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Received: 7 December 2024

Revised: 26 December 2024

Accepted: 2 January 2025

Published: 6 January 2025

Citation: Alsehaimi, B.; Alzamzami,

O.; Alowidi, N.; Ali, M. An Adaptive

Spatio-Temporal Traffic Flow

Prediction Using Self-Attention and

Multi-Graph Networks. Sensors 2025,

25, 282. https://doi.org/10.3390/

s25010282

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

An Adaptive Spatio-Temporal Traffic Flow Prediction Using
Self-Attention and Multi-Graph Networks
Basma Alsehaimi 1,2,*, Ohoud Alzamzami 1 , Nahed Alowidi 1 and Manar Ali 1

1 Department of Computer Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
ualzamzami@kau.edu.sa (O.A.); nalowidi@kau.edu.sa (N.A.); mali@kau.edu.sa (M.A.)

2 Applied College, Taibah University, Madinah 41477, Saudi Arabia
* Correspondence: balsehaimi0001@stu.kau.edu.sa

Abstract: Traffic flow prediction is a pivotal element in Intelligent Transportation Sys-
tems (ITSs) that provides significant opportunities for real-world applications. Capturing
complex and dynamic spatio-temporal patterns within traffic data remains a significant
challenge for traffic flow prediction. Different approaches to effectively modeling complex
spatio-temporal correlations within traffic data have been proposed. These approaches
often rely on a single model to capture temporal dependencies, which neglects the varying
influences of different time periods on traffic flow. Additionally, these models frequently
utilize either static or dynamic graphs to represent spatial dependencies, which limits
their ability to address complex and overlapping spatial relationships. Moreover, some
approaches struggle to fully capture spatio-temporal variations, leading to the exclusion of
critical information and ultimately resulting in suboptimal prediction performance. Thus,
this paper introduces the Adaptive Spatio-Temporal Attention-Based Multi-Model (AS-
TAM), an architecture designed to capture spatio-temporal dependencies within traffic data.
The ASTAM employs multi-temporal gated convolution with multi-scale temporal input
segments to model complex non-linear temporal correlations. It utilizes static and dynamic
parallel multi-graphs to facilitate the modeling of complex spatial dependencies. Further-
more, this model incorporates a spatio-temporal self-attention mechanism to adaptively
capture the dynamic and long-term spatio-temporal variations in traffic flow. Experiments
conducted on four real-world datasets reveal that the proposed architecture outperformed
13 baseline approaches, achieving average reductions of 5.0% in MAE, 13.28% in RMSE,
and 6.46% in MAPE across four datasets.

Keywords: traffic flow prediction; temporal convolutional network; graph convolution
network; graph attention networks; attention mechanism

1. Introduction
Traffic prediction has evolved into a key aspect of advancing smart cities and is foun-

dational to Intelligent Transportation Systems (ITSs) [1]. Different real-world applications
have demonstrated the value and necessity of accurate traffic prediction, including ur-
ban infrastructure construction [2], traffic congestion [3], travel time estimation [4], taxi
dispatching [5], pedestrian safety [6], planning and navigating routes [7], and urban trans-
portation networks [8]. Therefore, improving the accuracy of traffic flow prediction has
attracted significant attention from researchers.

The objective of traffic prediction is to predict future traffic conditions by analyzing
historical traffic data and spatio-temporal data collected from sensors deployed across road
networks. Unlike traditional time series analysis, traffic prediction is a challenging task that
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involves both temporal and spatial dependencies. Temporal dependencies are observed
in the influence of traffic patterns across different times, while spatial dependencies are
reflected in the interactions between traffic flows on different roads within the network.
Furthermore, traffic prediction must consider the non-linear and dynamic nature of traffic
conditions between sensors over time, including distinct recurring patterns such as peak
and off-peak hour variations and weekday versus weekend differences. Accurately predict-
ing traffic flow is therefore of great importance for mitigating traffic congestion, improving
urban traffic conditions, and enhancing the quality of residents’ lives.

In recent years, researchers have increasingly incorporated Graph Neural Networks
(GNNs) with Recurrent Neural Networks (RNNs) [9–12] for traffic prediction. GNNs [13]
are employed to model the spatial dependencies within traffic road networks in non-
Euclidean spaces. GNNs excel at handling the complexities of graph-structured data and
effectively capturing the inherent spatial relationships within traffic data, making them ideal
for traffic flow prediction tasks [14,15]. They directly input traffic signals into the model,
utilizing an adjacency matrix to depict the connectivity between road segments [10,16–18].
RNNs [19] and their variations, such as Gated Recurrent Units (GRUs) [20] and Long
Short-Term Memory (LSTM) [21], have been utilized to model the temporal correlations of
traffic data due to their effectiveness in capturing short-term dependencies [22,23]. These
GNN-RNN hybrid approaches offer a powerful method for traffic flow prediction that
effectively captures spatio-temporal dependencies.

Despite the notable advancements and significant accomplishments achieved in the
area of traffic prediction, existing studies still face some challenges that need to be tackled.
Among these challenges is the inability to effectively capture the complex and dynamic
spatial and temporal correlations inherent in traffic data.

For representing the temporal dependencies, many studies have relied solely on a
single model, specifically RNNs, to capture temporal correlations in traffic prediction.
However, traffic patterns are influenced not only by short-term intervals but also by
consistent trends across different periods, such as hourly, daily, and weekly cycles. For
instance, morning rush hour patterns on workdays differ significantly from those on
weekends, and traffic levels at one time often correlate with recent times. While RNNs are
effective for short-term dependencies, they struggle to fully capture the complex long-term
patterns in traffic flow, which are crucial for accurate traffic prediction. Moreover, RNNs
face challenges such as increased computational complexity, time-consuming iterations, and
gradient issues when modeling these longer temporal dependencies. As a result, relying
solely on single models is inadequate for fully addressing the temporal dependencies
inherent in traffic data.

With regards to the spatial correlations, many existing studies depend on pre-defined
static graphs that rely on distance to determine the relationships between road segments.
However, in real-world situations, non-adjacent nodes can have strong relationships, and
nodes with similar distances may not necessarily exhibit strong spatial dependencies due to
hidden factors such as intersections, opposing lanes, or roadway closures. Moreover, spatial
relationships are dynamic and subject to change over time due to non-linear correlations
and unpredictable events like festivals, accidents, and road maintenance. These events
lead to unexpected changes in traffic flow within adjacent areas. Therefore, models that
rely on pre-defined graphs and ignore hidden and dynamic factors frequently struggle to
capture the intricate spatial relationships within a road network, resulting in inaccurate
traffic flow predictions.

Moreover, as the spatio-temporal data vary among both the temporal and spatial
dimensions, traffic flow patterns differ by time and location. For instance, commercial
areas typically experience higher traffic levels during the daytime compared to the evening
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time. Similarly, areas in commercial districts usually exhibit higher traffic overall, whereas
residential areas tend to have lighter traffic. Therefore, it is crucial to consider the real-node
characteristics in terms of both time and space scales to improve performance by employing
a self-attention mechanism.

Motivated by the limitations mentioned above, this paper introduces an innovative
architecture called the Adaptive Spatio-Temporal Attention-Based Multi-Model (ASTAM)
for traffic flow prediction. This architecture employs multi-temporal gated convolution
to capture temporal dependencies at various time periods. Additionally, a multi-graph
approach is used to model complex spatial correlations, including an adaptive graph to
capture hidden correlations and a dynamic graph for capturing dynamic spatial relation-
ships between adjacent areas. Moreover, the architecture adaptively models the complex
spatio-temporal variations by adopting a self-attention mechanism. This paper aims to
address the following research question:

• RQ1: To what extent does the proposed ASTAM architecture enhance the accuracy of
traffic flow prediction?

