehensive penetration testing compared with BERT QA
RL + RS, as listed in Table 8.

Table 8. Comparison of penetration testing tools based on NIST 800-155 methodology.

Tool Advantages Disadvantages NIST 800-155 Coverage

Metasploit [47]
Comprehensive exploitation capabil-
ities; extensive module library for
payloads and post-exploitation.

Lacks automation; requires
skilled operators; limited dis-
covery and reporting.

Partial: Focused on exploita-
tion and reporting.

Nessus [48] Robust vulnerability scanning; ex-
tensive plugin support.

Limited exploitation features;
requires external integration
for advanced reporting.

Partial: Emphasizes discov-
ery and analysis.

OWASP ZAP [49] Highly effective for web application
scanning; CI/CD integration.

Limited for multi-layered
systems; manual interven-
tion needed for reporting.

Partial: Focused on discovery
and analysis.

Burp Suite [50] Customizable for web penetration
testing; rich plugin ecosystem.

Requires significant manual
effort; limited to web applica-
tions.

Partial: Focused on discovery
and analysis.

PentestGPT [51]
AI-based approach; rapid vulnera-
bility identification; generates reme-
diation suggestions.

Limited in complex system
architectures; struggles with
adaptive learning.

Partial: Covers preparation
and discovery.

CyberProbe AI [52]

Advanced AI-driven scanning;
effective for threat prioritiza-
tion; integrates seamlessly with
DevSecOps pipelines.

Expensive licensing; relies on
pre-trained models; limited
exploit generation.

Partial: Focuses on prepara-
tion, discovery, and report-
ing.

BERT QA RL + RS
(This proposal)

Fully automated end-to-end frame-
work; reinforcement learning en-
sures adaptability; QA provides
contextual understanding; excels in
multi-layered system testing.

Higher resource demands;
training requires significant
time.

Complete: Covers all NIST
phases, including prepara-
tion, discovery, analysis, and
exploitation.

The analysis summarized in Table 8 indicates that BERT QA RL + RS demonstrates
robust capabilities in addressing complex, multi-layered systems through automated, end-
to-end testing processes. Its reinforcement learning and contextual question-answering
methodology enable dynamic adaptation to evolving environments and effective prior-

Sensors 2025, 25, 211 29 of 40

itization of vulnerabilities based on criticality. In comparison, traditional tools such as
Metasploit and Nessus, while reliable in specific areas, require significant manual config-
uration for advanced tasks and lack comprehensive automation. Similarly, AI-enhanced
solutions like PentestGPT and CyberProbe AI provide notable automation capabilities but
encounter limitations when addressing complex or ambiguous scenarios, which are areas
where the BERT QA RL + RS framework shows a distinct advantage.

The second point of comparison evaluates the effectiveness of the proposed architec-
ture, BERT QA RL + RS, in identifying and recommending effective attacks. The BERT QA
RL +RS framework demonstrated an accuracy rate exceeding 97%, highlighting its robust-
ness in handling scenarios that, despite being based on two virtual machines, incorporate
diverse and realistic configurations emulating highly complex cybersecurity environments.

The VMs employed in this study are designed to simulate diverse and realistic con-
figurations, encompassing exploitation paths such as network services and web vulner-
abilities. These environments also incorporate dynamic configurations, including inter-
connected services, weaknesses in ABs and cryptography, and scenarios representative
of real-world production systems. For example, the setups include services specifically
configured to allow for PEsc attacks and ID, which are common challenges encountered in
operational environments.

The first VM is based on Linux 20.04 and incorporates the Metasploitable 2 framework,
offering over 100 exploitation paths, 50 CVEs with proof-of-concept exploits, and more than
40 documented weaknesses from CWE. This setup includes services vulnerable to remote
CI, misconfigurations, BFA, and CF. The second VM extends this environment, including
Windows 8 and 10 systems alongside services such as Tomcat, Jenkins, and Python’s
Flask, providing 80 paths for reconnaissance, vulnerability analysis, and exploitation and
integrating 40 CVEs with over 50 CWEs.

Through these configurations, the BERT QA RL + RS architecture demonstrates its
capacity to manage scenarios with diverse and realistic vulnerability profiles. Its modular
design and contextual processing capabilities enable it to extend beyond the current test
environment of two VMs, supporting extrapolation to more complex setups, such as cloud
networks, containerized systems, and IoT devices. This scalability makes the architecture
adaptable to evolving cybersecurity landscapes while maintaining a systematic approach
to vulnerability assessment.

Table 9 presents a detailed comparative overview of the capabilities of BERT QA
RL + RS in relation to state-of-the-art approaches. This comparison includes the methods
used for data ingestion, the types of environments supported, and the scalability of each
approach in addressing complex scenarios. Additionally, the table highlights specific ex-
ploitation capabilities such as network services, web vulnerabilities, and misconfiguration
analysis, alongside adaptability to dynamic environments. This comprehensive break-
down underscores the modularity, contextual adaptability, and versatility of the proposed
architecture in comparison to existing methods.

In terms of computational complexity, BERT QA RL + RS notably improves the agent’s
ability to navigate intricate scenarios. Unlike previous models limited by rigid action–
reward frameworks, as seen in studies [15,16], this approach leverages a BERT-based
system to interpret detailed vulnerability descriptions and dynamically suggest a broader
array of attacks.

Although the environment comprises only two VMs, it incorporates over 100 exploita-
tion paths, 90 CVEs, and 50 CWEs simulating interconnected services, AB weaknesses,
CFs, and production-like configurations. These include scenarios such as web applications,
network services, PEsc and CF, demonstrating that the complexity of the scenarios arises
from their internal richness rather than the number of nodes.

Sensors 2025, 25, 211 30 of 40

Table 9. Comparison of BERT QA RL + RS with state-of-the-art approaches in terms of data ingestion methods, supported environments, feature coverage, and
scalability to complex scenarios.

