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Abstract: Conventional endoscopy is limited in its ability to examine the small bowel and
perform long-term monitoring due to the risk of infection and tissue perforation. Wireless
Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body’s
internal organs using a small camera that is swallowed like a pill. The existing active
locomotion technologies do not have a practical localization system to control the capsule’s
movement within the body. A robust localization system is essential for safely guiding the
WCE device through the complex gastrointestinal (GI) tract. Moreover, having access to
the capsule’s trajectory data is highly desirable for drug delivery and surgery, as well as
for creating accurate user profiles for diagnosis and future reference. Therefore, a robust,
real-time, and practical localization system is imperative to advance the field of WCE and
make it desirable for clinical trials. In this work, we have identified salient features of
different localization techniques and categorized studies in comprehensive tables. This
study is self-contained as it offers a comprehensive overview of emerging localization
techniques based on magnetic field, radio frequency (RF), video, and hybrid methods.
A summary at the end of each method is provided to point out the potential gaps and
give directions for future research. The main point of this work is to present an in-depth
review of the most recent localization techniques published in the past five years. This will
assist researchers in comprehending current techniques and pinpointing potential areas
for further investigation. This review can be a significant reference and guide for future
research on WCE localization.

Keywords: wireless capsule endoscopy; WCE localization; RF-based localization; video-
based localization; magnetic field-based localization; WCE tracking and safety

1. Introduction
Endoscopy is a medical procedure that involves the minimally invasive visual inspec-

tion of internal organs. The endoscope market is expanding as a result of the increasing
elderly population and the prevalence of chronic diseases. Nonetheless, traditional en-
doscopy has certain limitations. The endoscope has a steerable tip that is manipulated
externally via cable actuation. This mechanism spans the endoscope’s whole length, which
may have a diameter of up to 13 mm, making it rigid. As a result, patients may endure
pain, trauma, and discomfort throughout the treatment [1]. Patients are often advised to
undergo sedation for endoscopic procedures, which makes many patients uncomfortable
and leads them to avoid the procedure altogether. Moreover, given their semi-rigid charac-
teristics, traditional endoscopes cannot access some regions of the GI system, including
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the small intestine. They are also inappropriate for long-term investigation because of the
potential for infection and tissue perforation [2]. Furthermore, the COVID-19 pandemic has
influenced the need for rigid endoscopes, as several scheduled surgical operations were
postponed to focus on patients hit by COVID-19 [3].

WCE has emerged as an alternative to conventional endoscopy for diagnosing the
GI tract. WCE is an innovative device that monitors the body’s interior organs through a
capsule-sized camera. A standard WCE device has three primary components: a camera
system for picture or video capture, a transmission system, and a battery that powers the
internal electronics of the capsule [4,5]. WCE mitigates potential risks linked to traditional
endoscopy by offering a sedation-free treatment that does not induce pain [6,7]. In contrast
to traditional endoscopy, WCE is the gold standard for examining the small intestine [8,9].
Grand View Research estimates that the worldwide capsule endoscopy market was valued
at around 482.8 million in 2022 and is anticipated to expand at a compound annual growth
rate of 9.6% from 2023 to 2030 [10]. The increasing demand for capsule endoscopy is linked
to the expanding worldwide population of elderly individuals, which reached 703 million
in 2019 and is projected to climb by 1.5 billion by 2050 [11].

The existing locomotion technologies now in use do not have a practical localization
system to manage the capsule’s movement within the GI tract safely. For safe navigation,
an autonomous WCE system needs the real-time monitoring of the capsule’s trajectory
and a control system allowing for continued navigation as a function of acquired data.
Moreover, having access to the trajectory data of the capsule is highly desirable for creating
accurate user profiles for diagnosis and future reference. To overcome these limitations, it
is crucial to develop a precise localization system [12]. Furthermore, the effectiveness of
follow-up interventions, remote surgeon access, and other medical procedures significantly
relies on accurately and immediately determining the capsule’s location and orientation.

However, in-body localization is challenging due to the body’s varied tissue com-
position, limited space within the capsule for additional circuitry, and interference from
magnetic fields. Several techniques have been proposed to address these challenges, in-
cluding radio frequency, magnetic field, and video processing-based methods. Figure 1
provides an overview of a hybrid localization technique that combines different methods.
To create a practical localization system, researchers must address the following problems:

• The absolute position and orientation errors must not exceed 5 mm and 5°, respectively.
• The computational algorithms should be designed to be highly efficient with minimal

processing complexity to achieve optimal real-time localization.
• Given its large-meter span, the GI Track’s relative distance error must be less than 5%

to detect trajectory irregularities.
• The system should demonstrate resilience in everyday scenarios where ferromagnetic

objects are present.
• The overall power consumption of the capsule’s and on-body/off-body excitation and

data transmission circuitry should be low to support long monitoring.
• The system should be simple, lightweight, and easy to manufacture. To enhance

integrability, it should use a minimal number of sensors.

The previous literature includes several notable studies on localization techniques [13–15].
However, in this study, the articles that were examined in detail were published after 2019,
with a significant portion published in the previous few years. Figure 2 describes the
rigorous research methodology adopted for the relevant latest papers selected for this
review. We have identified salient features of different methods and categorized the
studies in tables. Figure 3 presents an overview of the different categories of localization
technologies. The review includes brief introductions of the latest methodologies used in the
recent articles, the study environment, the type of hardware used, the reported localization
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error, and the way forward. Furthermore, this research presents a self-contained and
comprehensive overview of localization strategies aimed at helping researchers understand
current obstacles, possible remedies, and opportunities for improving the localization
efficiency of wireless capsule endoscopy. In particular, the contributions of this work
include a comprehensive updated review of magnetic, video, RF, and hybrid technologies-
based localization techniques. This review can be a significant reference and guide for
future research on WCE localization.
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Figure 1. An RF and video-based hybrid localization technique. (a) A WCE device passing through a
GI tract surrounded by an array of sensors. (b) Fusion of different measurement modules. (c) Position
estimation.

This paper is divided into sections: Section 2 reviews the latest advancements in
magnetic field-based localization systems. Section 3 discusses emerging trends in RF-based
localization techniques. Sections 4 and 5 examine the most recent progress in video-based
and hybrid localization techniques. Finally, in Section 6, we provide a conclusion. This
study presents an in-depth review of the most recent localization techniques.
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Figure 3. An overview of different techniques used for WCE localization.

2. Magnetic Field-Based Localization Techniques
2.1. Introduction to Magnetic Field-Based Localization of WCE

Human tissues show varied reactions when exposed to electric and magnetic fields.
While electric fields can lead to significant tissue damage and potentially death, even very
strong static magnetic fields produce only minimal and difficult-to-detect effects on station-
ary tissues [16]. Magnetic field-based localization methods utilize the correlation between
magnetic field strength and the proximity of a magnetic field sensor to the magnetic source.
The most significant advantage of using magnetic fields for in-body WCE localization is
their low interference in the complex heterogeneous tissue environment of the human
body [17,18]. Moreover, unlike some RF-based methods, these methods do not depend
on the line of sight between the target and the receiver/sensor and the composition of
fat-to-muscle ratios of different bodies [19].

The magnetic flux density B(r) at a certain observer point r caused by the source
magnet s can be approximated using the standard magnet dipole model [20]. When the
Euclidean distance ∥R∥2 = ∥r−s∥2 is higher than the size of the magnetic source, the B(r)
can be calculated as follows:

B(r) =
µ0µrm

4π

(3
〈
O0, R

〉
R

∥ R ∥5
2

− O0

∥ R ∥3
2

(1)

where µ0 is the magnetic permeability in the vacuum, µr is the relative permeability of the
surrounding tissue, which can be considered as 1, m is the source’s magnetic moment, and
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O0 is the orientation of the source. Localizing a magnetic dipole involves solving for three
positional and three orientation unknowns. If N sensors are outside the body, each sensor’s
analytical B must be derived. Finally, the resultant non-linear equation system has to be
solved for all six unknowns (position and orientation) by minimizing the error function e
by using any non-linear estimation algorithm.

However, accurately localizing the WCE device using magnetic fields presents chal-
lenges, primarily due to environmental susceptibility. The limited volume of the capsule
also restricts the use of stronger magnets or additional sensing circuitry. Moreover, the latest
trends in developing practical WCE systems indicate the necessity of active locomotion
systems. In magnetically actuated active locomotion systems, a small permanent magnet is
embedded in the capsule, and the capsule’s motion is controlled by varying the external
magnetic field using either a permanent magnet or an electromagnet [20–23]. Consequently,
these external magnetic fields, along with the magnetic field of the components inside the
WCE, can adversely affect the sensors’ readings. Magnetic field sensors must be calibrated
before the start of the experiments to cancel out the Earth’s magnetic field and mitigate
the effects of other magnetic, ferromagnetic, and electromagnetic (EM) materials in the
experimental environment [24].

To minimize the impact of the interference, additional hardware in the form of multiple
magnetic sensors and some embedded sensors, like IMU, is often desirable [25]. Various
coil-based techniques have been developed to reduce the effect of magnetic field inter-
ference caused by active locomotion systems. Furthermore, the execution time must be
minimized to facilitate real-time localization. In recent years, there has been a growing
focus on utilizing multiple sensors, wearable localization systems, machine learning, and
the combination of various algorithms to reduce localization errors. A magnetic tracking
system typically consists of one or more magnetic sources, known as transmitters, and one
or more sensor modules, known as receivers. Based on the static or time-varying nature of
the magnetic flux, magnetic field-based localization can be divided into three main sections.