To test this question, the following hypothesis is proposed:

• H1: The proposed ASTAM architecture significantly enhances the accuracy of traffic
flow prediction by effectively capturing complex spatio-temporal dependencies in
traffic flow data.

To address the research question, the following key contributions are presented:

• A novel spatio-temporal multi-model architecture is proposed. This architecture
integrates temporal gated convolution, an adaptive graph, a dynamic attention graph,
and self-attention mechanisms. This unified approach leverages the strengths of each
model to capture the complex spatio-temporal dynamics of traffic flow effectively.

• Multi-temporal gated convolutions are used to capture various time periods simul-
taneously and to represent temporal dependencies effectively, thereby enhancing
prediction performance.

• A parallel multi-graph fusion is proposed that integrates an adaptive graph and a
dynamic attention graph to accurately represent both hidden static and dynamic
spatial dependencies among different road segments.

• A spatio-temporal self-attention mechanism is incorporated to adaptively capture
spatio-temporal variation in the traffic flow.

• Extensive comparative experiments were conducted using 13 baselines across four
publicly available datasets. The results demonstrate that the proposed architecture
outperforms all baseline approaches. Additionally, ablation studies were performed
to evaluate the distinct contribution of each component within the architecture.

The remaining sections of this paper are structured as follows: Section 2 reviews the
relevant studies on traffic prediction. Section 3 presents the problem statement. Section 4
provides a detailed description of ASTAM. Section 5 presents a comprehensive comparison
of ASTAM with 13 baseline methods across four real-world public datasets, as well as
ablation studies and parameter sensitivity assessments. Section 6 discusses potential
real-world applications of ASTAM. Section 7 summarizes and concludes this research.

2. Related Work
Traffic prediction is a major issue in intelligent urban development, yet it presents chal-

lenges due to the complex and dynamic spatio-temporal patterns within traffic data. The
current approaches to traffic prediction are categorized into three main groups: statistical,
traditional machine learning, and deep learning approaches.
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Before the emergence of deep learning, early research employed statistical methods,
including Vector Auto-Regression (VAR) [24] and an Autoregressive Integrated Moving Av-
erage Model (ARIMA) [25] for traffic prediction. Nevertheless, these statistical approaches
are constrained by strict theoretical assumptions, reliance on previous knowledge, and fun-
damental statistical mathematics, which inadequately address the non-linear and complex
nature of traffic patterns. Consequently, these approaches face difficulties in delivering
precise predictions of traffic flow.

Traditional machine learning approaches, including Support Vector Regression
(SVR) [26] and Support Vector Machines (SVMs) [27], have demonstrated substantially bet-
ter accuracy than statistical techniques as they effectively capture non-linear correlations in
traffic data. Despite their effectiveness, these approaches heavily rely on sophisticated math-
ematical techniques and manual feature engineering that limit their ability to effectively
extract the intricate spatio-temporal relationships within the traffic data. Consequently,
their performance may be constrained and challenging to improve further.

With data growing substantially in volume, deep neural networks have the capability
to deliver superior performance in comparison to conventional time series analytical tech-
niques when dealing with regression problems. Deep learning has demonstrated promising
outcomes across various domains, including those that encompass traffic prediction, owing
to their ability to model complex non-linear characteristics in spatio-temporal data [28].
RNNs and Convolutional Neural Networks (CNNs) are two methods that have been
extensively employed in traffic prediction tasks.

Traffic flow prediction is considered a conventional time series prediction task; there-
fore, it is critical to capture the temporal dependencies. Various traffic prediction approaches
use RNNs [19] and their variations, GRU [20] and LSTM [21], as temporal feature models
to enhance the accuracy of traffic prediction [22,23]. However, when RNNs are the only
models that are used to capture the temporal dependencies in the traffic data, the spatial
dependencies between the road segments inherent in traffic patterns can be neglected.

To address the challenges faced by RNNs, spatio-temporal modeling approaches that
rely on CNNs have been developed and extensively utilized in traffic prediction tasks
for modeling the spatial relationships between different regions. In [29], the traffic data
were represented as a sequence of images, and CNNs were applied to represent the spatial
correlations. The authors in [30] introduced Deep Spatio-Temporal Residual Networks
(ST-ResNets) which employ CNNs for spatial feature extraction in the traffic network. By
stacking layers of RNNs and CNNs, the prediction accuracy was significantly enhanced.
In [31,32], LSTM layers were employed alongside the CNN structure, which enables the
seamless extraction of both spatial and temporal correlations. However, CNNs are typically
limited to grid-like data, and modeling traffic data as a grid can result in the loss of valuable
spatial information, leading to inaccurate predictions. The irregular placement of traffic
sensors further demonstrated the inadequacy of CNNs for handling non-Euclidean data
like traffic networks.

In recent years, researchers have investigated the use of GNNs to model traffic net-
works in non-Euclidean spaces. GNNs have proven their effectiveness in handling the
complexities of graph-structured data and capturing the spatio-temporal relationships
within those data [14,15]. Specifically, Graph Convolutional Networks (GCNs) [33] and
Graph Attention Networks (GATs) [34] are utilized to extract spatial correlations in traffic
data. Several studies have integrated GCNs and GATs with different RNN architectures to
enhance traffic prediction. For example, a study [9] introduced a diffusion convolutional
recurrent neural network (DCRNN) that employs bi-directional random walks in the graph
for spatial dependency extraction, and GRUs are utilized for temporal correlation captur-
ing. In [18], a novel Temporal Graph Convolutional Network (T-GCN), which integrates
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GCNs and GRUs to enhance traffic prediction performance, is introduced. Additionally,
in [35], the GAT is employed to extract complex spatial dependencies, and a GRU model is
utilized to extract temporal features. However, RNN architectures struggle to effectively
capture long temporal patterns, leading to high computational complexity and extended
processing times.

Rather than adopting RNN approaches for temporal correlation extraction, several
studies have employed Temporal Convolutional Networks (TCNs) to capture the short-
term and long-term temporal dependencies within traffic networks [36–38]. For instance,
the authors in [10] proposed a Spatio-Temporal Graph Convolutional Network (STGCN)
that uses the GCN to extract spatial correlations and employed convolutional structures to
capture temporal dependencies. The study in [16] adopts a gated mechanism for TCNs to
effectively extract complex temporal dependencies. This mechanism consists of a stack of
spatio-temporal layers where an integration of GCNs and gated TCNs is used to capture
spatio-temporal correlations of traffic data. However, the models in [10,16] excessively
rely on handling pre-defined graphs that are based on Euclidean distances. Therefore, an
Adaptive Graph Convolutional Recurrent Network (AGCRN) is proposed in [11]. The
AGCRN avoids relying on pre-defined graphs by designing an embedding for each node
to create an adaptive graph that can extract the hidden spatial relationships.