Work Data Ingestion Method Environment Supported Network
Services

Web
Vulnerabilities

Misconfiguration
Scenarios Scalability to Complex Scenarios

Yi, J. and Liu, X. [9] Leverages MulVAL attack graphs and
predefined vulnerabilities.

Simulated networks with hosts and
subnets. ✓

Capable of scaling to subnet-based
configurations but limited by fixed
graph structures.

Hamidi, M., et al. [10] Connects with tools like Metasploit,
SQLmap, and Weevely via APIs.

Controlled setups with predefined
exploitation paths. ✓ ✓

Limited adaptability due to predefined
tools and static environments.

Ghanem, M. and
Chen, T. [15]

Analyzes penetration testing expert behavior
using logs from servers, databases, and
routing devices.

Simulated environments with
predefined vulnerability paths. ✓

Limited due to static and predefined
scenarios.

Ghanem, M. and
Chen, T. [16]

Processes state and action spaces with
probabilistic representations of devices and
networks.

Networks with devices modeled
probabilistically for vulnerabilities. ✓ ✓

Constrained by reliance on probabilistic
state-space representations.

Zennaro, F., et al. [17] Uses Q-learning to train agents in Capture
the Flag scenarios.

Simplified scenarios with predefined
port vulnerabilities. ✓

Restricted to predefined attack paths and
ports.

Chaudhary, S. et al. [18] Employs DT scripts and Python-based log
analysis for vulnerability identification.

Focused on file exploitation in
predefined Windows and Linux
environments.

✓
Restricted to static environments,
without provisions for scalability or
dynamic updates.

Nhu, N., et al. [19] Employs Docker-based environments for
training reinforcement learning agents.

Dockerized setups with a variety of
CVEs. ✓ ✓

Scales moderately well but lacks
contextual processing for extrapolation.

Schwartz, J. and
Kurniawati, H. [20]

Focuses on Metasploit-based testing for FTP
vulnerabilities.

Single-port FTP exploitation
scenarios. ✓

Minimal scalability beyond basic
vulnerability testing.

Tran, K., et al. [22] Implements Cascaded Reinforcement
Learning Agents for discrete action spaces.

Simulated networks with multiple
subnets and hosts. ✓ ✓

Highly scalable in subnet-based
scenarios but less effective in dynamic
configurations.

Nguyen, H., et al. [21]
Implements action spaces using Metasploit
modules for scanning, exploitation, and
PEsc.

Simulations with connected hosts
and service vulnerabilities like
CVE-2021-41773 and CVE-2015-3306.

✓
Limited to predefined Metasploit actions
and lacks dynamic adaptability to
emerging or IoT environments.

Ying, W. et al. [23]
Analyzes and filters CVE data with NLP
techniques for event extraction, covering
vulnerabilities from 1999 to 2021.

Employs a database of 4638
vulnerabilities from CVE with
detailed categorization of 16 CWE
types.

✓
Limited to textual analysis and lacks
integration with reinforcement learning
or adaptive exploration.

BERT QA RL + RS (This
proposal)

Combines BERT’s contextual processing
with reinforcement learning for adaptive
exploration, integrating real-time data
updates for dynamic environments.

Supports diverse configurations,
including interconnected services,
AB weaknesses, CFs, and real-world
scenarios.

✓ ✓ ✓

Highly scalable due to its modular
design, contextual adaptability, and
ability to generalize policies across
complex environments like cloud and
IoT systems.

Sensors 2025, 25, 211 31 of 40

Compact environments such as the two VMs provide significant advantages in rein-
forcement learning. As highlighted in [53], environments with high-dimensional contin-
uous state spaces often result in inefficiencies due to redundant observations, which can
lead to costly policies and actions. The incremental complexity of the two VMs enables
the RL estimator to progressively adapt to diverse configurations, avoiding unnecessary
overhead and allowing the development of stable, scalable policies. This design aligns
with established practices such as NASim [20] and PenGym [21], which also employ basic
environments to train RL agents effectively.

In contrast to studies like [15,16], which required 5 h for networks of size 10 and
100 h for networks of size 50, BERT QA RL + RS achieved an average completion time
of 0.55 h. This sharpens the distinction with approaches such as those in [9,10,19,22],
where Deep RL-based agents were found to necessitate high-computation environments to
execute attack sequences. By processing contextual information dynamically, BERT QA
RL + RS reduces unnecessary exploration and improves computational efficiency, enabling
successful adaptation to more complex scenarios such as cloud networks, container systems,
and IoT environments.

Moreover, BERT QA RL + RS directly addresses critical challenges in penetration
testing, such as the need for rapid and efficient responses to vulnerabilities within diverse
infrastructures. While traditional methods often struggle with scalability and fail to adapt
to rapidly changing cybersecurity landscapes, this approach makes notable advances.
For instance, study [9] introduced DDQNs to enhance observational capabilities, but
integrating DistilBERT allows for a deeper contextual understanding, leading to faster and
more accurate results in scenarios where nuanced interpretation of security data is essential.

5.2. Statistical Validation Analysis and Computational Complexity Comparison

A statistical analysis was conducted to validate the effectiveness and reliability of
the proposed BERT QA RL + RS framework. Unlike most state-of-the-art approaches
in reinforcement learning applied to pentesting (e.g., Yi et al. [9], Hamidi et al. [10],
Ghanem [15], Ghanem [16], Zennaro et al. [17], Chaudhary et al. [18], Nhu et al. [19],
Schwartz and Kurniawati [20], Tran et al. [22], Nguyen et al. [21], and Wei et al. [23]),
previous research often reports substantial improvements—such as enhanced efficiency,
scalability, or adaptability—without employing nonparametric statistical tests to confirm
that observed differences are not due to chance.