2.2. Static Magnetic Field-Based Localization

Static magnetic field-based localization techniques involve sensing static magnetic
fields generated by a permanent magnet (PM). The magnetic flux detected by the sensors
and the magnetic capsule’s localization coordinates can be determined using the dipole
model [20]. The static magnetic field can be sensed by an array of sensors placed outside
the body or by a Hall effect sensor placed inside the body. In recent years, significant
advancements have been made in developing miniature sensors. Currently, miniature
Inertial Measurement Units (IMUs) and 3-axis magnetic field sensors are extensively used.
Researchers have frequently relied on neodymium magnets as PMs inside WCE due to their
high flux density [26]. The main advantage of using a PM inside the WCE for localization
is that the same WCE can be used for active locomotion by simply varying the external
magnet field. However, these methods are affected by the geomagnetic flux density, which
is of the same order as the PM’s flux density.

In [27], an analytical model for the 6 degrees of freedom (DoFs) magnetic localization
of the WCE, equipped with an IMU and 3-axis magnetic field sensors and an external
permanent magnet, is proposed. The WCE weighs 2.37 g with an overall dimension of
28.44 × 11.68 mm. The model uses a Jacobian-based iterative method to optimize the mag-
netic moment in the magnetic dipole model. Different translational and rotational motion
modes were tested for localization in the experimental setup. The proposed analytical
method shows great potential for real-time localization, with an average position error of
6.29 mm and an average orientation error of 2.93°. However, information on the power con-
sumption and the transmission frequency of the WCE is required to assess its performance
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for long-term monitoring. Moreover, sensor drift and the limited accuracy of the magnetic
field model could affect performance in prolonged operations or complex scenarios. In-
corporating dynamic magnetic fields has the potential to enhance localization accuracy
and minimize errors. Similarly, a novel 6 DoF localization system based on multi-sensor
fusion for magnetically actuated WCE is proposed in [28]. To determine its 3D position
and orientation, eight pose detection algorithms and two data fusion filters were analyzed.
The capsule was embedded with an IMU, while the external system used a 5 × 5 Hall
sensor array to compute the capsule’s position and orientation. A Bluetooth module was
utilized to transmit IMU and video data. The direct and second derivatives methods were
used to detect the pose and estimate the distance. Experiments were conducted within a
work range (distance between the capsule and the Hall sensors) from 25 to 72 mm. A mean
absolute error (MAE) was evaluated as 1.463 mm for the 3D position and 0.419° for 3D
orientation. The capsule has overall dimensions of 29.5 mm × 13 mm, but information on
its power consumption and weight is not provided. The magnetic shell used has a magnetic
moment of only 0.65 A.m2, which generates relatively weak magnetic fields, resulting in
reduced sensitivity. Miniaturizing the capsule and placing a magnet with a high magnetic
moment can be beneficial for enhanced usability.

The fusion of different algorithms has been suggested in [29,30] to reduce the local-
ization error. While algorithm fusion reduces localization errors, processing speed must
meet real-time requirements. In [31], a hybrid model combines the magnetic dipole model
and an analytical model for localization. Particle Swarm Optimization (PSO) utilizes a
magnetic dipole model to provide an initial estimation, whereas the Levenberg–Marquardt
(L-M) algorithm refines the estimates at high accuracy. The localization system reported
an update rate of 30 Hz. The average position and orientation errors were reported to be
1.34 mm and 2.25°, respectively. However, the proposed method accounts for static and
controlled dynamic movements but is less explored for unpredictable everyday scenar-
ios. Furthermore, a closed-loop control mechanism can be developed to ensure precise
navigation in the GI tract.

Magnetic localization by wearable sensors has recently drawn attention owing to
their user-friendly nature. In [32], a variance-based algorithm was proposed as a wearable
static magnetic localization to provide an optimal initial guess that reduced the number
of iterations needed for sufficient localization, thus making the algorithm suitable for
real-time applications with an update rate of 7.5 Hz. The experimental results for 16 sensors
distributed across four faces of a cuboid reported an average positioning error of 9.73 mm
and an average orientation error of 12°. The experiments were conducted in a controlled
environment, assuming that the body would remain static. Further experimentation needs
to be carried out in more realistic clinical setups to further improve the accuracy of the
algorithm. In [33], a novel wearable permanent magnetic tracking system is proposed.
It uses geomagnetic compensation and includes a 9-axis IMU, whose measurements are
fused to calculate quaternion rotations by applying a fusion algorithm on its gyroscope,
accelerometer, and magnetometer outputs. The system, validated with 36 magnetic sensors,
achieved a 15-Hz update rate, an average position error below 2 mm, and an average
orientation error of 5°. However, the 9-IMU must be positioned a minimum of 30 cm from
the tracking area to prevent interference, hence increasing the device’s dimensions. Addi-
tionally, the current method requires periodic calibration to compensate for geomagnetic
interference. A compact industrial-grade 9-axis IMU and investigating miniaturization
methods can lead to a compact integration.

Magnetic field localization methods are susceptible to geomagnetic fields. Different
techniques and algorithms have been developed to address geomagnetic interference.
In [34], a novel differential signal-based approach was proposed to eliminate geomagnetic
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field interference without additional compensation methods. The approach utilizes a
sensor array of 16 tri-axis magnetic sensors and a positioning-based optimization algorithm.
It assumes that the geomagnetic field measured by closely located sensors is the same
and calculates differential magnetic intensity between adjacent sensors. The method was
validated through static and dynamic experiments. The reported results demonstrated
that the method efficiently tracks the position and orientation of the WCE, with a mean
position error of 5.2 mm in static experiments and approximately 7.5 mm in dynamic
experiments. The system lacks wireless connection capabilities for transferring sensor data,
potentially impeding its integration into completely portable or autonomous configurations.
Additionally, the approach presumes that geomagnetic field variations between adjacent
sensors are minimal. In real-world settings with considerable geomagnetic disturbances,
this presumption may be invalid, potentially affecting accuracy. Improving the algorithm’s
ability to handle significant geomagnetic disturbances and incorporating wireless data
transfer would improve the system’s usability for dynamic, real-world scenarios.

Similarly, in [35], a differential static magnetic tracking method was proposed for
geomagnetic interference compensation. This method pairs sensors in the array facing
the same direction and cancels out homogeneous geomagnetic flux density by comparing
measured values to analytical values. The authors concluded that 5 mm-long magnets
balanced accuracy and capsule volume, with a mean relative distance and orientation errors
below 4.3 ± 3.3% and 2 ± 0.6°, respectively. In [36], a multipoint simultaneous tracking
method was proposed, which fuses multiple measurements to offset background noise.
This algorithm reduces environmental noise impact by utilizing differences between mea-
surements at different positions and optimizes the position and orientation by minimizing
the error function between theoretical and estimated values. The approach, which com-
pletes calculations in 80 ms and compensates for patient movement, reported an average
position error of 4.06 ± 0.29 mm and an average orientation error of 5.63 ± 4.24° for 5 DoF
localization. However, the system can suffer when the rate of change in the background
noise becomes higher than the sampling frequency. Furthermore, the impact of the nearby
medical devices in a clinical setup needs to be investigated. Improving sensing capabilities
and applying advanced filtering techniques can minimize the effects of transient noise,
making the system more suitable for wearable applications.

2.3. Dynamic Magnetic Field-Based Localization

There is a growing trend in using EM coils supplied with an alternating current to
generate a dynamic magnetic field, which a coil inside a WCE can sense. Figure 4 presents
an overview of this localization method with active coils. Dynamic or quasi-static magnetic
localization techniques can effectively eliminate geomagnetic interference by utilizing
the time-varying magnetic fields generated by EM coils [37–39]. In [40], a compensation
method was proposed to address relative movement using 12 tri-axial sensors to localize
a permanent magnet inside the body. The method alternately switched two orthogonal
reference coils on and off at a low speed. A new reference coordinate system was defined
based on the orientations of these reference coils. The reported results demonstrate that
the method achieved a mean position error of 3.8 mm ± 1.1 mm and a mean orientation
error (MOE) below 3°. However, in the proposed system, the relative movement between
the abdomen and the GI tract is not accounted for. Furthermore, the reference coils were
rigid and localized successively. To enhance the system for clinical use, exploring the
miniaturization of the reference coils for better integration and fixation on the abdomen
could be beneficial. Additionally, optimized digital filters can be used for simultaneous coil
localization.
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Figure 4. System overview of a magnetic field-based localization technique with active coils [36].

Moreover, in [41], a hybrid 6-DoF active magnetic localization system for WCE with
an extendable workspace is proposed. The system features an array of four electromagnets
generating alternating magnetic fields at different frequencies, with the option to add
more electromagnets to expand the workspace. The capsule includes a tri-axial Hall effect
sensor for measuring magnetic field strength and a tri-axial accelerometer for measuring
movement speed. For 3 DoF position estimation, sensor measurements are compared
with analytical values from the model in [42]. For 3 DoF orientation estimation, pitch and
roll angles are derived from the accelerometer, and the yaw angle is calculated from the
difference between measured and expected magnetic field vectors. The system utilizes a
two-stage optimization process: first, it uses ellipsoidal and spherical approximations for
the magnetic field model; second, it minimizes the root mean square deviation between
measured and estimated fields to minimize localization error. Despite the capsule contain-
ing several sensors, it manages to attain a position accuracy of 5 mm and an orientation
accuracy of 5°. It can also be accommodated with an outer permanent magnet attached to a
robotic arm for actuation. However, the external electromagnets operating at 70–100 Hz
can consume up to 16 A current, suggesting a significant power demand, and the data are
transferred from the capsule via a soft tether. Using neural networks to replace existing
mathematical models can improve the accuracy of magnetic field approximations and
enhance overall localization precision.