Additionally, attention mechanisms have been employed effectively to extract and em-
phasize crucial information, thereby improving the modeling of complex spatio-temporal
relationships in traffic networks. An Attention-Based Spatio-Temporal Graph Convolu-
tional Network (ASTGCN) model is introduced in [39]. This method integrates GCNs
and CNNs to jointly extract dynamic spatio-temporal dependencies in traffic flow. The
final prediction is obtained by weighting the outputs derived from three distinct temporal
features, enhancing the capability of the model to represent sophisticated patterns within
traffic data. Moreover, an advanced spatio-temporal attention mechanism was designed to
effectively capture the dynamic dependencies among nodes, leading to the development
of the Dynamic Spatial–Temporal-Aware Graph Neural Network (DSTAGNN) [40]. This
model incorporates the GCN, with spatial weights, which are adaptively adjusted through
an enhanced self-attention mechanism. Several studies, such as [41,42], have employed
node-level attention mechanisms to adaptively model spatio-temporal variations by taking
into account the real characteristics of nodes. These investigations have demonstrated
that this technique is effective for enhancing traffic prediction tasks, primarily owing to its
ability to extract the intricate correlations inherent in traffic data.

Beyond the previously discussed techniques, alternative methods including Dynamic
Time Warping (DTW) [43], differential equations [44–46], and Gaussian function [47], have
been employed to enhance traffic flow prediction and have led to significant outcomes.
These approaches offer valuable perspectives on extracting the spatio-temporal relation-
ships, thereby improving traffic prediction.

3. Preliminaries

Definition 1. (Road Traffic Network): This research represents the road traffic network as a graph
G = (V, E, A), where

• V = {v1, v2, ..., vN} is the set of traffic sensor nodes with |V| = N, N being the total sensor
nodes in the graph G. They are installed at different intersections across the road traffic network
to gather traffic data.

• E denotes set of edges connecting the node pairs in the graph G.
• A ∈ RN×N is the weighted adjacency matrix of the traffic graph G, and is normalized using

the following equation:
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Ai,j =

exp
(
−
(

dis(i,j)
σ

)2
)

if dis(i, j) ̸= 0

0 otherwise
(1)

where σ is the parameter for standard deviation that controls the rate of decay. dis(i, j) is the
distance between nodes vi, vj ∈ V. This exponential normalization assigns higher weights to closer
nodes and lower weights to distant nodes. The normalization ensures that all values in the adjacency
matrix are between 0 and 1.

Definition 2. (Traffic Signal): Xt = {X1
t , X2

t , ..., XN
t }, where Xt ∈ RN×F, denotes the value

collected from each sensor node in the graph G at given time t. F represents feature numbers for
each sensor node in the graph G. These features could be volume, speed, and occupancy. N is the
total sensor nodes in G.

A traffic flow prediction task involves predicting future traffic patterns that have
been inferred from historical observations over the past T time steps, denoted as
(Xt−T+1, Xt−T+2, ..., Xt−1, Xt) ∈ RN×F×T . The objective involves learning a non-linear
function f (·) that precisely predicts future traffic flow over the following Tp time steps.
This could be formulated mathematically as follows:

(Xt−T+1, Xt−T+2, ..., Xt−1, Xt)
f (·)−→ X̂ = (Xt+1, Xt+2, ..., Xt+Tp−1, Xt+Tp) (2)

4. Methodology
This paper introduces a novel architecture, the Adaptive Spatio-Temporal Attention-

Based Multi-Model (ASTAM), which is designed to enhance ITS through precise traffic
flow prediction by efficiently extracting spatio-temporal relationships in traffic data. This
section outlines in detail the implementation of the proposed architecture.

4.1. The Architecture of the ASTAM

The ASTAM comprises multi-scale temporal input segments, a stacked Adaptive
Multi-Model Spatio-Temporal block (AMST), and an output layer as depicted in Figure 1.
The ASTAM processes historical time steps, represented as (Xh,Xd,Xw), and predicts future
traffic flow for a specified duration, denoted by Tp.

The AMST includes three components: Temporal Correlation Modeling (TCM), Multi-
Graph Spatial Correlation Modeling (MGSCM), and Spatio-Temporal Self-Attention Mod-
eling (STSAM). The subsequent sections provide a detailed explanation for each of these
components within the ASTAM.

4.2. Multi-Scale Temporal Input Segments

The sliding time window approach is employed to extract three different historical
time segments: hourly, daily, and weekly, denoted by Xh, Xd, and Xw with the lengths of
the historical time steps as Th, Td, and Tw, respectively. Having three defined segments
allows the model to integrate information from various time scales, which is why it can
extract the complex temporal patterns inherent within traffic data effectively.

The hourly segment comprises the historical traffic data for the previous Th hours,
representing the immediate past that likely influences the future traffic flow. As depicted in
Figure 2, the hourly segment is indicated by the blue portion of the timeline and is defined
as follows:

Xh = (Xt−Th+1, Xt−Th+2, . . . . . . , Xt) ∈ RN×F×Th (3)
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Figure 1. The comprehensive architecture of the ASTAM.

Figure 2. Creating multi-scale temporal input segments based on hourly, daily, and weekly cycles.

The daily-periodic segment comprises historical traffic data from the corresponding
hours of previous Td days. These data are used to identify recurring daily patterns in
traffic flow, where s is the sampling frequency per day. As illustrated in Figure 2, the
daily segment is visually represented by the green portion of the timeline and is defined
as follows:

Xd = (Xt−(Td/Tp)∗s+1, ..., Xt−(Td/Tp)∗s+Tp , ..., Xt−s+1, ..., Xt−s+Tp) ∈ RN×F×Td (4)

The weekly-periodic segment comprises historical data from the same time of day
and the same day of the past weeks to detect recurring weekly traffic patterns. As shown
in Figure 2, the weekly segment is characterized by the red portion of the timeline and is
defined as follows:

Xw = (Xt−7∗(Tw/Tp)∗s+1, ..., Xt−7∗(Tw/Tp)∗s+Tp , ..., Xt−7∗s+1, ..., Xt−7∗s+Tp) ∈ RN×F×Tw (5)

These input segments, consisting of historical time steps (Xh, Xd, Xw) ∈ RN×F×T , are
initially projected into a high-dimensional space through linear transformations and then
passed to the AMST. Specifically, input segments are passed to the TCM model.
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4.3. Temporal Correlation Modeling (TCM)

The TCN is utilized with causal convolutions to model temporal correlations in
traffic data. Dilated causal convolutions enable an exponentially expanding receptive field
through increased layer depth, allowing the filter to skip input values at specific intervals.
Unlike RNN-based methods, the TCN handles long-range sequences non-recursively, which
enables parallel computation and prevents gradient vanishing. Zero-padding is applied to
maintain the causal sequence, which guarantees that predictions made during each time
step depend solely on past data. In each time step t, the temporal convolution mechanism
F applied to input elements s, s ∈ X, filter f: {0, 1, . . . . . . , k} is calculated as follows:

F(s) = X ⋆ f(t)
k−1

∑
s=0

f(s)X(t − D × s) (6)

where X signifies input, f refers to the filter, ⋆ denotes the convolution operator, k represents
convolution kernel size, and D is the dilation factor that determines the skipping distance.

As illustrated in Figure 3a, D = 2i−1 at the ith layer. The first layer has a dilation factor
of D = 1, performing a regular convolution without skipping any values. In the second
layer, with D = 2, the filter skips every second value during convolution. At the third layer,
where D = 4, the filter skips three values between convolutions. By increasing D in this
manner, the model’s receptive field grows exponentially, enabling it to capture extended
sequences with a smaller number of layers and minimal computational costs.

(a) (b)

Figure 3. (a) TCN architecture illustration. (b) A structural layout of TGC.