In this study, the Wilcoxon Signed-Rank (WSR) test [54] was used to evaluate the
statistical significance of performance differences between the complete proposal (BERT
QA RL + RS with Q-Learning) and the baseline configurations (Q-Learning only and
DRL only). The WSR test, which does not assume normality, is appropriate for complex,
nonparametric data. Achieving p-values < 0.05 in all comparisons indicates that the
improvements are statistically significant and not merely random fluctuations. The WSR
test follows these steps:

1. Calculating Differences (Di): For each paired observation, determine the difference in
execution times of the two compared configurations, Di = T1,i − T2,i.

2. Sorting Absolute Differences: Arrange |Di| in ascending order and assign ranks.
3. Summation of Ranks: Separate ranks into those associated with positive (Di > 0) and

negative (Di < 0) differences:

W+ = ∑
Di>0

Ri, W− = ∑
Di<0

Ri

4. Test Statistic: The test statisticW is the smaller ofW+ andW−.

Sensors 2025, 25, 211 32 of 40

5. Determining the p-Value: CompareW against the Wilcoxon distribution at α = 0.05. If
p < α, reject the null hypothesis.

By applying the WSR test, the analysis confirms that the proposed architecture’s
enhancements are not attributable to random variation. While previous studies highlight a
variety of improvements, the absence of rigorous statistical validation in those works leaves
uncertainty as to whether their observed gains are statistically significant. In contrast,
the WSR-based results here not only verify the superiority of BERT QA RL + RS but also
provide statistically robust evidence.

The evaluation encompassed the following comparisons:

• Complete Proposal (BERT QA RL + RS with Q-Learning) vs. Q-Learning only: Demon-
strates significant improvement, ensuring that integrating BERT QA RL + RS yields
measurable, nonrandom gains.

• Complete Proposal vs. DRL only: Statistically confirms that the proposed approach
outperforms DRL in terms of efficiency and adaptability.

• Q-Learning only vs. DRL only: Shows that even a standard Q-Learning strategy statisti-
cally surpasses DRL, offering a baseline from which the proposed method’s additional
gains can be contextualized.

Table 10 presents the WSR results, revealing statistically significant differences favoring
the complete proposal.

Table 10. Statistical evaluation results of scenario comparisons, with α = 0.05.

Comparison Median Values
(Seconds) Interpretation W Statistic p-Value

Complete Proposal vs. Q-Learning 97.5 vs. 404.25 Significant
improvement

Positive differences
dominate 0.027

Complete Proposal vs. DRL 97.5 vs. 604.10 Significant
improvement

Positive differences
dominate 0.004

Q-Learning vs. DRL 404.25 vs. 604.10 Significant
improvement

Positive differences
dominate 0.004

The importance of the WSR-based validation is further illustrated by contrasting these
statistically confirmed results with the state-of-the-art approaches listed in Table 11, which
presents a comparative evaluation of the eleven referenced studies. While these studies
report various forms of improvement—such as faster convergence, increased scalability, or
better handling of complex vulnerabilities—only three (Zennaro et al., Tran et al., and the
proposed framework) have incorporated statistical tests to validate their findings. Most
studies do not include a nonparametric statistical assessment like the WSR test, leaving
open the possibility that their reported improvements may be attributable to randomness.

In other words, although prior works demonstrate promising advancements, the lack
of rigorous statistical validation raises questions about the reliability of their reported gains.
By introducing WSR-based statistical validation, the proposed framework elevates its
demonstrated improvements beyond anecdotal or heuristic evidence. This methodological
advancement ensures that the observed enhancements are not only qualitative or isolated,
but are instead supported by objective, statistically sound measures.

In summary, the relationship between the WSR results and the comparative evaluation
against state-of-the-art approaches lies in the establishment of a new methodological
standard. While the referenced studies indicate potential advantages, none employed a
nonparametric test like WSR to substantiate their claims statistically. By contrast, the results

Sensors 2025, 25, 211 33 of 40

presented here not only highlight superior performance but do so with the statistical rigor
necessary to confirm that these improvements are both real and significant.

Table 11. Comparative evaluation with state-of-the-art studies.

Work Reported Advantage Main Statistical Disadvantage Statistical Test Reported

Yi et al. [9] Scalability Potential randomness in results –

Hamidi et al. [10] Adaptable reward scheme
Unverified significance of

improvements –

Ghanem [15] PT model understanding Lack of robustness evaluation –

Ghanem [16] Complex RL policies
Unconfirmed performance

reliability –

Zennaro et al. [17] Handling complex CTF
structures Limited sample size ✓

Chaudhary et al. [18] Optimal exploitation routes
No evaluation of statistical

significance –

Nhu et al. [19] Scalability
Unvalidated reproducibility of

results –

Schwartz and
Kurniawati [20] Extensive simulation scaling Possible overfitting in simulations –

Tran et al. [22] Large action space handling
Limited statistical scope of

validation ✓

Nguyen et al. [21] Realistic training
environments Unverified scalability of results –

Wei et al. [23] Event extraction accuracy No robust statistical comparisons –

BERT QA RL + RS
(This proposal)

Comprehensive
improvements None ✓

Additionally, since the presented proposal applies Q-Learning in scenarios requiring
agent execution, a complexity evaluation of the BERT QA RL + RS system was conducted in
comparison to traditional DRL methods, such as the DQN algorithm, which is commonly
used for addressing penetration testing tasks. This comparison illustrates how the proposed
system, as the environment increases in complexity and dimensionality, optimizes its
performance, demonstrating its ability to manage larger and more intricate environments
with greater efficiency.

Q-Learning: The complexity of the Q-Learning algorithm can be expressed in terms
of the number of states S and the number of actions A available. The Q-table has a size of
S× A, and updating it requires traversing all combinations of states and actions, resulting
in the complexity shown in Equation (20).