A scalable system adaptable to wearable or fixed configurations (e.g., jackets, toilet
seats) has been proposed in [43]. The system comprises ingestible microdevices for the
anatomical mapping of the GI tract (iMAG), comprises a Bluetooth Low Energy (BLE)
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microprocessor that handles communication at 2.4 GHz, a 3D magnetic sensor, and coin
cell batteries with 2–4 weeks lifespan. The overall dimension of the iMAG is reported
to be 20 mm × 8 mm. The proposed method employs magnetic field gradient-based
localization using high-efficiency planar EM coils to generate 3D magnetic fields across a
field-of-view of 40 × 40 × 20 cm3. The method reported a spatial resolution of 1.5 mm and
a temporal resolution of 300 ms. The system was validated on large animal models and
demonstrated high spatial resolution and safety for non-clinical applications. However,
the system’s communication range is constrained to less than or equal to 50 cm when the
capsule is deep inside the GI tract. Moreover, the high attenuation of 2.4 GHz Bluetooth
signals by body tissues, especially in areas with thick gastric and intestinal walls, is a
significant issue. Additionally, another drawback of such techniques is the power-intensive
external magnetic coils that need to be activated and deactivated in sequence, leading to
inefficiencies in power usage. For future studies, it may be beneficial to use lower frequency
bands, such as around 400 MHz or 915 MHz. These lower frequencies experience less tissue
absorption, which can result in stronger signal reception.

2.4. Magnetic Induction-Based Localization

Battery life is critical in any WCE system, as there is always a risk that the battery
may be depleted before the examination of the gastrointestinal tract is complete. Conse-
quently, wireless power transfer (WPT) methods, particularly Inductive Power Transfer
(IPT), are gaining popularity in capsule endoscopy. Coil grid methods are particularly
favored because they enable the localization of a receiver (RX) coil within the body while
simultaneously transferring power inductively. In these methods, the distance between
the transmitter (TX) grid and the receiving coils is estimated by calculating the mutual
inductance between them using the Neumann Formula [44].

M =
µ0

4π

∫
C1

∫
C2

dl1 · dl2

r
(2)

where M is the mutual inductance between the TX and the RX coils, µ0 is the permeability
of the free space, C1 and C2 are the paths of the coil 1 and coil 2, dl1 and dl2 are the
differential lengths along the electrical paths for the current I1 and I2 of the TX and RX coils,
respectively, and r is the distance between dl1 and dl2. The dot product dl1 · dl2 represents
the angle between the differential length elements. The distance can be estimated based
on the reflected impedance on the TX grid caused by the implanted RX coil. The RX
coil induces a higher reflection impedance in the coils of the grid that are closer to it.
Consequently, the location of the coil with the highest reflection impedance is used to
estimate the RX impedance.

In [45], a dual-purpose Wireless Power Transfer (WPT) system was introduced to
power and localize a capsule within the GI tract. The system features an 8 mm RX coil
inside the capsule and two TX coils, each consuming 5 W outside. The TX coils are orthogo-
nal printed spiral coils designed for uniform magnetic field generation, while the RX coil is
a miniaturized 3D cross-type coil that enhances power reception and localization. Using
magnetic resonance between TX and RX coils, localization is achieved by measuring power
variations at different positions within a simulated GI tract environment. The maximum lo-
calization error reported is 12%, equating to ±13 mm within a 100 mm × 100 mm × 100 mm
volume. Although the simulation demonstrates a low specific absorption rate (SAR) value
at a frequency of 5 MHz, with each coil supplied with 5 W, the total power consumption
of 10 W renders the system energy inefficient, especially when used as a wearable device.
For future work, reducing translational misalignment and wide coverage by increasing
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TX coils can ensure better alignment and tracking. Moreover, TX coils can be made more
energy efficient to make the technique more suitable for wearable purposes.

In [46], a system utilizing quasi-static mutual inductance (QS-MI) for precise localiza-
tion is proposed. The method uses a tri-polar plane-type (TPT) coil system on the primary
side and orthogonal coils on the ingestible. The system is validated through simulation
and experimentation. Mutual inductance is measured between the primary and secondary
coils using a resonance-based circuit architecture and vector network analyzer (VNA).
The simulation process focuses on evaluating the system’s performance under realistic
conditions by introducing quantization and thermal noise. The noisy signals are processed
using estimation algorithms like least squares estimation (LSE) to recover the MIs. Finally,
localization is performed using an optimization algorithm based on these MIs. The ex-
perimental setup uses a Vector Network Analyzer to measure the transmission coefficient
between TPT coils and secondary miniature coils, calculating mutual inductance in both
air and saline environments. The localization is performed using the objective function
and solving it using linear steepest descent (SD). An accuracy of less than 1 cm has been
reported. The accuracy can further be improved by utilizing different configurations and
sizes of the transmitter coils. Moreover, advanced tracking algorithms, such as particle
filters, can be investigated for initialization.

In [47], an EM tracking system (EMTS) was proposed to determine the 5D pose
of a tiny induction coil, including 3D position and 2D orientation. Unlike traditional
systems with wired connections, this system uses wireless communication, enhancing
flexibility for medical and industrial applications. It employs nine-channel sinusoidal
signals for the simultaneous excitation of transmitting coils, improving system effectiveness.
Sophisticated algorithms, including the L-M method and PSO, are used for optimization
and initial positioning. The system reported an average location error of less than 2.3 mm
and an orientation error of 0.2°. Accuracy may be affected by the overheating of the
power amplifiers due to signal fluctuations, which can affect the tracking precision. High-
frequency noises that interfere with the induction process can be filtered to achieve better
signal clarity and tracking precision.

Recent advancements in on-chip sensing have shown that magnetic sensing can be
accomplished with low power consumption and a compact design. The 3D position
tracking system introduced in [48] has reported a tiny size sensor (1.06 mm2) fabricated
using Complementary Metal Oxide-Semiconductor (CMOS) 65 nm technology with a
power consumption of only 6 mW. The integrated circuit includes an on-chip inductive coil,
an analog front end (AFE), a Delta-Sigma Modulator for data acquisition, an output data
driver, and voltage regulator circuits, among others. The on-chip multi-layered coil detects
the magnetic field generated by eight external transmitter coils at specific frequencies
(20–34 KHz). The data acquisition and processing leverage the Levenberg–Marquardt non-
linear least squares algorithm for position and pose estimation. The sensing mechanism
was tested in benchtop and pre-clinical settings, demonstrating precise tracking in dynamic
real-world contexts, including live porcine airways. The method reported a navigation
accuracy of 1.1 mm for 5-DoF tracking. For 6 DoF, it achieved a position accuracy of
0.8 mm and an angular error of 1.1°. This performance was recorded within a volume of
interest measuring 15 × 15 × 15 cm3. The results were gathered at an update rate of 20 Hz,
and the pre-clinical tests in live swine airways demonstrate its practical application and
precision with a reported worst-case registration accuracy of 5.8 mm. Furthermore, CMOS
fabrication processes are robust and allow for mass production, making the sensors scalable
for widespread and the reported sensor costs around USD 1.50, compared to traditional
5-DoF sensors that cost USD 25 and 6-DoF sensors that cost USD 250.
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The on-chip sensing method presented in [49] uses two micro-chip devices that use
Hall-effect sensors to measure the magnetic field present and digitize the information
before transmission, which can minimize the conversion complexity. The testing device
was fabricated in 65 nm CMOS technology and also includes a 3D magnetic sensor and an
inductor coil with a footprint of 3 × 3 × 0.75 mm3. The system uses planar electromagnetic
coils that create 3D magnetic field gradients in a 20 × 20 × 10 cm3 field of view that can
be further scaled. The reported localization errors are less than 100 µm with an update
rate of 7 Hz, and the chip is powered up wirelessly using WPT technology at 13.56 MHz.
The same frequency is used for data telemetry. The reported current consumption is 2.2
and 1.5 mA for low-noise and low-power modes, respectively. Comparatively, in [50], a
3D magnetic sensor with on-chip orthogonal coils in 65nm CMOS generates an induced
electromotive force (EMF) when exposed to the AC magnetic field. The reported sensor is
4 mm2 in and consumes negligible power, 14.8 µW, to achieve less than 1 mm 3D positional
accuracy. However, further detailed experimentation in clinical settings is necessary to
evaluate its efficiency and reliability for endoscopic applications.

A low power frequency division-based localization method with sub-mm precision has
been reported in [51]. The reported frequency-division multiplexed magnetic localization
(FDMML) technique uses frequency-division multiplexing to assign a different offset
frequency to each external magnetic beacon. It enables them to operate simultaneously,
eliminating sequential beacon activation. Augmenting the excitation frequency presents
various notable benefits, such as a decrease in coil dimensions and an enhancement in the
voltage acquired by the receiver coil on the sensor, resulting in a more excellent signal-
to-noise ratio. An on-chip resonant 2.048 MHz receiver coil senses the voltage from six
external magnetic beacons, and the system utilizes Welch’s method for frequency analysis
and ANNs for spatial position reconstruction. The proposed chip has an area of 1.4 mm2

and consumes a maximum total power of 336 µW. The system reported less than 1 mm
localization error, with localization circuitry alone consuming 247 µW. However, the system
has not yet been tested in clinical trials, limiting its validation for practical use in GI
diagnostics.