Temporal Gated Convolution (TGC)

Gating mechanisms for TCNs extract complex temporal dependencies, manage infor-
mation flow [48], and increase the ability to manage long sequences, thereby improving
model performance. Thus, the proposed architecture incorporates a gating mechanism into
the TCN to form a gated TCN by constructing two TCN models, TCNA and TCNB. TCNB

is employed to produce gating signals, which are then dot-multiplied by TCNA for creating
a TGC as shown in Figure 3b. The equation of TGC is as follows:

XTGC = TCNA(X)⊙ σ(TCNB(X)) (7)

where σ refers to the sigmoid function, which is used to emphasize strong relationships
and filter out the weaker ones. The symbol ⊙ represents the element-wise product,
XTGC ∈ RT×N×d signifies the output produced by the TGC, and d denotes the embed-
ding dimension.
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TCM utilizes three TGCs: hourly TGC, daily TGC, and weekly TGC. These TGCs
capture temporal dependencies across different scales by processing multi-scale temporal
input segments (Xh, Xd, Xw).

The equation of hourly TGC is as follows:

Xl
HTGC = (Wth ⋆ Xl−1

h + bt)⊙ σ(Wth ⋆ Xl−1
h + ct) (8)

The equation of daily TGC is as follows:

Xl
DTGC = (Wtd ⋆ Xl−1

d + bt)⊙ σ(Wtd ⋆ Xl−1
d + ct) (9)

The equation of weekly TGC is as follows:

Xl
WTGC = (Wtw ⋆ Xl−1

w + bt)⊙ σ(Wtw ⋆ Xl−1
w + ct) (10)

where Xl−1
h , Xl−1

d , and Xl−1
w refer to the output generated by the (l − 1)th block, ⋆ signifies

the convolution operator, Wth, Wtd, Wtw, bt, and ct are learnable parameters, σ indicates
the sigmoid function, and ⊙ represents the element-wise product. TCM ultimately pro-
duces a final outcome by concatenating the three output temporal vectors Xl

HTGC, Xl
DTGC,

and Xl
WTGC, and a linear transformation is then applied to align the output channels as

demonstrated in Equation (11).

(Xl
temp) = Concat(Xl

HTGC, Xl
DTGC, Xl

WTGC)⊙ M (11)

where (Xl
temp) ∈ RT×N×d represents the output generated by TCM. ⊙ is the element-wise

product, and M denotes the masking matrix.

4.4. Multi-Graph Spatial Correlation Modeling (MGSCM)

MGSCM comprises two parallel graph networks: a Static Adaptive Graph Con-
volutional Network (SAGCN) and a Dynamic Graph Attention Network (DGAT), as
shown in Figure 4. These networks are designed to adaptively and dynamically iden-
tify complex spatial relationships among sensor nodes representing different regions in
real-world scenarios.

Figure 4. An architectural diagram of MGSCM.
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4.4.1. Static Adaptive Graph Convolutional Network (SAGCN)

The proposed architecture leverages the SAGCN to represent stable spatial relation-
ships among sensor nodes, independent of geographic distance. This is achieved through
the utilization of the GCN. Traditional GCNs rely on a fixed, pre-defined graph structure.
However, this static graph may not accurately represent spatial dependencies, as connec-
tions between nodes are solely based on proximity. This limitation can introduce substantial
biases, hindering the effectiveness of the existing GCN in capturing the underlying spatial
relationships [11,16].

To address the issue, a self-adaptive graph matrix A is constructed through continuous
optimization during training via end-to-end modeling with stochastic gradient descent
and learnable parameters, which allow the model to discover hidden spatial relationships
independently. It is accomplished through the random initialization of a learnable node
embedding dictionary E ∈ RN×d1 for each node, where d1 indicates the node embedding
matrix’s dimensions. Through the node embedding multiplication, the spatial correlations
among all node pairs can be assessed.

The process for constructing the self-adaptive graph matrix A is presented in the
following equation:

A = so f tmax(IN + ReLU(tanh(EET))) (12)

where IN represents the identity matrix. ReLU() and tanh() are non-linear activation
functions. The so f tmax() is employed for graph matrix normalization.

Given the effectiveness of the GCN in extracting features from graph data, it was
employed to extract the intricate spatial dependencies among nodes. The graph convolution
operation in the SAGCN can be defined by combining the self-adaptive graph matrix A
with the GCN, as expressed below:

Xl
SAGCN = AXl

tempΘ (13)

where Xl
SAGCN ∈ RT×N×d represents output generated by the SAGCN, and Θ ∈ Rd×d

refers to the convolutional kernel.

4.4.2. Dynamic Graph Attention Network (DGAT)

In reality, spatial correlations among nodes evolve over time and are influenced by their
neighboring nodes. For example, sudden accidents, construction, and road maintenance
can lead to unexpected vehicle volume changes in adjacent areas. These dynamic factors can
significantly alter the spatial relationships among road network nodes. GAT is employed
to capture these dynamic spatial relationships. GAT leverages an attention mechanism to
determine the hidden representation of each node in the graph, learns the relative weights
of neighboring nodes, and aggregates their spatial features. The attention weights adjust
according to data changes, introducing dynamic spatial correlations to the network.

The inputs required for DGAT are the weighted adjacency matrix A ∈ RN×N and

sensor node feature set at time step t in the Xl
temp, denoted as ht = {

→
ht

1,
→
ht

2........
→
t
N}, where

→
ht ∈ Rd, and N refers to sensor node numbers. Suppose the sensor node features for node

i and node j are
→
ht

i , and
→
ht

j, and j ∈ Ni, where Ni indicates the set of neighboring nodes
associated with node i as shown in Figure 5. The process for computing the attention score
et

ij between pairs of sensor nodes (i and j) at a time step t is demonstrated in Equation (14):

et
ij = LeaklyReLU(aT(W

→
ht

i ||W
→
ht

j)) (14)
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where a specifies the function used to compute the attention score, · T is the transposition,
W ∈ Rd′×d represents the weight matrix for all sensor nodes, || signifies the concatenation
operation, and LeakyReLU denotes the non-linear activation function to filter out less sig-
nificant relationships. The attention coefficient αt

ij is obtained by normalizing the attention
score et

ij for all the neighboring sensor nodes j relative to sensor node i as follows:

αt
ij = so f tmax(et

ij) =
exp(et

ij)

∑k∈Ni
exp(et

ik)
(15)

where et
ij denotes the attention score between sensor nodes ji, and so f tmax() is a non-linear

activation function.

Lastly, the output feature
→
h′i

t can be obtained by a multi-head graph attentional layer
that aggregates features produced by multi-head attention through the summation after
applying the non-activation ELU function to reduce negative values as follows:

→
h′ti = Concat(ELU( ∑

j∈Ni

αk
ijW

k
→
ht

j)) (16)

where k signifies head numbers. For head k, Wk denotes the transformation parameter

matrix ∈ Rd′×d.
→
h′ti ∈ Rd represents the GAT output for sensor node i at time step t in Xl

temp.
Similarly, each node undergoes the attention process to derive its output representation.
Equation (17) uniformly demonstrates the steps using matrix calculations:

Xl
DGAT = ((A ⊙ M)h(l)t W) (17)

A is the weighted adjacency matrix created according to distance relationships among
sensor nodes. M ∈ RN×N is a matrix of dynamic attention factors. h(l)t is the input of the
lth block at time step t, comprising a collection of features from the sensor nodes. The final
output vector for lth block of DGAT is Xl

DGAT ∈ RT×N×d.

Figure 5. A structure diagram of GAT.