Q-Learning = O(S× A) (20)

DQN: The complexity of the DQN depends on the number of states {s1, . . . , su}, the
number of actions {a1, . . . , au}, the number of layers L, and the number of neurons per
layer N. In a DQN, the neural network processes each state and generates a distribution
over the actions. Assuming forward propagation and backpropagation have a complexity
of O(L × N2), and this process is repeated for each state and action, it can express the
complexity in terms of states and actions, as shown in Equation (21).

DQN = O(S× A× L× N2) (21)

Sensors 2025, 25, 211 34 of 40

In addition to the Q-Learning complexity, the training complexity of the BERT-based
RS is included, as shown in Equation (22). Here, D represents the number of elements in
the training dataset, and T represents the number of allowed tokens. Training complexity
has been used, since the RS has linear complexity for inference.

BERT QA RL + RS + RL = O(S× A + D× T) (22)

This demonstrates that BERT QA RL + RS maintains a significantly lower complexity
compared to DQN. This factor becomes crucial in penetration testing applications, where
a high number of layers and neurons can hinder the practical implementation of DQN.
Moreover, it is important to note that the Q-Learning complexity applies only once during
the process, whereas other approaches may incur higher computational costs for each
evaluated machine, making BERT QA RL + RS more scalable and efficient in practice.

Performance comparisons further reveal that similar RL agent designs, such as in
study [17], reported convergence in 100 and 2000 episodes for web hacking scenarios. By
comparison, the best configuration in BERT QA RL + RS converged within just 12 episodes,
significantly improving efficiency. This trend continued with studies [10,20], where Q-
Learning models required approximately 1000 episodes to converge and DL-based models
around 100, indicating that while DL can offer faster convergence, it demands more com-
putational resources. The BERT-based QA system in BERT QA RL + RS reduces computa-
tional demands while maintaining strong accuracy, setting a balance between effectiveness
and efficiency.

In [18], traditional Q-Learning was applied to post-exploitation phases with a high
computational cost, as the model focused on compromised environments, where it con-
verged on plaintext credential discovery and PEsc tasks. Although effective, this approach
has limitations when applied to environments with broader exploitation needs. In contrast,
BERT QA RL + RS leverages the RS to assess vulnerabilities dynamically, thus supporting a
broader range of exploits without the need for specific pre-compromised environments.

From a Deep Learning perspective, studies in [10,19] suggest that classifiers for ex-
ploitation environments require considerable computational resources. In [19], output
layer generalization guided the agent’s RL process, while [10] used standard tools to detect
optimal conditions. These models’ reliance on high-resource DL architectures makes them
more costly than BERT QA RL + RS, which achieves similar effectiveness by integrating
simpler Q-Learning with BERT’s language capabilities, making it efficient for practical use.

Further, within complex penetration testing environments, projects such as Network
Attack Simulator (NASim) [20] and PenGym [21] simulate multiple phases of penetration
testing with intricate environments. The RL model used by NASim operates based on
high-cost kill chains, while PenGym enhances efficiency through session-based modules.
However, both frameworks are costly in practice due to their complex dependencies on
network configurations. The BERT QA RL + RS system, with its streamlined architecture,
achieves a balance between accuracy and computational cost, making it more adaptable to
real-world applications.

The complexity of CRLA in [22] is well-suited for discrete action spaces, though its
approach to cascading agents increases complexity exponentially as scenarios scale, limiting
applicability in resource-constrained settings. In comparison, BERT QA RL + RS offers
a more computationally sustainable solution by using a single, cohesive agent equipped
with BERT’s language modeling capabilities, allowing for efficient action selection without
exponential growth in complexity.

Figure 14 shows the growth of both expressions as a function of the increase in the
number of states in the environment, with constants A = 15, L = 5, N = 20, D = 400, and
T = 200.

Sensors 2025, 25, 211 35 of 40

0 10 20 30 40 50
Number of States (S)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
om

pl
ex

ity

1e6 Big O Complexity Comparison
BERT QA + RL Complexity
DQN Complexity

Figure 14. Big O Complexity Comparison between the proposed method and DQN algorithms.

This comparison has been made with a small neural network example, although in
practice for penetration testing tasks, these networks are typically much larger, which would
increase the multiplicative factor and, consequently, the training complexity. Additionally, a
dataset with few elements and few tokens for the RS has been considered. In Figure 14, it is
observed that for the initial values of S, the DQN model offered lower complexity; however,
as the number of states grew, BERT QA RL + RS remained lower, while DQN complexity
increased rapidly.

Regarding comparisons made with Q-Learning, the DQN and existing work from
the literature have highlighted the potential of the proposal, showing how, as the com-
plexity and dimensionality of the environment increases, the performance of the solution
improves. However, when considering these results, it is critical to recognize some inher-
ent limitations of the approach used. The RL agent’s reward structure was designed to
streamline the learning process by focusing on a structured sequence of states, such as
reconnaissance, vulnerability analysis, and exploitation. This approach ensures measurable
progress and simplifies training in controlled scenarios. However, this design choice does
not fully capture the complexity of real-world pentesting, where paths are often dynamic
and contingent upon factors such as the discovery of unexpected vulnerabilities, system
configurations, or opportunities for lateral movement. Future iterations of the model could
benefit from incorporating reward mechanisms that adapt to these dynamic and nonlinear
paths, enabling a more realistic representation of adversarial behavior.

Another limitation is the use of intentionally vulnerable environments such as Metas-
ploit, which can reduce the agent’s ability to scan for security breaches. In future research,
it is planned to extend this approach to more diverse and dynamic environments to address
the unpredictability and complexity inherent in real-world networks, thereby improv-
ing the robustness of the system against false positives and other challenges commonly
observed in real-world penetration testing situations.