2.5. Summary of the Magnetic Field-Based Localization Techniques

Emerging technologies have shown promising results in accurately localizing WCE
using static or dynamic magnetic fields, achieving position and orientation errors under
5 mm and 5°, respectively. Techniques often involve induction coils, IMU, and tri-axial
sensors within the capsule. However, the limited volume of commercial capsules poses
a significant constraint. Static magnetic field-based techniques can use IPM (internal
permanent magnet) to occupy between 10% and 30% of the available space of the capsule.
The methods discussed in [27,28,41] take up significant capsule space owing to the usage
of additional components used for localization purposes compared to approaches that
solely utilize IPM, as seen in [32,34,35]. Recent advancements in the use of 65 nm CMOS
technology demonstrated that compact sizes are achievable. For real-time localization,
minimizing computation time is crucial. Advanced machine learning techniques and
various algorithm combinations can help to reduce computational time for effective real-
time monitoring. The update rates reported in [33,36] are 67 ms and 80 ms, respectively.
This boost in calculation speed stems from the fusion of various algorithms.

There is still a pressing need for a real-time localization system compatible with an
active locomotion system. Dynamic magnetic field-based localization techniques have
gained immense popularity in recent years due to their effectiveness in canceling environ-
mental magnetic field interference. These quasi-static magnetic field-based methods are
ideal for localization systems compatible with active locomotion systems while achieving
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low localization errors. Onboard sensing and wireless transmission through IMU and
magnetic sensors can negatively impact the limited battery resources. However, recent
on-chip magnetic sensing solutions have demonstrated that carefully designed chips and
energy-efficient methods can keep the WCE operational for several weeks [48].

Wireless Power Transfer (WPT) can be a promising solution for power transfer and
estimating the capsule’s location. Combining precise localization with effective power
control enhances GI tract inspections. Wireless Power Transfer (WPT) extends capsule
operational duration by recharging or directly powering the capsule, overcoming the
limitations of traditional internal batteries and enabling thorough, extended diagnostic
procedures.

The use of additional sensors, either within the WCE or in the localization system,
can improve localization accuracy but may make the system impractical. The localization
methods in [28,32,33,35,40] reported excellent localization accuracies, but the use of a
higher number of sensors can make the overall system unsuitable for practical use. Future
research should focus on using a minimal number of sensors and localization equipment
inside the capsule and in the surrounding environment while emphasizing efficient and
real-time algorithms. Moreover, wearable localization systems are highly desirable as
they can assist patients in daily activities during extended examinations lasting up to
12–14 h. These systems have achieved low localization errors, but further improvements
are required for commercial use. To prevent damage or discomfort to the abdomen, an
efficient wearable transmitter is desireable. The system must be power-efficient and robust
enough for daily activities. Consequently, magnetic localization for capsule endoscopes
is an ongoing area of research and is not yet suitable for commercial capsules. Table 1
summarizes the emerging magnetic field-based localization techniques along with WCE
Components (WC) and external components (EC) for quick reference and comparison
between different techniques.

Table 1. Emerging magnetic-based localization strategies.

Ref (Year) Technique/
Algorithm WC, EC Validation

Environment Error/Accuracy Notes

[27] (2023)
Active Locomotion/
Jacobian-based
iterative method

WC: IMU + 3-axis
magnetic field
sensor, EC: External
PM

Experimental
evaluation: Different
translational and
rotational motion

Average Positional
Error (PE): 6.29 mm,
Average Orientation
Error (OE): 2.93°

6 DoF reported and
magnetic moment is
optimized for the
magnetic dipole
model.

[28] (2022)

Active
Locomotion/direct
estimation + Kalman
filter

WC: IPM + BLE +
IMU EC: 5 × 5 Hall
sensors

Experimental
evaluation: work
ranges from 25 to
72 mm

Mean AE: 1.46 mm,
Mean OE: 0.41°

6 DoF reported and,
instead of using a
PM, a magnetic
capsule shell is
proposed.

[29] (2020) Passive Locomo-
tion/Jacobian matrix

WC: IPM, EC: 4
triple-axis sensors

Experimental
evaluation

Mean PE:
2.1 ± 0.8 mm, Mean
OE: 6.7 ± 4.3°

Triple-axis sensors
were utilized with
the Jacobian method
to achieve 5 DoF
localization.
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Table 1. Cont.

Ref (Year) Technique/
Algorithm WC, EC Validation

Environment Error/Accuracy Notes

[31] (2023)
Active
Locomotion/PSO +
L-M

WC: IPM EC: Hall
effect sensors

Experimental
evaluation: static
and dynamic

Mean AE: 1.46 mm,
Mean OE: 0.41°

Fast tracking and 6
DoF localization are
reported by
combining the
algorithms.

[32] (2019)
Passive Locomotion/
Variance-based
algorithm

WC: IPM EC: 16 Hall
effect sensor + IMU

Experimental
evaluation: static
capsule

Average PE: 9.73
mm, Average OE:
12°

The variance-based
algorithm combined
with weighted
optimization is used
to achieve 6 DoF
localization.

[33] (2022)
Passive
Locomotion/Fusion
algorithm

WC: IPM EC: 36 Hall
effect sensor + IMU

Experimental
evaluation

Average PE: 1.8 mm,
Average OE: 5.11°

The fusion algorithm
calculates the
quaternion rotation
and 6 DoF
localization is
reported.

[34] (2021)
Active
Locomotion/L-M +
differential signals

WC: IPM EC: 16
tri-axis sensors

Experimental
evaluation: static
and dynamic motion

PE: 7.5 mm, Average
OE: 13.8°

A symmetrically
arranged cell of four
sensors combined
with different
algorithms are used
to achieve 6 DoF
localization.

[35] (2022) Passive
Locomotion/L-M

WC: IPM EC: 12 Hall
effect sensors

Experimental
evaluation with
different magnets

Relative PE:
4.3 ± 3.3 mm,
Relative OE: 2 ± 0.6°

Neodymium N52
cylindrical
permanent magnets
with different
diameters are used
to achieve 6 DoF
localization.

[36] (2021)
Active Locomo-
tion/Differential
method

WC: IPM EC: 8 Hall
effect sensors

Experimental
evaluation:
multi-point
simultaneous
tracking

Average PE:
4.06 ± 0.29 mm,
Relative OE:
5.63 ± 4.24°

The reported
calculation time is 80
ms, and the
algorithm can
compensate for
patients’ movements
for 5 DoF
localization.

[40] (2022) Passive Locomotion
WC: IPM EC: 12
sensors, +
orthogonal coils

Experimental
evaluation: Dynamic
magnetic field

Mean PE: 3.8 ± 1.1
mm, Maximum OE:
3°

The system used two
orthogonal reference
coils alternately
switching on and off
with a low switching
speed for 6 DoF
localization.
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Table 1. Cont.

Ref (Year) Technique/
Algorithm WC, EC Validation

Environment Error/Accuracy Notes

[41] (2021) Active
Locomotion/RMSD

WC: IPM + tri-axial
sensors EC: 4
electromagnets

Experimental
evaluation: Dynamic
and static magnetic
fields

Position accuracy
(PA): 5 mm,
Orientation accuracy
(OA) 5°

The optimization
process utilized a
dual-step approach
for 6 DoF
localization.

[45] (2021)
Active
Locomotion/Linear
prediction

WC: RX coils EC: TX
coils

Experimental
evaluation: Dynamic
magnetic field

PE: 12 mm

A dual-purpose use
of WPT, not only for
powering the
capsule, but also for
3 DoF localization
within the GI tract, is
proposed.

[46] (2024)
Passive
Locomotion/LSE,
SD

WC: Orthogonal
Coils EC: TPT

Experimental: VNA
Measurement Accuracy < 1 cm

The study utilizes
QS-MI for precise
localization, and the
method is validated
through simulation
and VNA
measurements.

[47] (2020)
Active
Locomotion/L-M +
PSO

WC: Induction coil
EC: Electromagnets

Experimental
evaluation: Dynamic
and static magnetic
fields

Average PE: 2.3 mm,
Average OE 0.2°

An innovative
feature of the
methodology is the
use of nine-channel
sinusoidal signals to
stimulate the
transmitting coils for
6 DoF localization.

[48] (2024) Passive
Locomotion/L-M

WC: Induction coil +
AFE + Modulator
EC: 8 TX coils

Experimental
evaluation: Dynamic
magnetic fields

PA: 0.8 mm, OE 1.1°

On-chip sensing
method utilizing
CMOS 65 nm
technology for a
compact and cheap
design for 5 DoF
localization.

[51] (2023)

Passive Locomo-
tion/FDMML +
Welch’s method +
ANNs

WC: Induction coil +
wireless TX + battery
EC: 6 TX coils

Experimental
evaluation: Dynamic
magnetic fields

PA: <1mm

The FDMML
technique assigns
unique offset
frequencies to
external magnetic
beacons, allowing
them to operate
simultaneously and
eliminating the need
for sequential
activation.