4.4.3. Fusion Gate

For harnessing the strengths of both static and dynamic graph networks within
(SAGCN) and (DGAT), a fusion gate was developed to effectively integrate the composite
spatial dependencies. The operational details of the fusion gate mechanism are as follows:

Xl
spa = gate ⊙ Xl

SAGCN + (1 − gate)⊙ Xl
DGAT (18)
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with
gate = σ(Xl

SAGCNWg1 + Xl
DGATWg2 + bg) (19)

where gate is a weight vector that dynamically regulates the static and dynamic flow of spa-
tial relationships in every sensor node. σ signifies a sigmoid activation function. Wg1, Wg2,
and bg denote parameters. The output yielded by MGSCM, denoted as Xl

spa ∈ RT×N×d,
represents the learned spatial features extracted from the input data.

4.5. Spatio-Temporal Self-Attention Modeling (STSAM)

Spatio-temporal data exhibit variability across both the spatial and temporal dimen-
sions. To adaptively capture these variations, STSAM is introduced as illustrated in Figure 6.
STSAM comprises two distinct layers: a Temporal Self-Attention Layer and a Spatial Self-
Attention Layer. Initially, a learnable node embedding dictionary, E ∈ RN×d1 , is employed
to demonstrate the characteristics of an arbitrary node v in a high-dimensional space.
Notably, the same node embedding E is utilized in MGSCM to ensure a consistent high-
dimensional representation of nodes throughout the model, thereby reducing the number
of parameters. Subsequently, a node-level self-attention mechanism is applied.

Figure 6. A diagram for STSAM.

4.5.1. Temporal Self-Attention Layer (TSAL)

Traffic conditions at different time steps are influenced by each other, and these
relationships can change dynamically. TSAL is utilized to adaptively capture long-term
dynamic temporal relationships with a consideration of real-node characteristics. This layer
takes Xl

temp, the output of TCM, as an input for the temporal dimension. Specifically, Query:
Q, Key: K, and Value: V matrices for an arbitrary node v ∈ V are computed as follows:

Qv = EvWQ, Kv
temp = Xl

tempWK
temp, Vv

temp = Xl
temp (20)

where WQ and WK
temp ∈ Rd×d

′′
are learnable projection matrices, while d

′′
represents

the dimensions of the matrices. In the next step, matrix products are computed and
subsequently normalized to derive the attention scores for node v in each time step:

ASv
temp =

Qv(Kv
temp)

T

√
d′′ (21)
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The output of the TSAL is computed as follows:

ATTtemp(Qv, Kv
temp, Vv

temp) = So f tmax(ASv
temp)V

v
temp (22)

where so f tmax() is employed to normalize weight scores, ensuring they form a probabil-
ity distribution.

4.5.2. Spatial Self-Attention Layer (SSAL)

Within the spatial context, traffic situations at different areas influence one another,
with these interactions changing dynamically. The SSAL is employed to effectively capture
the evolving correlations between nodes with a consideration of real-node characteristics.
This layer takes Xl

spa, the output of MGSCM, as an input for the spatial dimension. Specifi-
cally, Query: Q, Key: K, and Value: V matrices for an arbitrary node v ∈ V at time step t
can be calculated as follows:

Qv = EvWQ, Kv
spa = Xl

spaWK
spa, Vv

spa = Xl
spa (23)

where WQ and WK
spa ∈ Rd×d

′′
are learnable projection matrices, while d

′′
represents the

dimensions of the matrices. Subsequently, matrix products are computed and then normal-
ized to derive the attention scores for node v at time step t using the following equation:

ASv
spa =

Qv(Kv
spa)

T
√

d′′ (24)

Finally, the output of the SSAL can be calculated as follows:

ATTspa(Qv, Kv
spa, Vv

spa) = So f tmax(ASv
spa)V

v
spa (25)

4.5.3. Spatio-Temporal Self-Attention Concatenation

The outputs of Equations (22) and (25) are concatenated to obtain the final output of
STSAM, denoted as Xl

ATT :

Xl
ATT = Concat(ATTtemp, ATTspa) (26)

By incorporating STSAM, the network focuses on the most significant information
and effectively captures both dynamic and long-term spatio-temporal correlations, thereby
enhancing traffic prediction accuracy.

4.6. Skipping Layer

Skip connections are employed by applying a standard convolution layer to each
output from the AMST block and connecting them to the output layer. It transforms
the output, XATT , into Xskip ∈ RT×N×dskip , where dskip is the dimension of skip. This
transformation can be carried out as follows:

Xl
skip = Conv(Xl

ATT) (27)

These connections are crucial for capturing spatial dependencies across various tem-
poral scales. By incorporating these skip connections, the model improves its ability to
generate accurate traffic flow predictions by retaining critical information from previous
layers, bypassing intermediate ones, and connecting to the final layers. The outputs from
all skip connections are aggregated via summation, as described in Equation (28), yielding
the final result denoted as X f inal ∈ RT×N×dskip :



Sensors 2025, 25, 282 14 of 26

X f inal =
l

∑
i=1

Xskip(i) (28)

4.7. Output Layer

To predict the traffic flow for multi-steps, the output layer applies two standard 1 × 1
convolution layers to generate the final prediction as follows:

X̂ = Conv2(ReLU(Conv1(X f inal))) (29)

where Conv2 and Conv1 are two standard convolutional layers that transform the skip
dimensions of X f inal and time steps, respectively. ReLU() is the non-linear activation
function, and X̂ ∈ RTp×N×F denotes the prediction result for time steps Tp.

5. Experiments and Discussion
This section presents the experimental results of the ASTAM, comparing its perfor-

mance to baseline models across four real-world datasets using various evaluation metrics
for a comprehensive assessment. Ablation studies were conducted to evaluate the contri-
bution of each component, along with additional tests on parameter sensitivity and the
effectiveness of the self-adaptive matrix.

5.1. Datasets

To assess the predictive performance of the ASTAM, extensive tests were conducted us-
ing four publicly available real-world traffic datasets that were collected by the Caltrans Per-
formance Measurement System, specifically PeMS03, PeMS04, PeMS07, and PeMS08 [49].
These datasets were obtained by utilizing sensors located in California in the United States
of America. Every 30 s, the sensors collected data, which were then aggregated every five
minutes to create a data point. Table 1 shows the details of these datasets.

Table 1. Overview of datasets.

Dataset Sensors Edges Time Interval Time Steps Time Span

PeMS03 358 547 26,208 5 min 3 months
PeMS04 307 340 16,992 5 min 2 months
PeMS07 883 866 28,224 5 min 3 months
PeMS08 170 295 17,856 5 min 2 months

5.2. Settings

The experiments were conducted on a server configured with one NVIDIA Tesla A100
GPU with 40 GB of memory. The ASTAM was developed with Python 3.9.7 and PyTorch.
All the datasets were divided into sets for training, validation, and testing with ratios 6:2:2.
Table 2 shows the total number of samples in addition to the training and test samples.
In the prediction process, the previous time steps were set to twelve for every segment,
forming a time series used to predict the subsequent twelve time steps. This configuration
aims to forecast traffic flow over a one-hour period into the future, denoted by the symbol
Tp = 12.

The ASTAM was trained on each dataset five times, and the average results were used.
Throughout the training phase, batch size was assigned a value of 32, with a learning rate
of 0.0001. The embedding dimension d was configured as 64, the kernel size and layer
numbers of the TCN were set to 3 and 4, respectively.
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Table 2. Information on total, training, and test samples.