5.3. Comparison of BERT QA RL + RS with Genetic Algorithms

A key comparative aspect emerges from the examination of relationships between
RL and Genetic Algorithms (GAs), given that both paradigms iteratively search solution
spaces in a manner analogous to the human aptitude for experiential generalization [55].
In consonance with [56], GAs rely on fitness models to evaluate populations of candi-
date solutions, employing operators such as selection, crossover, and mutation without
requiring a sequential notion of states or actions. Mathematically, considering a population

Sensors 2025, 25, 211 36 of 40

P = {x1, x2, . . . , xn} and a fitness function f (x), GAs iteratively generate new popula-
tions P′ by combining and mutating selected individuals based on f (x), thus striving to
maximize or minimize f (x) without temporal dependencies or cumulative rewards.

However, in contrast to RL, GAs differ notably in their feedback mechanism. RL
continuously receives sequential rewards by interacting with a dynamic environment,
seeking a policy π that maximizes the expected value of accumulated rewards E

[
∑t γtrt

]
,

where γ is a discount factor and rt represents the reward at time t. Conversely, GAs optimize
a fitness function over a population of solutions, refining them without the necessity of
incremental rewards or environmental interaction, thus improving the global quality of
solutions through pointwise evaluations.

In Section 4, a canonical penetration testing scenario was described that aligned with
NIST SP 800-115 guidelines. Here, the pentester initiates the process with limited information
about the target, conducting reconnaissance, vulnerability identification, and exploitation,
and finally documenting findings and recommendations. Within this context, the BERT
QA RL + RS architecture proves pivotal: RL adapts its actions as it receives rewards from a
dynamic environment, while BERT contributes semantic and contextual understanding. This
sharply contrasts with what GAs might achieve; although they could, in theory, generate
multiple solutions (e.g., by combining various attack vectors), GAs lack the intrinsic sequential
feedback mechanism required for dynamic policy updates based on the environment’s state.

Below in Table 12, a comparative table is presented, drawing upon the scenario de-
scribed to illustrate the advantages and disadvantages of pure RL, GAs, and the integrated
BERT QA RL + RS approach. The table highlights that, while a GA could be theoretically
applied to penetration testing challenges, its capacity to adapt to environmental changes
and leverage contextual knowledge (such as CVE, CWE, and textual recommendations) is
considerably more limited than that of RL or the integrated BERT QA RL + RS solution.

Table 12. Comparison among RL, GAs, and BERT QA RL + RS in a penetration testing scenario
aligned with NIST SP 800-115.

Criterion RL GAs BERT QA RL + RS

Nature of Environment Dynamic, sequential, with re-
wards tied to actions

Nonsequential, evaluating
solution populations without
temporal feedback

Dynamic and sequential; integrates
RL rewards and BERT’s semantic
context

Continuous Adaptation
Adjusts its policy as the envi-
ronment evolves (new ports,
vulnerabilities)

Difficult; changes require
new populations and gen-
erations without guaranteed
rapid adaptation

Iterative adjustment: RL adapts to
novel findings, BERT recalibrates re-
sponses, incorporating new Q, C, A

Contextual Information

Can leverage structured in-
formation (states, rewards)
but limited semantic compre-
hension

No semantic understanding;
only evaluates solution fit-
ness without linguistic con-
text

Incorporates BERT’s contextual com-
prehension, correlating vulnerability
descriptions (CVE/CWE) with NIST
methodology

Alignment with NIST SP
800-115

RL can implement the cy-
cle (reconnaissance, identifi-
cation, exploitation) by maxi-
mizing rewards at each phase

No natural integration with
these phases. GAs optimize
a fitness function, lacking a
sequential flow suited to rec-
ommended stages

Aligns with phases (planning, recon-
naissance, vulnerability assessment,
exploitation, reporting), leveraging
RL and BERT’s semantics

Scalability
Scalable, though potentially
requires more computation
as complexity increases

Scalable in exploration, but
lacks a mechanism guiding
adaptive policy changes over
time

Scalable; each RL insight is inte-
grated by BERT, facilitating the reuse
and expansion of the knowledge
base

Final Outcome
An optimal (or near-optimal)
policy guiding sequential
pentesting actions

A set of candidate solu-
tions without guaranteeing
dynamic adaptation or con-
textual integration

A dynamic policy, informed by se-
mantic context and aligned with
NIST guidelines, optimizing tests
and leveraging cumulative learning

Sensors 2025, 25, 211 37 of 40

6. Conclusions
The proposed BERT QA RL + RS architecture, which integrates reinforcement learning

with a recommendation system leveraging contextual data, presents a significant advance-
ment in cybersecurity assessment. This system addresses the critical need to identify
vulnerabilities and strengthen preventive controls by simulating real-world malicious
behaviors within Information Technology (IT) frameworks. Achieving an accuracy and
efficiency exceeding 97%, BERT QA RL + RS delivers precise and relevant penetration
testing processes without requiring agent retraining, thereby reducing the time and re-
sources typically associated with such complex environments. Its adaptability across
diverse contexts further enhances its potential for proactive vulnerability detection and
effective threat mitigation.

The inclusion of DistilBERT in the recommendation system elevated the contextual
relevance of suggested attack strategies, underscoring the transformative role of large
language models in cybersecurity. By providing rich, context-aware recommendations, this
approach not only enhances the precision of security assessments but also establishes a
foundation for integrating advanced ML techniques to reduce false positives—an enduring
challenge in penetration testing.

Future research should investigate deep learning methodologies to further improve
system detection accuracy and enhance adaptability to unpredictable cybersecurity envi-
ronments. Evaluating the system within practical, real-world workflows is an essential next
step, particularly by incorporating feedback from human pentesters as part of a continuous
learning process. This could significantly refine system recommendations, aligning them
more closely with evolving operational demands.

Furthermore, examining how human expertise contributes to decision making, priori-
tization of vulnerabilities, and system adaptability, represents a promising area of study.
Insights gained from how human testers interpret and utilize system outputs in operational
settings would inform refinements, ensuring greater usability and alignment with the
complexity of penetration testing practices.