3. RF-Based Localization Methods
3.1. Introduction to RF-Based Localization Techniques

Wireless systems rely on EM materials of different frequencies for communication.
Each wireless transceiver uses a specific part of the EM spectrum to transmit and receive
signals. EM-based localization has been a critical area of research since the advent of wire-
less technology. Modern mobile communication, made possible by cellular networks, relies
on the phone’s location to maintain a stable connection over longer distances. Technological
advancements in miniaturization and application-specific integrated circuits (ASICs) have
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enabled the development of circuits as small as nanometers, which can be implanted inside
an animal’s body [52]. In-body communication occurs at specific frequencies that can
penetrate the body’s complex muscle and fat environment. Medical implants communicate
with external devices using different frequency bands. However, unlike off-body EM wave
propagation, the in-body propagation of EM waves is complex. The characteristics of a
traveling EM wave change with the relative permittivity of the medium it traverses. Since
an animal’s body consists of different layers of varying materials, an EM wave must pass
through layers with differing permittivities and electrical properties as it travels inside and
outside the body [53].

Consequently, an RF-based localization system depends on the properties of the
wireless propagation channel, such as attenuation, relative permittivity, and multipath
characteristics. In a complex environment, an EM wave transmitted by a TX antenna
undergoes reflection and diffraction before reaching the RX. Due to these processes, multiple
copies of the transmitted signals are received at the RX, a phenomenon called multipath
propagation. These signal copies arrive at the RX with varying amplitudes, arrival angles,
times, and phases [52]. As a result, EM waves traveling from a TX to an RX have various
characteristics: Angle of Arrival (AoA), Time of Arrival (ToA), Direction of Arrival (DoA),
and Received Signal Strength Indicator (RSSI). Researchers have utilized these properties
to determine the implant location within the body with various techniques. In the next
section, we will describe different approaches and methodologies that have been developed
related to RF-based localization systems and discuss the existing research gaps within this
area of research.

3.2. Advancements in RF-Based Localization Techniques

Recently, several new techniques have been proposed for RSSI-based localization
methods. When a signal is transmitted from within the body, it attenuates because of
the structure of relative permittivity and electrical conductivity. Diverse techniques and
path loss models use these attenuations to determine the transmitter’s or TX’s position.
Algorithms that use RSSI information are distance-dependent or distance-independent.
A distance-dependent algorithm involves triangulation, trilateration, LS, and MLE meth-
ods [54]. On the other hand, distance-independent algorithms find the location of the TX
by selecting signals with particular strengths and computing the geometric centroid of
the RXs. These methods approximate the capsule’s location using a path loss model on
the RSSI values. The path loss in dB at a distance (d) from the in-body TX is modeled as
follows [55]:

PL(d) = 10nlog10(d/d0) + PL(d0) + Xσ (3)

where d0 is the reference distance, n is the environment-dependent path loss exponent that
should increase in lossy environments, and X is the random scatter around the mean σ.
It describes the deviations caused by varied propagation materials and antenna gain in
different directions.

Current research advances concentrate on integrating statistical models, artificial in-
telligence (AI), circularly polarized antennas, antenna arrays at the reception side, and
machine learning (ML) techniques to minimize localization errors. A method for the precise
localization of wireless capsules using machine learning and smoothing path loss with cap-
sule exact positioning in the small intestine was proposed in [56]. The authors utilized two
path-smoothing techniques: local linear regression moving average (LLRMA) and locally
weighted linear regression (LWLR). They treated both the smoothed data and the scattered
data as input features of five regression algorithms using machine learning: Decision Tree
(DT), Random Forest (RF), Extreme Gradient Boosting (XGB), Linear Regression (LR), and
K-Nearest Neighbors (KNN). Reportedly, this methodology optimizes the input features by
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manipulating data, selecting features, and using k-fold cross-validation to ensure accuracy.
The methods reported a localization accuracy of less than 0.22 mm using 48 sensor RXs. The
simulations were conducted in the ultra-wideband (UWB), 3.1–6 GHz, and medical implant
communication service (MICS), 402–405 MHz, frequency bands. Hardware implementation
and practical deployment scenarios had to be explored to gauge the method’s feasibility in
clinical trials.

In [57], an interesting method for correcting position estimation errors in capsule
endoscopy is introduced. The approach uses the trilateration method and includes two error
correction techniques. Firstly, it adjusts RSSI values based on their magnitude pattern for a
temporary estimate. Secondly, it corrects RSSI reductions caused by the angle between the
capsule and the receiving antenna. The proposed algorithm reported an estimation error
below 40 mm for 92% of simulation points and 89.7% of experimental points at 433.92 MHz.
The proposed algorithm lacks accuracy where the received signal strength measurement
does not align with the antennas. Additionally, in some cases, intersections in the trilateration
method are not possible and require additional corrections. In [58], localization is proposed
at 17 MHz using EM scattering based on a sparse vector reconstruction (SVR) algorithm. The
simulation evaluates the method’s performance by calculating the mean localization errors
and comparing the results obtained from the SVR technique with the conventional Moore–
Penrose inverse solution. The system predicts that using more than 10 RXs can achieve a
localization error of less than 2 mm, but only at frequencies below 17 MHz. Experimental
validation is required to assess the validity of the system in real and complex environments.

The human body’s intricate and diverse EM properties can influence signal propagation.
The diagnostic technique can be tailored to a patient’s unique anatomical and physiological
variations through surface field modeling. In [59], the localization approach is based on
analyzing RF signals, specifically using a Hertzian dipole radiator operating at 433 MHz
inside the human body. It aims to estimate the intensity of the surface field by considering
the location and direction of the dipole. An analytical solution for calculating the surface
field intensity is derived based on the capsule’s orientation. In [60], the work focuses on
localizing wireless capsule endoscopes using a hybrid approach incorporating one-shot
learning and trilateration methods with an operating frequency range of 3.75–4.35 GHz.
Trilateration is employed for accurate distance measurements, while one-shot learning,
facilitated by a Siamese neural network (SNN), adapts to the varying tissue features found
in different areas of the GI tract. The collected channel data are based on the Laura Human
Voxel Model to mimic the in-body environment. A zone-specific path loss model that
considers the varying anatomy of the GI tract is utilized. Different zones are created using
channel frequency response (CFR) measurements, and the SNN method is used to determine
the specific zone based on real-time CFR values. After identifying the zone, a non-linear
least-squares-based trilateration method is used for localization, resulting in a mean distance
error of 26.44 mm when the system is configured with three zones. However, conducting
real-world validations is critical for confirming the methodology’s robustness and reliability.

Centroid localization algorithms are distance-independent, and their low computa-
tional complexity and low power requirements make them ideal for WCE localization.
In [61], a novel weighted centroid localization (WCL) algorithm was proposed, where
a scaling factor is used to assign weights (see Figure 5). The authors validated the al-
gorithm by implementing 24-array receiving antennas and reported a localization root
mean square error (RMSE) of 36.3 mm, with a minimum localization error of 21.9 mm,
17% lower than conventional WCE algorithms. Similarly, in [62], a Smoothed Path Loss
Degree (SPLD)-based WCL algorithm was proposed to enhance the accuracy of capsule
endoscopy using a 3D sensor array of miniaturized impulse radio (IR) UWB transceivers to
receive RSSI values. The novelty of the SPLD-WCL algorithm lies in its ability to effectively
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manage path loss variations and improve localization accuracy using a weighted centroid
method based on the degree of path loss. The results reported that the SPLD-WCL method
achieved high precision with an RMSE of 6.83 mm. However, the results are based solely
on simulations, and experimental validation is necessary to confirm the performance of the
proposed method.

Figure 5. System overview of a wearable capsule endoscope electromagnetic localization system [61].

The Phase Difference of Arrival (PDoA) models are being researched intensively
because the phase of signals from implants remains relatively stable compared to the RSSI
value in the presence of different tissues [63]. This method does not require knowledge
of the electrical properties and distribution of individual tissues inside the body and can
be accurately applied to patients with varying tissue thicknesses [64]. Based on the phase
difference at the receiving antennas, the distance of the capsule d from an antenna on the
human body can be calculated as follows:

di =
c

2π
√

ϵr
× δϕi

δ f
(4)

where di is the distance between the capsule and the i-th antenna on the body, c is the speed
of light in vacuum (299,792,458 ms−1), ϵr is the relative permittivity, δϕi phase difference
between the two receiving frequencies, and δ f is the difference between the two frequencies.
Once the distance is determined, any linear or non-linear least squares method can be
applied to obtain the capsule coordinates.

In [63], an adaptive phase detection algorithm is proposed to improve localization
accuracy using a helical antenna and an adaptive body permittivity model. The proposed
capsule utilizes the phase information analysis of a signal transmitted through a helical
antenna for position determination. Reportedly, the permittivity of the adaptive body
model dynamically adjusts itself to compensate for the in-homogeneity and heterogeneity
in human tissues and propagation based on the different locations of the capsule. It
involves the iterative refinement of the PDoA and Gauss–Newton algorithms for localizing.
Validation has been carried out with computer simulations and phantom experiments to
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simulate the electrical tissue characteristics of human tissue. The authors reported that
combining the algorithm and the helical antenna improves the accuracy by around 30%
compared with a homogeneous body model. The average error of 16 mm with five RXs has
been reported.

In [65], a hybrid phase detection method with a dynamic model adaptation strategy
has been proposed to find the location of the WCE. The algorithm uses the phase differences
of the signals acquired at different frequencies to give the actual possible placement of the
capsule. Afterward, an iteration refinement technique using Gauss–Newton optimization
is adopted to update model permittivity values for accuracy enhancement. The procedure
reported a 15% localization error decrease with a value of 12 mm compared to the traditional
methods that rely on models with dielectric constant properties.