Dataset Total Samples Training Samples Test Samples

PeMS03 26,208 15,726 5241
PeMS04 16,992 10,196 3398
PeMS07 28,224 16,936 5644
PeMS08 17,856 10,714 3571

5.3. Evaluation Metrics

Throughout the studies, the prediction accuracy of the ASTAM was assessed with
three metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE).

MAE calculates the absolute difference between the actual and predicted values to
determine the prediction accuracy. It is calculated as follows:

MAE(x, x̂) =
1
N

N

∑
i=1

|xi − x̂i| (30)

RMSE calculates the variation between the actual and predicted values, indicating
the extent to which the model fits the data. RMSE is particularly sensitive to outliers. It is
calculated as follows:

RMSE(x, x̂) =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)2 (31)

MAPE offers insight into the proportional error comparing the actual and predicted
results by expressing the percentage variation between the actual and predicted values. It
is calculated as follows:

MAPE(x, x̂) =
1
N

N

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100% (32)

where xi represents the true value. x̂i represents the predicted result for the ith time sample,
with N representing the number of samples.

5.4. Baselines

To validate the ASTAM, comparisons with representative baseline approaches were
performed. The selected baselines include traditional prediction techniques, neural network
models, and spatio-temporal deep learning techniques, including GNNs and attention-
based approaches. Table 3 summarizes the baseline approaches.

Table 3. Baseline approaches.

Approach Key Characteristics

Vector Auto-Regression (VAR) [50] A statistical technique that models variables using previ-
ous values and relationships linearly.

Autoregressive Integrated Moving
Average Model (ARIMA) [51]

A statistical technique that analyzes autocorrelation and
uses differencing to predict time series patterns.

Support Vector Regression
(SVR) [26]

An SVM-based approach that fits a hyperplane with a
maximum margin and uses kernels for non-linear rela-
tionships.

Fully Connected Long Short-Term
Memory Model (FC-LSTM) [52]

A neural network architecture that integrates dense lay-
ers and LSTM to capture temporal correlations.
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Table 3. Cont.

Approach Key Characteristics

Temporal Convolutional Network
(TCN) [53]

A neural network architecture that uses causal convolu-
tions with dilation for long-term temporal modeling.

Diffusion Convolutional Recurrent
Neural Network (DCRNN) [9]

A spatio-temporal model that combines random walks
for spatial graphs with GRUs for temporal extraction.

Spatial–Temporal Graph
Convolutional Network
(STGCN) [10]

A spatio-temporal model that incorporates the GCN for
spatial and 1D convolution for temporal correlations.

Graph WaveNet (GWN) [16]
A spatio-temporal model that integrates diffusion convo-
lutions and the GCN hierarchically for spatio-temporal
data.

Attention-Based Spatial–Temporal
Graph Convolutional Network
(ASTGCN) [39]

A spatio-temporal model that integrates GCN, CNN, and
attention mechanisms for dynamic spatio-temporal data.

Spatio-temporal Synchronous
Graph Convolutional Network
(STSGCN) [49]

A spatio-temporal model that combines GCN and syn-
chronization mechanisms for local spatio-temporal pat-
terns.

Adaptive Graph Convolutional
Recurrent Networks (AGCRNs) [11]

A spatio-temporal model enhances the GCN by incorpo-
rating node-adaptive learning and data-adaptive graph
construction, combined with GRUs for dependencies.

Time-Aware Zigzags at Graph
Convolutional Network
(Z-GCNET) [12]

A spatio-temporal model that uses a zigzag layer for
time-aware GCNs and GRUs for temporal modeling.

Dynamic Spatial–Temporal-Aware
Graph Neural Networks
(DSTAGNNs) [40]

A spatio-temporal model that designs spatio-temporal
attention and gated convolutions for dynamic extraction.

5.5. Experimental Results and Analysis

This study aims to evaluate the extent to which the proposed ASTAM architecture
improves the accuracy of traffic flow prediction. The results obtained from experiments
are discussed in this section to address this question. Table 4 showcases the results of the
proposed ASTAM architecture comparing its performance against the baseline approaches
for next-hour predictions across four datasets.

Table 4. Comparison of next-hour prediction performance across various models using PeMS datasets
from real-world scenarios.

Model
PeMS03 PeMS04 PeMS07 PeMS08

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

VAR 23.65 38.26 24.51 24.54 38.61 17.24 50.22 75.63 32.22 19.19 29.81 13.1
ARIMA 35.41 47.59 33.78 33.73 48.8 24.18 38.17 59.27 19.46 31.09 44.32 22.73
SVR 21.97 35.29 21.51 28.7 44.56 19.2 32.49 50.22 14.26 23.25 36.16 14.64

FC-LSTM 21.33 35.11 23.33 27.14 41.59 18.20 29.98 45.94 13.2 22.2 34.06 14.2
TCN 19.32 33.55 19.93 23.22 37.26 15.59 32.72 42.23 14.26 22.72 35.79 14.03

DCRNN 18.18 30.31 18.91 24.7 38.12 17.12 25.3 38.58 11.66 17.86 27.83 11.45
STGCN 17.55 30.42 17.34 22.7 35.55 14.56 25.38 39.34 11.21 18.02 27.83 11.4
GWN 19.85 32.94 19.31 25.45 39.7 17.29 26.85 42.78 12.12 19.13 31.05 12.68

ASTGCN 17.34 29.66 17.24 22.93 35.22 16.56 24.05 37.97 10.92 18.25 28.06 11.64
STSGCN 17.48 29.21 16.78 21.19 33.65 13.9 24.26 39.03 10.2 17.13 26.80 10.96

AGCRN 15.98 28.25 15.23 19.88 32.27 13.03 22.26 36.47 9.16 15.97 25.25 10.13
Z-GCNET 16.64 28.15 16.39 19.67 31.86 12.9 21.79 35.15 9.27 16.03 25.28 10.39

DSTAGNN 15.57 27.21 14.68 19.44 31.83 12.82 21.46 34.82 9.12 15.81 25.08 9.98
ASTAM 14.8 22.7 13.71 19.2 28.27 12.12 20.2 30.4 8.21 14.5 21.9 9.6

The experimental results reveal that the proposed ASTAM architecture outperformed
all baseline approaches across all metrics on the four datasets, demonstrating its supe-
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rior predictive performance. Specifically, when compared to the best baseline approach,
DSTAGNN, the proposed ASTAM architecture demonstrated reductions on the PeMS03
dataset of 16.57% in RMSE, 4.94% in MAE, and 6.60% in MAPE. Similarly, on the PeMS04
dataset, the ASTAM achieved reductions of 11.18% in RMSE, 1.23% in MAE, and 5.46%
in MAPE. On the PeMS07 dataset, the ASTAM achieved reductions of 12.69% in RMSE,
5.87% in MAE, and 9.97% in MAPE. On the PeMS08 dataset, the ASTAM demonstrated
reductions of 12.67% in RMSE, 8.28% in MAE, and 3.8% in MAPE.

Overall, spatio-temporal deep learning techniques, including GNNs and attention-
based approaches (including DCRNN, STGCN, GWN, ASTGCN, STSGCN, AGCRN, Z-
GCNET, DSTAGNN, and ASTAM) outperformed traditional techniques, like VAR, ARIMA,
SVR, and neural network models such as FC-LSTM and TCN. This is likely due to the
fact that traditional techniques and neural network models primarily focus on temporal
dependencies, neglecting the spatial correlations within traffic data. Accurate traffic flow
modeling requires the consideration of both temporal and spatial relationships.