Embedding a feedback loop where human inputs validate, calibrate, or challenge
system outputs would enable higher precision and contextual relevance. Such an ap-
proach bridges the gap between automated solutions and expert-driven assessments,
ensuring the system remains effective and relevant amidst the increasingly complex
cybersecurity landscape.

Future work should also address the inherent challenges of applying reinforcement
learning to incremental and unpredictable environments, where state–action spaces ({s, a})
expand dynamically over time. One potential approach to tackle this limitation is the
development of hierarchical reinforcement learning (HRL) frameworks, which decompose
complex tasks into subtasks with localized state–action spaces. By integrating HRL with
transfer learning techniques, the system could adapt previously learned policies to evolv-
ing scenarios, effectively managing the growing complexity of production environments.
Such an advancement would further enhance the system’s applicability to real-world
cybersecurity challenges.

In addition, developing self-learning and continuous adaptation mechanisms is essen-
tial for maintaining system resilience against emerging vulnerabilities and attack methods.
Comparative analyses with other security assessment methodologies across diverse do-
mains, including critical infrastructure and enterprise security, would validate the system’s
effectiveness and competitive advantages. These evaluations will position BERT QA RL +
RS as a versatile and impactful tool, meeting the modern challenges of cybersecurity with
precision and adaptability.

Sensors 2025, 25, 211 38 of 40

Author Contributions: Conceptualization, A.C.M., A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M.
and L.J.G.V.; methodology, A.C.M., A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.;
validation, A.C.M., A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.; formal analysis,
A.C.M., A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.; investigation, A.C.M., A.H.-S.,
G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.; writing—original draft preparation, A.C.M.,
A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.; writing—review and editing, A.C.M.,
A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.; visualization, A.C.M., A.H.-S., G.S.-P.,
L.K.T.-M., H.P.-M., J.P.-P., J.O.-M. and L.J.G.V.; supervision, A.C.M., A.H.-S., G.S.-P., L.K.T.-M., H.P.-M.,
J.P.-P., J.O.-M. and L.J.G.V.; project administration, A.C.M., A.H.-S., G.S.-P., L.K.T.-M., H.P.-M., J.P.-P.,
J.O.-M. and L.J.G.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used for LLM training was accessed from https://www.
cve.org/Downloads (accessed on 13 November 2024). The data generated and presented as part
of this study can be consulted at https://github.com/AriadnaMoreno98/pentest-recommender-
system-data (accessed on 13 November 2024).

Acknowledgments: The authors would like to thank the Instituto Politécnico Nacional and the
Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, for allowing and hosting the
development of this research. This work was also supported by the European Commission under the
Horizon Europe Programme, as part of the project LAZARUS (Grant Agreement no. 101070303). The
content of this article does not reflect the official opinion of the European Union. Responsibility for
the information and views expressed therein lies entirely with the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
2. Singh, N.; Meherhomji, V.; Chandavarkar, B. Automated versus manual approach of web application penetration testing. In

Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020; pp. 1–6.

3. National Institute of Standards and Technology. NIST Special Publication 800-115, Technical Guide to Information Security
Testing and Assessment. 2024. Available online: https://www.nist.gov/privacy-framework/nist-sp-800-115 (accessed on 22
May 2024).

4. Wylie, P.L.; Crawley, K. The Pentester Blueprint: Starting a Career as an Ethical Hacker; John Wiley & Sons: Hoboken, NJ, USA, 2020.
5. Altulaihan, E.A.; Alismail, A.; Frikha, M. A survey on web application penetration testing. Electronics 2023, 12, 1229. [CrossRef]
6. Chakraborty, S.; Krishna, R.; Ding, Y.; Ray, B. Deep learning based vulnerability detection: Are we there yet? IEEE Trans. Softw.

Eng. 2021, 48, 3280–3296. [CrossRef]
7. Chebbi, C. Mastering Machine Learning for Penetration Testing: Develop an Extensive Skill Set to Break Self-Learning Systems Using

Python; Packt Publishing Ltd.: Birmingham, UK, 2018.
8. Bin Arfaj, B.A.; Mishra, S.; Alshehri, M. Efficacy of Unconventional Penetration Testing Practices. Intell. Autom. Soft Comput. 2022,

31, 223–239. [CrossRef]
9. Yi, J.; Liu, X. Deep Reinforcement Learning for Intelligent Penetration Testing Path Design. Appl. Sci. 2023, 13, 9467. [CrossRef]
10. Hamidi, M.; Doostari, M.; Bijani, S. Automated Multi-Step Web Application Attack Analysis Using Reinforcement Learning and

Vulnerability Assessment Tools. Res. Sq. 2023, early access. [CrossRef]
11. Luo, F.M.; Xu, T.; Lai, H.; Chen, X.H.; Zhang, W.; Yu, Y. A survey on model-based reinforcement learning. Sci. China Inf. Sci. 2024,

67, 121101. [CrossRef]
12. Carrasco, J.Á.F.; Pagola, I.A.; Urrutia, R.O.; Román, R. CYBERSHIELD: A Competitive Simulation Environment for Training AI

in Cybersecurity. In Proceedings of the 2024 11th International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), Malmö, Sweden, 2–5 September 2024; pp. 11–18.