Of the least complicated methods to obtain the range of an object, DoA/ToA is one
of them. The idea is to measure the time a signal travels from the target to several RXs
with known coordinates [66,67]. DoA-based estimation is based on the principle that only
a signal arriving from the estimated direction is focused upon, and signals coming from
other directions are neglected. Given that the distance d is between the target and an RX,
the distance can be computed using the following equation:

d = ToF × v (5)

where ToF is the time of flight of the signal from a target TX to a known RX, and v is the
speed of signal propagation:

v =
c√
ϵ

(6)

where c is the speed of light in a vacuum and ϵ is the propagation coefficient. Given the
spatial location distribution of the RXs and their distances from the TX, different trilateration
or triangulation methods may be utilized to estimate the location coordinates of the TX.
This is essentially a method that has mainly been applied in homogeneous environments,
like free space, where the propagation speed of the signal remains invariant due to the
prevalence of a single medium [68].

However, in the case of WCE, the capsule travels through the human body, which
consists of tissues with varying permittivities. These differences in permittivity affect the
signal propagation speed, leading to errors in calculating d. To address this issue, a ranging
error model for WCE localization was proposed in [69]. The average permittivity of the
human body model [70] is used to calculate the propagation speed. A 3D simulation model
of the human torso was designed, and using a set of 32 RXs, the average localization error
for ToA and RSSI methods was evaluated. The RSSI-based method resulted in a mean
localization error of more than 48 mm, while the ToA-based technique reported a mean
localization error of 15 mm. Although DoA/ToA-based methods provide low localization
errors, they are not feasible for near-field applications due to the high speed of EM waves,
i.e., approximately 3 × 108. One of the most challenging aspects of one-way ToA-based
localization in WCE is achieving precise time synchronization between the capsule’s TX
and the external RXs.

Poor synchronization can lead to inaccurate Time of Flight (ToF) calculations, resulting
in distance estimation errors and adversely affecting localization accuracy [71]. Moreover,
due to the multipath effect caused by the heterogeneous nature of the human body, the
received signals may become distorted, complicating the DoA/ToF models. Two-way
ToA measurement systems can be employed to mitigate synchronization issues. These
systems generally consist of an array of RXs mounted in a 2D plane or circular configuration
around the body, wherein DoA estimation is achieved by using various signal processing
algorithms. A hybrid approach incorporating the Extended Kalman Filter (EKF) method
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with DoA/ToA and IMU data for further enhancement in localization accuracy is proposed
in [72]. In the paper, the authors used a circular array of antennas with different numbers of
elements and developed and assessed the RMSE. The authors concluded that localization
performance significantly improves if the number of antenna elements is kept below 16.

Radio Frequency Identification (RFID) technology involves placing RFID tags inside a
wireless capsule and communicating with RFID readers. These tags can be either active
or passive. Passive tags are more compact, lighter, and less expensive than active ones;
however, their utility is limited due to a limited communication range, storage capacity,
and computing power. In contrast, active RFID tags have a battery source, allowing them
to transmit data at fixed intervals. The signal power and transmission time information are
used to determine the location of the tags within the body. In [73], an array of antennas is
arranged in 3D around a body containing an RFID tag, with antennas placed 3 cm apart.
An algorithm estimates the tag’s location using gravity, relying solely on the proximity of
the antennas that can detect the tag rather than on RSSI. The reported mean error in location
estimation is 20 mm. In [74], a similar antenna array is proposed, but localization is based
on the assumption that the RF signals transmitted by the RFID tag are symmetrical. The
algorithms utilize external RXs positioned symmetrically to detect these signals, forming
areas on the symmetric faces of the RX arrays. By considering these areas’ similarity in
position, shape, and size, accurate 3D positions of the signal source can be determined
through back projection calculations. The reported position error is 5 mm in the x and y
directions, with a total position error of 20 mm.

3.3. Summary of RF-Based Localization Techniques

The RF-based localization system leverages the properties of the wireless propagation
channel, including attenuation, relative permittivity, time, and multipath characteristics.
EM waves experience reflection and diffraction in complex environments, leading to
multipath propagation. As a result, different copies of the transmitted signals exhibit
varying amplitudes, angles of arrival, times of arrival, and phases, creating EM waves
with distinct characteristics. Recently, there has been a growing emphasis on exploring
various combinations of optimization algorithms, AI, circularly polarized antennas, arrays
of antennas on the receiving side, and ML techniques to minimize localization errors. Due
to limited battery capacities, coil grid methods are becoming increasingly popular, as they
facilitate the localization of an RX coil within the body while inductively transferring
power. However, technical challenges, such as the need for line-of-sight, complicate the
implementation of these technologies.

Additionally, during practical trials, antennas are typically attached to the patient’s
body, which serves as a reference point for localization. It is important to note that this
reference body is also in motion. The body’s movement and the involuntary motion of
internal organs contribute to higher localization errors. Implementing ToF, ToA, DoA, and
AoA methods in real-time settings is much more challenging due to the high speed of EM
waves. Furthermore, RF-based methods cannot determine the orientation of the capsule.

Emerging trends in RF-based methods include integrating diversity in AI, ML, and
optimization algorithms. This area can be further explored by combining different combina-
tions of RF-based technologies with video and magnetic field-based localization methods.
RF-based techniques can localize the capsule without any additional hardware, and along
with video or magnetic field-based techniques, the capsule’s orientation could also be de-
termined. Recent research has also shown that a fusion of multi-DoF IMU sensor data with
RSSI data can lead to more accurate results. Table 2 offers an overview of the differences
among various RF-based techniques and highlights recent advancements in the RF-based
localization field.
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Table 2. Recent developments in RF-based localization.

Ref (Year) Technique Algorithm Validation Environment Error/Accuracy Notes

[56] (2023) UWB RSSI LWLR and k-fold cross
validation Simulation: 8 and 48 RXs RMSE less than 0.23 mm

The results from different
algorithms were optimized
at UWB and MICS bands.

[57] (2022) RSSI Trilateration High-Definition Numerical
Human Body Model

Simulation Accuracy: 92%
Experimental Accuracy:
89.7%.

The method incorporates
RSSI magnitude pattern
and antenna angle error
correction techniques at
433.92 MHz.

[58] (2021) RSSI SVM and Moore–Penrose Simulation: 10 RXs Error: 2 mm

The study uses an
electromagnetic scattering
model at 17 MHz for
localization.

[60] (2024) RSSI Trilateration, SNN Simulation: Human model Error: 26.44 mm

The study combines
one-shot learning and
trilateration methods at
4 GHz.

[61] (2022) RSSI WCL Experimental: 24 antenna
array Error: 21.9 mm

The WCL algorithm
applies exponential
weights to RSSI values at
433 MHz.

[63] (2022) PDoA Gauss–Newton, Phase
detection algorithm

Simulation: Remcom
XFdtd Software,
Experimentation: helical
antenna

Average Error: 16 mm

The accuracy is reportedly
improved by
approximately 30% when
using a combination of the
helical antenna and phase
detection algorithm
compared to a
homogeneous body model
at MICS band.

[65] (2020) PDoA Gauss–Newton, Phase
detection algorithm

Simulation: Remcom
XFdtd Software,
Experimentation:
half-wave dipole

MSE: 28 mm

The accuracy is reportedly
improved by
approximately 15% when
using an adaptive
simplified human body
model compared to a
homogeneous body model
at MICS band.

4. Video-Based Localization Techniques
4.1. Introduction

Video-based localization approaches have followed a growth trend over the years,
part of which is influenced by AI and ML. The means through which AI can be integrated
into WCE enable the development of intelligent algorithms that enhance localization
accuracy and predict disease patterns, thus changing patient care scenarios. This integration
poses challenges in sensitivity and intuition but presents significant steps to achieving
video-based localization with increased precision. This kind of advancement enables
precise spatial information regarding detected abnormalities in the GI tract. Deep learning-
type Convolutional Neural Networks (CNNs) can efficiently analyze visual data, and the
principal component analysis (PCA) reduces the dimensionality for endoscopic images
to extract the essential features, which results in the enhanced accuracy of localization
algorithms [75–78]. The core operation of CNNs is convolution, expressed as follows:

f (x, y) =
a

∑
i=−a

b

∑
j=−b

g(i, j).h(x − i, y − j) (7)
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where f (x, y) is the output image, g(i, j) is the kernel, and h(x − i, y − j) is the input image.
This operation allows CNNs to extract high-level features from images for accurate pattern
recognition and localization [77,78].

Video-based localization faces significant challenges in obtaining high-quality images
from WCE [75]. The dark areas in frames and blurry photos due to poor illumination
conditions and the lack of a controlled locomotion system make it challenging to capture
vital information, leading to lower accuracy in vision-based localization systems. Further-
more, the constant movement of the capsule inside the intestine makes it even harder to
localize its orientation and pose. Many pre-processing processes have been developed
to overcome these challenges and make the captured videos more useful for localization.
During the last few years, machine learning-based algorithms have been developed to
enhance the captured frames’ features and localize the WCE based on the captured video
frames [76]. It is crucial to thoroughly analyze and compare existing techniques to address
commercial capsules’ technological challenges. This will pave the way for future research
in this domain and create opportunities for improvement.