Spatio-temporal deep learning techniques such as DCRNN, STGCN, and GWN typi-
cally outperform neural network models like FC-LSTM and TCN. This advantage stems
primarily from the ability of GNN-based models to effectively extract spatial relationships
from traffic data. However, DCRNN, STGCN, and GWN rely on pre-defined distance-based
graphs. In contrast, the ASTAM surpasses these models by utilizing a self-adaptive graph
matrix, which eliminates the need for pre-defined graphs and accurately captures the real
spatial dependencies within the data. The ASTAM reduced the average MAE by 19.9%,
17.8%, and 24.7%; the average RMSE by 23.3%, 22.4%, and 29.5%; and the average MAPE
by 25.6%, 20%, and 28.8%, compared with DCRNN, STGCN, and GWN, respectively, across
the four datasets.

Additionally, the ASTGCN employs a single convolution layer, which restricts its abil-
ity to capture temporal dependencies as it relies solely on information from the neighboring
time segment, disregarding variations across different time segments. The STSGCN, on the
other hand, employs learnable temporal and spatial embedding matrices that effectively
capture local spatio-temporal variations. However, the STSGCN does not address the
dynamic spatio-temporal relationships between nodes. The proposed model, ASTAM,
incorporates multi-gated modules that can capture long-term dynamic temporal correla-
tions, leading to improved prediction results. The ASTAM on the four datasets achieved
16.8% and 14.2% improvements in the average MAE, 21.2% and 19.6% improvements in
the average RMSE, and 22.4% and 15.7% improvements in the average MAPE, compared
to the ASTGCN and STSGCN.

AGCRN and Z-GCNET employ GRU for temporal learning; however, these models
may still be limited in extracting complex, dynamic, and long-term temporal relation-
ships. For spatial dependency learning, AGCRN and Z-GCNET adopt distinct approaches:
AGCRN uses learnable node parameters to adaptively model spatial dependencies, whereas
Z-GCNET employs time-aware convolutions for capturing only the topological features
of the data. In contrast, the proposed model, ASTAM, excels in the spatial dimension by
not only considering adaptive static node relationships but also learning dynamic rela-
tionship changes, resulting in improved predictive performance. Compared to AGCRN
and Z-GCNET across the four datasets, ASTAM reduced the average MAE by 7.3% and
7.5%, the average RMSE by 15.7% and 14.3%, and the average MAPE by 8.14% and
10.37%, respectively.

The DSTAGNN employs an attention mechanism to enhance its ability to capture
dynamic spatial correlations and utilizes multi-gated modules to extract temporal rela-
tionships. However, the multi-gated modules struggled to effectively capture dynamic
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temporal relationships. In contrast, the ASTAM employs self-attention mechanisms for
both spatial and temporal relationships, leading to improved performance.

To elaborate further, most of the studies mentioned employ separate modules to
sequentially capture spatio-temporal correlations. In contrast, the ASTAM leverages a
unified approach by incorporating a self-attention mechanism to simultaneously capture
both spatial and temporal dependencies. This innovative approach allows the ASTAM
to dynamically calculate the correlation strengths between nodes and time steps. By
emphasizing the most influential nodes and time steps on the current traffic state, the
architecture adaptively captures dynamic and long-term spatio-temporal information.

In summary, most of the previous models have employed a variety of graph struc-
tures to learn spatio-temporal traffic dependencies, often integrating them with TCN- or
RNN-based techniques. While these approaches have shown promise, the ASTAM stands
out by operating effectively across diverse traffic scenarios without needing pre-defined
graphs. The ASTAM’s innovative approach involves extracting intricate spatial depen-
dencies within traffic flow through a combination of static and dynamic graph modeling.
Additionally, the model utilizes multi-temporal gated convolution to efficiently capture
temporal dependencies across different periods. Finally, self-attention plays an essential
role in capturing long-term dynamic spatio-temporal variations, contributing significantly
to the model’s overall performance. As demonstrated in Figure 7, the ASTAM consis-
tently achieves the highest performance across all metrics for the four datasets PeMS03,
PeMS04, PeMS07, and PeMS08. These results support the hypothesis that the ASTAM
improves traffic flow prediction accuracy by effectively capturing complex spatio-temporal
dependencies.

5.6. Ablation Study

The experiments conducted on four datasets aimed to reinforce the validation of
each component’s importance in the ASTAM. Specifically, the removal of any individual
component resulted in a reduction in prediction accuracy that indicates the crucial role
of each component in capturing essential information and ultimately enhancing overall
performance. In ablation study experiments, the prediction time step was fixed at twelve,
while all other parameters remained consistent with the main results. The experiments
involved five different variants as follows:

• w/o TCM: TCM is removed from the ASTAM.
• w/o SAGCN: SAGCN is excluded from ASTAM.
• w/o DGAT: DGAT is eliminated from ASTAM.
• w/o Fusion: Fusion gate is omitted from ASTAM.
• w/o STSAM: STSAM is canceled from ASTAM.

The findings from the ablation studies, detailed in Table 5 and visualized in Figure 8,
offer insights into the performance of the model when various components are removed.
The studies demonstrate that the ASTAM achieved the best results, indicating that each
individual component had a significant impact on overall performance. In addition, the
variant (w/o TCM) performed the worst across all datasets, demonstrating the significant
effect of the TCM on enhancing prediction accuracy. The variant (w/o SAGCN) ranked
the second-lowest, which indicates the model heavily depends on capturing static hidden
spatial dependencies. The impact of the remaining components varied across datasets
as a result of the differing intrinsic patterns existing within these datasets. Overall, each
component within the ASTAM significantly contributed to enhancing the prediction.
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(a) (b)

(c) (d)

Figure 7. ASTAM versus different baselines for (a) PeMS03, (b) PeMS04, (c) PeMS07, and (d) PeMS08.

Table 5. Ablation study results.

Model
PeMS03 PeMS04 PeMS07 PeMS08

MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE% MAE RMSE MAPE%

w/o TCM 19.7 28.8 19.21 28 35 23.1 29 43.2 12.37 20.4 29.9 18.17
w/o SAGCN 15.2 25.2 15.84 21.1 31.8 13.56 21.6 34.1 9.68 15.7 23.2 12.73
w/o DGAT 14.82 23.9 14.87 20.8 31.4 12.5 21.02 33.1 9.76 14.7 22.4 9.96
w/o Fusion 14.97 22.8 15.03 21 30.5 13.43 21.2 33.4 8.93 14.6 22.4 10.2
w/o STSAM 14.9 23.8 15.56 20.5 30.9 13.26 21.1 33.7 9.27 14.8 22.3 10.65
ASTAM 14.8 22.7 13.71 19.2 28.27 12.12 20.2 30.4 8.21 14.5 21.9 9.6

According to the ablation studies, the variant (w/o TCM) evidently obtained the
lowest prediction performance among all variants on all datasets compared to the AS-
TAM. For instance, in terms of MAE, its performance decreased by 24.8% and 31.4% for
PeMS03 and PeMS04, respectively, whereas it dropped by 30.3% and 28.9% for PeMS07 and
PeMS08, respectively. These reductions demonstrate the significance of TCM in enhanc-
ing the performance of the ASTAM by effectively capturing temporal correlations within
traffic data.

For the variant (w/o SAGCN), the prediction performance was notably worse. In terms
of MAE, its performance decreased by 2.63%, 9%, 6.4%, and 7.6% for PeMS03, PeMS04,
PeMS07, and PeMS08, respectively, compared to the ASTAM. These results demonstrate
the crucial role of static hidden spatial dependencies in enhancing prediction, as the
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performance of the ASTAM declined when relying solely on dynamic influences. This
underscores the importance of incorporating a self-adaptive matrix within the SAGCN.

