Skip to main content
. 2025 Jan 2;25(1):211. doi: 10.3390/s25010211
Algorithm 1 Q-Learning for VR, VI, and VE tests.
  •   1:

    Initialization:

  •   2:

    Initialize the Q-table Q(s,a) with zeros for all state-action pairs (s,a)

  •   3:

    Set the learning rate α, discount factor γ, and the parameter ϵ for the policy ϕϵ

  •   4:

    for each episode do

  •   5:

        Initialize the state s with the initial configuration of D. In the initial state s, A performs a reconnaissance process of all available virtual machines

  •   6:

        while the state s is not terminal do

  •   7:

            Select the action a based on the policy ϕϵ

  •   8:

            Execute action a, observe reward r and the new state s

  •   9:

            if a pertains to VR then

  • 10:

               Perform reconnaissance using Nmap

  • 11:

            else if a pertains to Vulnerability VI then

  • 12:

               Conduct vulnerability identification using Nmap Vulners

  • 13:

            else if a pertains to VE then

  • 14:

               Conduct exploitation using Metasploit

  • 15:

            end if

  • 16:

            Select a as the action that maximizes Q(s,a)

  • 17:
            Update Q(s,a) using the Bellman equation:
                                Q(s,a)Q(s,a)+αr+γQ(s,a)Q(s,a)
  • 18:

            Update the state ss

  • 19:

        end while

  • 20:

    end for