4.2. Recent Developments in Video-Based Localization Techniques

In the past few years, different algorithms and methods have been proposed for
localizing various lesions and detecting bleeding inside the GI tract. An Attention Aware
CNN algorithm and ResNet-50 as a convolutional stem are utilized in [77], which used
public Bleeding and Kvasir-Capsule datasets to localize bleeding with 95.1% and lesions
with 94.7% accuracy. This highlights the effectiveness of attention mechanisms in medical
imaging, although there remains a potential research gap in real-time processing capabilities.
Similarly, a deep homography-based localization method that used a MobileNet-based
CNN algorithm is reported in [78]. The model estimates frame transformations through 4-
point homography parameterization, focusing on the displacement of four corners between
frames. The displacement is subsequently converted from pixel units to millimeters using
the predetermined average diameter of the small intestine. The reported Mean Absolute
Error (MAE) of the computed displacements compared to the reference values obtained
from the Rapid Reader software, Given Imaging proprietary software (Rapid V8) , was
4.87% ± 4.12%.

Additionally, for polyp localization, a modified R-CNN method utilizing ResNet-50
and ResNet-101 models with data augmentation and fine-tuning is proposed in [79]. This
system uses a region-based convolutional neural network modified on still frames to iden-
tify locations for polyps by generating masks around them to indicate the precise location.
The polyp images are represented using pre-trained Resnet-50 and Resnet-101 models as
feature extractors. In order to increase detection accuracy, the used models are fine-tuned
through multiple publicly available polyp datasets; these include CVC-ClinicDB, CVC-
ColonDB, CVC-PolypHD, and ETIS-Larib. The proposed methodology has demonstrated
great potential in improving polyp detection and localization in a clinical setting. Using
the ResNet-101 backbone and Balloon pre-trained weights, the best performance on the
WCE dataset has been achieved with an F1 score of 96.6% and an F2 score of 96.10%. This
showcases the effectiveness of the methodology and its ability to enhance clinical diagnoses.
However, the computational cost is high due to the use of separate graphic processing
units. The use of annotated data can further improve the accuracy of the method.

One of the efficient localization methods for temporal abnormalities in long WCE
videos is the use of Graphical CNN. This helps to reduce the time physicians use for
reviewing as it identifies anomalies precisely and accurately without requiring frame level
annotations. WCENet is another deep CNN that achieves 98% accuracy in classifying and
localizing anomalies in the gastrointestinal tract due to an attention-based mechanism
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that it incorporated with a customized SegNet [80]. The study utilized the KID dataset
for WCE images. It used a hybrid anomaly localization method, combining Grad-CAM++
and SegNet, which allows for the precise identification and segmentation of abnormal
regions, resulting in high accuracy and precision. However, its implementation may
require substantial computational resources, potentially limiting its application in real-time
or resource-constrained environments. Additionally, the performance of such a model
depends so greatly on the quality and diversity of its training data, which may also
influence generalizability to new or unseen cases that are not especially well-represented in
the KID dataset.

Algorithms for dimensionality shift were analyzed in order to provide better post-
processing image analysis for images obtained from WCE examinations. Specifically, Ori-
ented FAST and Rotated BRIEF–Simultaneous Localization and Mapping have realized data
processing for 2D WCE images in a video sequence and utilized the Shape-from-Shading
algorithm to reconstruct a 3D model [81]. The algorithm reconstructs the environment and
localizes the camera by comparing pairs of points between images. For the ORB-SLAM,
the study constructed the 3D representation of the bowel wall and localized the WCE with
a mean absolute error ranging from 4.1 to 3.9 cm. This showed that the algorithm could
realize accurate localization and detailed 3D modeling for WCE examinations.

Furthermore, with the advancement in micro-electromechanical systems (MEMS),
several techniques have been proposed for wireless capsule endoscopy, involving multiple
components integrated inside the capsule. Specific feature point tracking techniques have
been proposed to overcome disadvantages such as low frame rate and the flexible structure
of the GI tract. These methods assist in keeping track of distinct points in successive frames,
thereby aiding in estimating the capsule’s movement and orientation. The study [82]
explores using PWC-Net, a deep learning model, to estimate optical flow, which shows
the point motion between frames. A feature point tracking-based localization technique
has been presented in [83], in which the Speeded-Up Robust Features (SURF) algorithm,
combined with a Random Sample Consensus (RANSAC) approach, is used to detect and
match these feature points, filtering out erroneous matches. The study evaluated the
performance of a model by comparing the reconstructed paths of a capsule through the
large intestine, resulting in an average path difference of 4 ± 0.7 cm. In addition, the study
also proposed a frame classification system that helped to distinguish different components
of the large intestine, and a mean accuracy of 86% was reported. Variable frame rates are
utilized, of 4–35 Hz, that can help in the conservation of the battery in longer monitoring.
Integrating the technique with deep learning models can be explored to enhance accuracy.

4.3. Summary of Video-Based Localization Techniques

New technologies demonstrated promising capabilities in localizing WCE by using
video-based techniques. These techniques are further applied during the inspection to
identify certain abnormalities, such as polyps. Several methods have been proposed
regarding MEMS, such as multiplexing various components inside the capsule. Other
techniques of dimensionality shifting are considered in order to enable more extensive
image analysis after the WCE examination. In the last couple of years, the usage of
machine learning algorithms for the improvement of features captured frames and proper
localization of WCE has substantially increased from video data.

Real-time localization encounters problems with the capsule’s continuous movement
inside the intestine. Real-time information on the orientation and motion of the capsule
can be obtained through IMU data; this would be able to distinguish between peristaltic
activity and that of the capsule’s motion. The method of video-based localization can be
improved by updating the frame rate for efficiency in real applications. The increased
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frame rates can also be enabled by combining optimization algorithms with ML techniques
to decrease the processing time. The integration of video frame localization with other
localization methods and MEMS devices does offer a bright future for developing accurate
real-time localization systems. Table 3 summarizes and compares some of the latest features
in video-based localization for WCE.

Table 3. Video-based and hybrid localization techniques.

Ref (Year) Technique Algorithm
Environment Validation Error/Accuracy Notes

[77] (2022)
Image Processing with
a self-attention
mechanism

Attention Aware CNN
Public datasets:
Bleeding dataset and
Kvasir-Capsule dataset

Accuracy: Bleeding
dataset: 95.1%
Kvasir-Capsule dataset:
94.7%.

A dual-branch CNN
model integrating
self-attention
mechanisms and using
ResNet-50 to improve
classification accuracy
and lesion localization
in WCE images at
30 fps.

[79] (2019) Modified R-CNN

ResNet-50 and
ResNet-101 models
with data augmentation
and fine-tuning

CVC-ColonDB,
CVC-PolypHD, and
ETIS-Larib

F1 score: 96.67% F2
score: 96.10%.

The work introduces a
modified R-CNN for
polyp identification and
adapts deep learning
models trained on
non-medical images.

[80] (2021) Deep CNN with
attention mechanism

WCENet Grad-CAM++
and SegNet

KID dataset for WCE
images

Accuracy: 98%, Dice
Score: 56%

The study introduces a
hybrid anomaly
localization method for
identification and
segmentation of
abnormal regions.

[83] (2021) Feature point tracking
techniques SURF and RANSAC 84 videos from 42

patients Error: 4 ± 0.7 cm

The study utilizes
feature point tracking
to estimate capsule
displacement and
orientation.

[84] (2021) Hybrid: Video + IMU Fusion Algorithm Experiment: Ex-vitro
porcine intestine Accuracy: 0.95 cm

Hybrid method uses
four low-resolution
side-wall cameras and
an IMU with a 9 DoF
sensor for 6 DoF
localization.

[85] (2022) Hybrid: Video + RSSS +
ToF STN, HCO, CapsNet Simulation: UWB, 8–50

RXs
Error: 5.41 mm
Accuracy: 96.43%

The method integrates
RF and vision-based
data for localization
using a fusion of
multiple algorithms.

[86] (2022) Hybrid: Video +
Magnetic MagnetO Fuse

Experiment: 3 × 3
sensor array, robotics
arm, bio-tissues

Average Error:
Stationary Capsule:
0.84 mm
Moving Capsule:
3.5 mm

The proposed
algorithm uses
mathematical models to
reconstruct the
capsule’s position and
low-resolution side
wall cameras to assess
motion.

[87] (2018) Hybrid: Video + RSSI CAC-RSSI, L-M
Experiment: Human
mimicking phantom
and pig small intestine

Error: 0.98 cm

A four-camera
VGA-resolution WCE
system is used to
improve data
transmission and
localization accuracy,
utilizing BCC,
CAC-RSSI, and L-M
algorithms.
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5. Hybrid and Other Localization Methods
5.1. Introduction to Hybrid Localization Techniques

Recent advancements in miniaturized circuits, computational power, machine learning,
and artificial intelligence have significantly improved localization results. High-quality,
detailed, exhaustive datasets and modern techniques in data processing enable algorithms
to produce localization solutions that are much more accurate and efficient. A strategic
combination of different localization techniques, including magnetic, RF, and video-based
localization, is necessary to address further limitations of these technologies. Hybrid
methods typically integrate data from IMU sensors or RSSI values with video frames from
the capsule to estimate its distance and orientation.