Figure 8. The ablation experiments conducted on all datasets.

Moreover, the variant (w/o DGAT) showed lower prediction accuracy across various
datasets compared with the ASTAM. For instance, in terms of MAE, the performance
declined relative to the ASTAM by 0.13%, 7.69%, 3.9%, and 1.36% for PeMS03, PeMS04,
PeMS07, and PeMS08, respectively. This indicates that DGAT can effectively improve
prediction results by considering the influence of neighboring node relationships and
dynamically adjusting spatial correlations over time.

Furthermore, the SAGCN and DGAT within the MGSCM component each offer
distinct advantages that can contribute to more accurate predictions. Notably, the SAGCN
appears to have a greater impact than the DGAT. The fusion of these components positively
influences the predictive performance of the ASTAM. The ASTAM achieved improvement
in MAE when compared with (w/o Fusion) by 1.14%, 9.3%, 4.9%, and 0.68% for PeMS03,
PeMS04, PeMS07, and PeMS08, respectively.
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Additionally, the predictive performance for the variant (w/o STSAM) was worse than
the ASTAM. The results demonstrate the significance of considering node characteristics
and the self-attention role in extracting the long-term spatio-temporal correlation, which
ultimately contributes to improved performance in the ASTAM. For example, the ASTAM
achieved a reduction in RMSE compared to the variant (w/o STSAM) by 0.67%, 6.3%,
4.26%, and 2.02% for PeMS03, PeMS04, PeMS07, and PeMS08, respectively.

5.7. Parameter Sensitivity Study

For evaluating the impact of main hyper-parameters on the ASTAM’s predictive
performance, sensitivity experiments were conducted on the number of layers in the TCN
and the data embedding dimension d using the PeMS04 dataset.

This study evaluated the influence of varying the number of layers in the TCN by
testing values of {1, 2, 3, 4, 5, 6}. The results, based on MAE, RMSE, and MAPE metrics,
are shown in Figure 9. Initially, the prediction performance improved significantly with
an increase in the number of layers. The best achievable performance was observed when
the TCN layer was determined to be 4. However, further increasing the number of layers
resulted in a decline in overall prediction accuracy.

(a) (b) (c)

Figure 9. Influence of varying the number of layers in TCN on (a) MAE, (b) RMSE, and (c) MAPE.

For the data embedding dimension d, as illustrated in Figure 10, the optimal prediction
results for the data embedding dimension d were obtained when it was set to 64. Overall,
the pattern indicates that prediction performance improved by increasing the embedding
dimension, peaking at 64, and then declined with additional increases. This occurred
because a larger embedding dimension initially enhanced the model’s capacity to capture
critical information. Once the optimal point was surpassed, increasing the embedding
dimension further resulted in extended training time and reduced prediction accuracy due
to over-fitting.

(a) (b) (c)

Figure 10. Effect of the various embedding dimensions on (a) MAE, (b) RMSE, and (c) MAPE.

5.8. Effectiveness of Self-Adaptive Matrix

To illustrate the effectiveness of the self-adaptive matrices within the SAGCN gener-
ated through iterative training, the top 25 sensors in each of the four datasets are visualized
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as shown in Figure 11. The correlations between selected sensor pairs are presented for
both pre-defined and self-adaptive matrices of the PeMS04 dataset to further illustrate the
advantages of employing an SAGCN as shown in Figure 12.

(a) (b) (c) (d)

Figure 11. Heatmap representation of the self-adaptive matrix for (a) PeMS03, (b) PeMS04, (c) PeMS07,
and (d) PeMS08.

(a) (b)

(c)

Figure 12. Effectiveness of the self-adaptive matrix. (a) Pre-defined matrix; (b) self-adaptive matrix;
(c) 48 h traffic flow on sensor pairs 15–16.

A self-adaptive matrix can learn hidden correlations between sensor pairs regardless of
their physical distance. For example, sensors 15 and 16 appear unrelated in the pre-defined
matrix, which relies solely on geographic distance, as shown in Figure 12a. However, they,
in fact, exhibit similar traffic patterns over time, as demonstrated by the visualized traffic
flow curves in Figure 12c. The self-adaptive matrix can effectively capture these hidden
spatial correlations between these sensors, as shown in Figure 12b. This demonstrates
the limitations of the pre-defined matrix in reflecting actual spatial dependencies between
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sensors, as distance alone may not guarantee strong correlations. These visualizations
emphasize the effectiveness of the ASTAM in capturing hidden spatial dependencies
between sensors using a self-adaptive matrix.

5.9. Visualization Analysis

To comprehensively evaluate the predictive capabilities of the ASTAM, its predictions
on the test set were compared with the actual traffic values through visualization. The
visualization reveals that the prediction results show similar flow and trends compared to
the actual traffic volumes during the predicted times, as shown in Figure 13. Even under
challenging traffic conditions, the ASTAM delivered accurate predictions that corresponded
closely to actual traffic volumes and effectively captured changes during significant traffic
fluctuations, as demonstrated in Figure 13b. This confirms the ASTAM’s ability to effectively
represent global traffic flow variations and capture diverse dependency features. Overall,
the consistently strong performance of the ASTAM across various datasets underscores its
reliability and robustness.

(a) (b)

(c) (d)

Figure 13. Traffic flow prediction result visualization of (a) PeMS03, (b) PeMS04, (c) PeMS07, and
(d) PeMS08.

6. ASTAM’s Potential Real-World Applications
The proposed ASTAM architecture not only contributes to the advancement of traffic

flow prediction but can also be adaptable to a variety of real-world applications such as
traffic congestion, estimating travel time, and urban infrastructure construction.

To elaborate more, the ASTAM can help travelers to plan their journeys more efficiently
while supporting traffic authorities in optimizing resource allocation, enhancing signal
coordination, and implementing effective congestion mitigation strategies.

Moreover, the ASTAM can be integrated with urban ITSs to strengthen real-time
traffic monitoring, improve traffic flow management, and support optimized scheduling.
These capabilities provide policymakers with valuable insights for future transportation
infrastructure development.

To sum up, the ASTAM’s potential applications across various tasks can contribute to
minimizing the environmental impact of transportation and fostering urban sustainability
through advanced technological solutions.
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7. Conclusions
This research introduces a new traffic flow prediction architecture known as the

ASTAM. The ASTAM employs multi-temporal gated convolution in a TCM to effectively
capture the non-linear temporal correlations across different periods inherent within traffic
data. Additionally, an MGSCM is introduced that combines static and dynamic multi-graph
networks to model complex spatial correlations. Finally, an STSAM is incorporated into
the architecture to adaptively capture long-term spatio-temporal variations. Empirical
evaluations were carried out on four real-world datasets to assess the superiority and
effectiveness of the proposed architecture in addressing traffic flow prediction challenges.
According to the experimental results, the proposed architecture demonstrated a substantial
improvement in traffic flow prediction performance across all four public datasets and
evaluation metrics.

The proposed architecture has certain limitations that require further investigation.
Firstly, the computational complexity of the architecture is relatively high, primarily due
to the dot-product operations inherent in the spatio-temporal self-attention mechanism.
Secondly, external factors such as weather, which can significantly influence traffic flow,
are not modeled in the current architecture. Future research will focus on addressing
these limitations by enhancing the model’s performance and optimizing its computational
efficiency. The potential to extend the proposed architecture to real-world applications will
be explored, alongside the integration of external conditions like weather data.
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