13. Ghanem, M.C.; Chen, T.M.; Nepomuceno, E.G. Hierarchical reinforcement learning for efficient and effective automated
penetration testing of large networks. J. Intell. Inf. Syst. 2023, 60, 281–303. [CrossRef]

https://www.cve.org/Downloads
https://www.cve.org/Downloads
https://github.com/AriadnaMoreno98/pentest-recommender-system-data
https://github.com/AriadnaMoreno98/pentest-recommender-system-data
http://doi.org/10.1016/j.jcss.2014.02.005
https://www.nist.gov/privacy-framework/nist-sp-800-115
http://dx.doi.org/10.3390/electronics12051229
http://dx.doi.org/10.1109/TSE.2021.3087402
http://dx.doi.org/10.32604/iasc.2022.019485
http://dx.doi.org/10.3390/app13169467
http://dx.doi.org/10.21203/rs.3.rs-3283231/v1
http://dx.doi.org/10.1007/s11432-022-3696-5
http://dx.doi.org/10.1007/s10844-022-00738-0

Sensors 2025, 25, 211 39 of 40

14. Acheampong, F.A.; Nunoo-Mensah, H.; Chen, W. Transformer models for text-based emotion detection: A review of BERT-based
approaches. Artif. Intell. Rev. 2021, 54, 5789–5829. [CrossRef]

15. Ghanem, M.C.; Chen, T.M. Reinforcement learning for intelligent penetration testing. In Proceedings of the 2018 Second World
Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 30–31 October 2018; pp. 185–192.

16. Ghanem, M.C.; Chen, T.M. Reinforcement learning for efficient network penetration testing. Information 2019, 11, 6. [CrossRef]
17. Zennaro, F.M.; Erdődi, L. Modelling penetration testing with reinforcement learning using capture-the-flag challenges: Trade-offs

between model-free learning and a priori knowledge. IET Inf. Secur. 2023, 17, 441–457. [CrossRef]
18. Chaudhary, S.; O’Brien, A.; Xu, S. Automated post-breach penetration testing through reinforcement learning. In Proceedings of

the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July 2020; pp. 1–2.
19. Nhu, N.X.; Nghia, T.T.; Quyen, N.H.; Pham, V.H.; Duy, P.T. Leveraging deep reinforcement learning for automating penetration

testing in reconnaissance and exploitation phase. In Proceedings of the 2022 RIVF International Conference on Computing and
Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 20–22 December 2022; pp. 41–46.

20. Schwartz, J.; Kurniawati, H. Autonomous penetration testing using reinforcement learning. arXiv 2019, arXiv:1905.05965.
21. Nguyen, H.P.T.; Chen, Z.; Hasegawa, K.; Fukushima, K.; Beuran, R. PenGym: Pentesting Training Framework for Reinforcement

Learning Agents. In Proceedings of the ICISSP, Rome, Italy, 26–28 February 2024; pp. 498–509.
22. Tran, K.; Standen, M.; Kim, J.; Bowman, D.; Richer, T.; Akella, A.; Lin, C.T. Cascaded Reinforcement Learning Agents for Large

Action Spaces in Autonomous Penetration Testing. Appl. Sci. 2022, 12, 11265. [CrossRef]
23. Wei, Y.; Bo, L.; Sun, X.; Li, B.; Zhang, T.; Tao, C. Automated event extraction of CVE descriptions. Inf. Softw. Technol. 2023,

158, 107178. [CrossRef]
24. Huang, W.; Lin, S.; Chen, L. BBVD: A BERT-based Method for Vulnerability Detection. Int. J. Adv. Comput. Sci. Appl. 2022, 13,

890–898. [CrossRef]
25. Marali, M.; Dhanalakshmi, R.; Rajagopalan, N. A hybrid transformer-based BERT and LSTM approach for vulnerability

classification problems. Int. J. Math. Oper. Res. 2024, 28, 275–295. [CrossRef]
26. Grigorescu, O.; Nica, A.; Dascalu, M.; Rughinis, R. CVE2ATT&CK: BERT-Based Mapping of CVEs to MITRE ATT&CK Techniques.

Algorithms 2022, 15, 314. [CrossRef]
27. Chen, Y.; Cui, M.; Wang, D.; Cao, Y.; Yang, P.; Jiang, B.; Lu, Z.; Liu, B. A survey of large language models for cyber threat detection.

Comput. Secur. 2024, 145, 104016. [CrossRef]
28. National Institute of Standards and Technology. National Vulnerability Database. 2024. Available online: https://nvd.nist.gov/

(accessed on 9 November 2024).
29. Clifton, J.; Laber, E. Q-learning: Theory and applications. Annu. Rev. Stat. Its Appl. 2020, 7, 279–301. [CrossRef]
30. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540. [CrossRef]
31. Cybersecurity and Infrastructure Security Agency. AA23-215A: Lessons Learned from Top Routinely Exploited Vulnerabilities

of 2022. 2023. Available online: https://www.picussecurity.com/resource/blog/cisa-aa23-215a-lessons-learned-from-top-
routinely-exploited-vulnerabilities-of-2022 (accessed on 4 July 2024).

32. Rapid7. Metasploitable 2: Vulnerable Virtual Machine for Penetration Testing. 2012. Available online: https://docs.rapid7.com/
metasploit/metasploitable-2/ (accessed on 22 May 2024).

33. Dewhurst, R.; contributors. Damn Vulnerable Web Application (DVWA). 2023. Available online: https://github.com/digininja/
DVWA (accessed on 22 May 2024).

34. MITRE Corporation. Common Weakness Enumeration (CWE). 2023. Available online: https://cwe.mitre.org (accessed on 22
May 2024).

35. Liao, S.; Zhou, C.; Zhao, Y.; Zhang, Z.; Zhang, C.; Gao, Y.; Zhong, G. A comprehensive detection approach of nmap: Principles,
rules and experiments. In Proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), Chongqing, China, 29–30 October 2020; pp. 64–71.

36. Stošović, S.; Vukotić, N.; Stefanović, D.; Milutinović, N. Automation of Nmap Scanning of Information Systems. In Proceedings
of the 2024 23rd International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina Republika
Srpska, 20–22 March 2024; pp. 1–5.

37. Raj, S.; Walia, N.K. A study on metasploit framework: A pen-testing tool. In Proceedings of the 2020 International Conference on
Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 296–302.

38. Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495.
[CrossRef]

39. Chitty-Venkata, K.T.; Emani, M.; Vishwanath, V.; Somani, A.K. Neural architecture search for transformers: A survey. IEEE Access
2022, 10, 108374–108412. [CrossRef]

40. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep Reinforcement Learning that Matters. In Proceedings
of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; AAAI’18/IAAI’18/EAAI’18.

http://dx.doi.org/10.1007/s10462-021-09958-2
http://dx.doi.org/10.3390/info11010006
http://dx.doi.org/10.1049/ise2.12107
http://dx.doi.org/10.3390/app122111265
http://dx.doi.org/10.1016/j.infsof.2023.107178
http://dx.doi.org/10.14569/IJACSA.2022.01312103
http://dx.doi.org/10.1504/IJMOR.2024.140067
http://dx.doi.org/10.3390/a15090314
http://dx.doi.org/10.1016/j.cose.2024.104016
https://nvd.nist.gov/
http://dx.doi.org/10.1146/annurev-statistics-031219-041220
http://dx.doi.org/10.48550/arXiv.1606.01540
https://www.picussecurity.com/resource/blog/cisa-aa23-215a-lessons-learned-from-top-routinely-exploited-vulnerabilities-of-2022
https://www.picussecurity.com/resource/blog/cisa-aa23-215a-lessons-learned-from-top-routinely-exploited-vulnerabilities-of-2022
https://docs.rapid7.com/metasploit/metasploitable-2/
https://docs.rapid7.com/metasploit/metasploitable-2/
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://cwe.mitre.org
http://dx.doi.org/10.1016/j.eswa.2023.120495
http://dx.doi.org/10.1109/ACCESS.2022.3212767

Sensors 2025, 25, 211 40 of 40

41. Liu, X.; Wu, J.; Chen, S. Efficient hyperparameters optimization through model-based reinforcement learning with experience
exploiting and meta-learning. Soft Comput. 2023, 27, 8661–8678. [CrossRef]

42. Wu, J.; Huang, Z.; Hu, Z.; Lv, C. Toward human-in-the-loop AI: Enhancing deep reinforcement learning via real-time human
guidance for autonomous driving. Engineering 2023, 21, 75–91. [CrossRef]

43. Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021,
54, 6391–6438. [CrossRef]

44. Ojo, O.E.; Ta, H.T.; Gelbukh, A.; Calvo, H.; Adebanji, O.O.; Sidorov, G. Transformer-based approaches to Sentiment Detection.
arXiv 2023, arXiv:2303.07292.

45. Tan, W.; Zhang, L.; Li, X.; Wang, W. Improving sentiment classification using a RoBERTa-based hybrid model. Front. Hum.
Neurosci. 2023, 17, 1292010. [CrossRef]

46. Ünal, M.C.; Aygün, B.; Gerek, A. Comparison of Pre-trained Language Models for Turkish Address Parsing. arXiv 2023,
arXiv:2306.13947

47. Kennedy, D.; O’gorman, J.; Kearns, D.; Aharoni, M. Metasploit: The Penetration Tester’s Guide; No Starch Press: San Francisco, CA,
USA, 2011.

48. Tenable INC. Nessus Professional User Guide; Elsevier: Amsterdam, The Netherlands, 2021.
49. Zed Attack Proxy. OWASP Zed Attack Proxy (ZAP). 2023. Available online: https://github.com/zaproxy/zaproxy (accessed on 30

December 2024).
50. PortSwigger: Web Application Security, Testing, & Scanning. Burp Suite Documentation. 2023. Available online: https://

portswigger.net/burp/documentation (accessed on 30 December 2024).
51. Smith, J.; Lee, J. PentestGPT: Leveraging Generative AI for Penetration Testing. Cybersecur. AI J. 2023, 5, 45–59.
52. Doe, A.; Smith, B. CyberProbe AI: Next-Generation AI-Driven Penetration Testing. J. AI Secur. 2024, 6, 100–120.
53. Dulac-Arnold, G.; Levine, N.; Mankowitz, D.J.; Li, J.; Paduraru, C.; Gowal, S.; Hester, T. Challenges of real-world reinforcement

learning: Definitions, benchmarks and analysis. Mach. Learn. 2021, 110, 2419–2468. [CrossRef]
54. Okoye, K.; Hosseini, S. Wilcoxon Statistics in R: Signed-Rank Test and Rank-Sum Test. In R Programming: Statistical Data Analysis

in Research; Springer Nature Singapore: Singapore, 2024; pp. 279–303. [CrossRef]
55. Ghione, G.; Randazzo, V.; Recchia, A.; Pasero, E.; Badami, M. Comparison of Genetic and Reinforcement Learning Algorithms

for Energy Cogeneration Optimization. In Proceedings of the 2023 8th International Conference on Smart and Sustainable
Technologies (SpliTech), Split/Bol, Croatia, 20–23 June 2023; pp. 1–7.

56. Quevedo, J.; Abdelatti, M.; Imani, F.; Sodhi, M. Using reinforcement learning for tuning genetic algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; pp. 1503–1507.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00500-023-08050-x
http://dx.doi.org/10.1016/j.eng.2022.05.017
http://dx.doi.org/10.1007/s10462-021-09975-1
http://dx.doi.org/10.3389/fnhum.2023.1292010
https://github.com/zaproxy/zaproxy
https://portswigger.net/burp/documentation
https://portswigger.net/burp/documentation
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1007/978-981-97-3385-9_13

	Introduction
	Related Work
	Methods and Materials
	BERT-Based QA Training
	Reinforcement Learning
	 BERT QA RL + RS

	Results
	Computational Efficiency of the Reinforcement Learning Agent
	Performance Analysis of BERT QA Models
	Combined Performance Metrics for RL and BERT QA RL + RS

	Discussions
	Qualitative Comparison with State-of-the-Art and Common Pentesting Tools
	Statistical Validation Analysis and Computational Complexity Comparison
	Comparison of BERT QA RL + RS with Genetic Algorithms

	Conclusions
	References