5.2. Emerging Trends in Hybrid Localization Techniques

In [84], a hybrid method is introduced in which the capsule’s orientation and direction
of travel within the GI tract are determined using four low-resolution side-wall cameras and
an IMU with a 9 DoF sensor that consists of a gyroscope, accelerometer, and magnetometer.
Cameras capture capsule motion relative to GI tract walls, distinguishing capsule movement
from intestine involuntary movements. The IMU unit measures the orientation, velocity,
and gravitational forces acting on the capsule. An onboard microcontroller is used as the
processing unit. The information is gathered from the IMU and the cameras, compiled
into frames, and transmitted to an external data logger using a wireless connection. The
novel fusion algorithm combines motion data from cameras and IMU to compute a precise
trajectory of a capsule in three-dimensional space. It uses gyroscope data for short-term
accuracy and accelerometer and magnetometer data for long-term stability by correcting
drifting. The algorithm was evaluated experimentally by carrying out in-vitro validation
on the porcine intestine, and an accuracy of 0.95 cm was reported. However, the prototype
device has a large dimension, 3.5 cm × 3.5 cm × 4 cm, that can be reduced using current
miniaturization techniques. The system requires a 94 mAh battery for 8 h of operation and
requires optimization in order to achieve longer monitoring.

Similarly, in [86], a hybrid method combining magnetic and video imaging techniques
is presented. The capsule is equipped with a small permanent magnet whose magnetic
field is measured by nine three-axis Hall effect sensors positioned externally. The magnetic
data are processed using mathematical models to reconstruct the capsule’s position, while
low-resolution monochromatic side-wall cameras assess the capsule’s motion about the
GI tract. MagnetOFuse is an adaptive algorithm that combines information available from
magnetic and video sources, updating the weighting of the two in accordance with the
motion to improve localization resolution. Experiments with the 3 × 3 sensor belt, an
external robotic arm, and a workstation reported average positioning errors of around
0.84 mm when the capsules were stationary and 3.5 mm when they were in motion.

The use of sophisticated machine learning methods and optimization algorithms
allows the creation of dependable and accurate localization systems surpassing single-
method-based simple scenarios. In [85], a new hybrid RF with a Vision-aware Fusion
scheme, RF-VaF, is proposed. RF-VaF is a hybrid scheme combining the RF-based approach
with video-based localization techniques. The localization is performed by using ToF
and RSSI. The vision-based approach through a Siamese Capsule Network (CapsNet) and
Spatial Transformer Network (STN) provides frame registration, mapping, and prediction
(see Figure 6). A Hydrological Cycle Optimization (HCO) algorithm is proposed to enhance
accuracy and reduce localization errors. Simulations with the RF-VaF scheme through
human body modeling using the UWB channel path loss model and consecutive frames of
WCE were conducted to evaluate this scheme. The mean localization error is reported as
5.41 mm, along with an overall accuracy of 96.43%.
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Figure 6. Overview of an RF and video-based hybrid localization technique [85].

In [87], an approach to improve the data transmission and localization accuracy of a
four-camera VGA-resolution WCE system is presented to provide 360° image acquisition.
A low-power, high-speed dual-band pulse-shaping transmitter is developed for up to
80 Mb/s data transmission. The L-M algorithm is implemented for the capsule tracking,
and the contact attenuation compensated-received signal strength indicator (CAC-RSSI)
algorithm is used to improve the accuracy. The system was experimentally evaluated using
the pig intestine and human phantom, and an average localization error of 0.98 cm was
reported. The capsule weighs less than 4 g and has a dimension of 32 mm × 12 mm. A 4 fps
operation can be supported for 8 h with 55 mA.h of two coin batteries. Developing energy-
efficient components and incorporating adaptive compression algorithms that dynamically
balance image quality and power consumption based on real-time requirements can be
explored to enhance the functionality of such systems.

Other techniques like medical and radiological imaging methods exist that do not
have the possibility of being used with WCE or at least not as desired. Magnetic Resonance
Imaging (MRI) or X-ray-based methods offer some high localization accuracy, but they
remain limited by the radiation exposure itself. Computer Tomography has an accuracy in
the sub-mm range, but it is highly invasive and not viable for any use in real-time tracking
through surgery or examinations. Similarly, ultrasound-related methods pose risks of
radiation exposure, particularly if one considers the mean duration of examination for the
GI tract as taking between 8 and 12 h.

5.3. Summary of Hybrid Localization Techniques

With advancements in MEMS, nanotechnology, and computationally powerful de-
vices, promising new developments are emerging for hybrid WCE localization methods.
Recent studies have shown that error localization can now be obtained within the sub-mm
range for practical real-time systems. The integration of different technologies enables
multi-beneficial feature exploitation. It helps to overcome the limitations inherent in in-
dividual approaches, permitting surgeons to view and inspect the GI tract in more detail.
For instance, IMUs can support real-time orientation data for the capsule and can be syn-
chronized with video frames for finding and tracking any anomalies in the trajectory of the
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capsule. Similarly, the integration of various magnetic methods with RF-based techniques,
augmented by various optimization algorithms, will increase localization accuracy.

However, the addition of more hardware within the WCE device increases the capsule
beyond the standard dimension. Although multiple research works show that ASICs will
be useful in minimizing the overall capsule size, high battery consumption still remains a
challenge when the supplementary cameras, sensors, and units for processing are turned
on [84,87]. Hybrid localization techniques that require additional hardware and sometimes
onboard computing can be explored with WPT methods. Real-time location updates and
precise localization information for a practical system are crucial. It would be interesting
to use AI- and ML-based models with different optimization algorithms to reduce the
update time further. The same can be used to minimize dependency on additional IMU
and cameras inside the capsule to save volume for surgical purposes. Table 3 includes some
of the latest advancements in the field of hybrid localization methods for WCE.

6. Conclusions
Endoscopy is a medical procedure that uses an endoscope to visually inspect the

body’s internal organs. The demand for endoscopy procedures is on an upward trajectory
due to the rise in the geriatric population and chronic diseases. WCE is a painless and
non-invasive method of examining internal organs using a small camera swallowed like a
pill. However, existing active locomotion technologies lack a practical localization system
to securely manage the capsule’s movement within the body. We have identified salient
features of different methods and categorized studies in tables. The review includes brief
introductions of the latest methodologies used in the recent articles, the study environment,
the type of hardware used, the reported localization error, and the way forward. In
particular, the contributions of this work include a comprehensive updated review of
magnetic, video, RF, and hybrid technology-based localization techniques.

The emerging technologies have shown promising results in accurately localizing WCE
using static or dynamic magnetic fields, achieving position and orientation errors under
5 mm and 5°, respectively. Techniques often involve induction coils, IMU, and tri-axial
sensors within the capsule. However, the limited volume of commercial capsules poses a
significant constraint. WPT can be a promising solution for power transfer, estimating the
capsule’s location, overcoming the limitations of traditional internal batteries, and enabling
thorough, extended diagnostic procedures. Furthermore, the use of additional sensors,
either within the WCE or in the localization system, can improve localization accuracy but
may make the system impractical.

The RF-based localization system leverages the properties of the wireless propagation
channel, including attenuation, relative permittivity, time, and multipath characteristics.
Recently, there has been a growing emphasis on exploring various combinations of opti-
mization algorithms, AI, circularly polarized antennas, arrays of antennas on the receiving
side, and ML techniques to minimize localization errors. However, technical challenges,
such as the need for line-of-sight, complicate the implementation of these technologies. Ad-
ditionally, the body’s movement and the involuntary motion of internal organs contribute
to higher localization errors. Implementing ToF, ToA, DoA, and AoA methods in real-time
settings is much more challenging due to the high speed of EM waves. Furthermore, RF-
based methods cannot determine the orientation of the capsule. RF-based techniques can
localize the capsule without any additional hardware, and along with video or magnetic
field-based techniques, the capsule’s orientation could also be determined.

Several methods have been proposed for video-based techniques, such as dimension-
ality shifting, to enable more extensive image analysis after the WCE examination. In the
last couple of years, the usage of machine learning algorithms to improve the features
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captured in frames and proper localization of WCE has substantially increased from video
data. However, real-time localization encounters problems with the capsule’s continuous
movement inside the intestine. Real-time information on the orientation and motion of the
capsule can be obtained through IMU data; this would be able to distinguish between peri-
staltic activity and that of the capsule’s motion. The method of video-based localization can
be improved by updating the frame rate for efficiency in real applications. The increased
frame rates can also be enabled by combining optimization algorithms with ML techniques
to decrease the processing time. The integration of video frame localization with other
localization methods and MEMS devices does offer a bright future for developing accurate
real-time localization systems.

With advancements in MEMS, nanotechnology, and computationally powerful devices,
promising new developments are emerging for hybrid WCE localization methods. The
integration of different technologies enables multi-beneficial feature exploitation. It helps
to overcome the limitations inherent in individual approaches, permitting surgeons to view
and inspect the GI tract in more detail. It would be interesting to use AI and ML-based
models with different optimization algorithms to reduce the update time further. The same
can be used to minimize dependency on additional IMU and cameras inside the capsule to
save volume for surgical purposes.

Future research should focus on using a minimal number of sensors and localization
equipment inside the capsule and in the surrounding environment while emphasizing
efficient and real-time algorithms. Recent advancements in onboard sensing demonstrated
that compact size, low power consumption, and higher monitoring time are achievable.
Moreover, wearable localization systems are highly desirable as they can assist patients in
daily activities during extended examinations lasting up to 12–14 h. A robust, real-time,
and practical localization system is essential to advance WCE and make it desirable for
clinical trials. For real-time localization, minimizing computation time is crucial. Advanced
machine learning techniques and various algorithm combinations can help to reduce
computational time for effective real-time monitoring. This review presents an in-depth
review of the most recent localization techniques published in the past 5 years, including
magnetic field, RF, video, and hybrid-based techniques. This review can help researchers
to understand the latest methods and identify potential areas for further investigation.
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