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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. 
Although genes causing familial cases have been identified, those of sporadic ALS, which occupies 
the majority of patients, are still elusive. In this study, we adopted machine learning to build binary 
classifiers based on the New York Genome Center (NYGC) ALS Consortium’s RNA-seq data of the 
postmortem spinal cord of ALS and non-neurological disease control. The accuracy of the classifiers 
was greater than 83% and 77% for the training set and the unseen test set, respectively. The classifiers 
contained 114 genes. Among them, 41 genes have been reported in previous ALS studies, and others 
are novel in this field. These genes are involved in mitochondrial respiration, lipid metabolism, 
endosomal trafficking, and iron metabolism, which may promote the progression of ALS pathology.
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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition that progresses over time, marked 
by the deterioration of both upper and lower motor neurons that regulate voluntary movements through the 
corticospinal tract1. While the majority of patients experience the onset of the disease in middle age, there 
exists significant clinical diversity in symptom initiation and the rate of disease advancement leading up to 
mortality2. Approximately 5–10% of ALS cases are hereditary, with familial instances, and the remaining cases 
are considered sporadic3. Although mutations in TDP-43, C9orf72, SOD1, TARDBP, FUS, NEK1, TBK1, and 
KIF5A have been identified in familial ALS population3, importantly, a significant number of non-familial ALS, 
i.e., the majority of ALS cases, i.e., the sporadic ALS, lack clear causative genetics.

The New York Genome Center (NYGC) ALS Consortium is a cooperation of 42 global institutes aiming 
to collect genetic information from several thousand samples to tackle ALS-causing genetics, which are of 
moderate impact and relatively rare in the population4. Since 2018, ALS research has been advanced based on 
the data collected by the ALS Consortium, as well as Project MinE5, including KIF5A6, DNAJC77, miR-2188, 
STMN29, UNC13A10, IL18RAP11, VPS3512, and ATXN313. However, the genetics underlying several clinical 
characteristics of ALS, including dysregulated energy metabolism14, lipid metabolism15, iron metabolism16, and 
intracellular transport, are still elusive.

One of the main difficulties in understanding and developing treatments for neurodegenerative diseases 
arises from the genetic heterogeneity present in these conditions17. This diversity in genetic factors can challenge 
the assumptions underlying traditional statistical methods like the T-test or ANOVA, which rely on normally 
distributed, independent samples and equal variance among groups18. When these assumptions are not met, 
the validity of such statistical approaches may be compromised. In contrast, machine learning classifiers are 
capable of identifying predictive patterns without needing to adhere to these assumptions19. For this reason, 
we have suggested that machine learning could be an effective supplementary method for studying diseases 
characterized by genetic heterogeneity. In fact, we have successfully employed machine learning techniques in 
our previous research on neurodegenerative conditions such as Alzheimer’s disease20 and Huntington’s disease21.
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To uncover the ALS genetics, we applied machine learning on the ALS Consortium’s RNA-seq dataset of the 
postmortem spinal cord of ALS and non-neurological disease control in this study, and we report novel genes 
that may partly explain several clinical characteristics of ALS, such as dysregulated energy metabolism, lipid 
metabolism, iron metabolism, and intracellular transport.

Results
To better understand the pathological mechanisms in the ALS spinal cord that had previously been identified, we 
utilized RNA sequencing data from 240 cervical spinal cord samples, which included both ALS patients and non-
neurological disease controls. This dataset served as the input for machine learning models designed to create 
binary classifiers capable of distinguishing between ALS and control samples. The entire workflow for building 
these classifiers is illustrated in Fig. 1. In our analysis, we employed four different machine learning algorithms: 
"Generalized Linear Model" (GLM), "Rule Induction," "Decision Tree," and "Random Forest." Each of these 
algorithms was carefully programmed, and their respective processes are depicted in Fig. 2A. To evaluate the 
robustness of the models, we conducted cross-validation, with the results for this process displayed in Fig. 2B.

All four algorithms performed remarkably well, achieving an overall accuracy—defined as the total true 
positive rate—of more than 80%. This high accuracy suggests that the binary classifiers were able to effectively 
differentiate between the ALS and control samples. However, we did observe a bias in the recall rates of the 
models. Specifically, the recall rate for ALS predictions was higher compared to the recall rate for control 
predictions. This discrepancy in recall rates could likely be attributed to an imbalance in the sample sizes: the 
dataset contained 199 ALS samples compared to only 41 control samples, resulting in an approximately 5:1 
ratio between ALS and control groups. Such an imbalance in the data could skew the classifiers to favor ALS 
predictions over control predictions.

Despite this bias, the performance of the classifiers remained robust, particularly for the GLM algorithm. 
As shown in Fig.  2C, the receiver operating characteristic (ROC) curve for GLM indicates that the model 
maintained strong performance, even when operating at lower confidence thresholds. This suggests that GLM is 
able to achieve good predictive accuracy while maintaining flexibility in its decision-making process, making it 
a reliable tool for identifying ALS-related patterns within the RNA-seq data.

To further assess the effectiveness of our trained classifiers, we next applied them to an unseen dataset, 
comprising RNA sequencing data from 222 lumbar spinal cord samples. This dataset included both ALS patients 
and non-neurological disease controls, and it allowed us to independently validate the performance of the 
classifiers we had previously developed. The programming workflow for this validation process is illustrated in 
Fig. 3A, while the performance metrics of the classifiers are summarized in Fig. 3B.

Across all four machine learning algorithms, the classifiers maintained a strong level of accuracy, exceeding 
77% in all cases. This high accuracy suggests that the models were able to generalize well to new data and reliably 
distinguish between ALS and control samples. Furthermore, the recall rate for ALS predictions was consistently 

Fig. 1.  Workflow of this study. Each block represents one step in the workflow, and arrows represent the 
direction of information flow. The first step is retrieving the ALS RNA-seq dataset. The second step is data 
cleansing. The third step is building ML classifiers using the training dataset. Two divergent steps follow: the 
ML model validation using the unseen dataset (the right branch), and the identifying of transcripts (the left 
branch). The final step is enrichment analysis and interaction network.
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Fig. 3.  The validation of the binary classifiers of ALS using an unseen dataset. (A) The program setup for 
validating the binary classifier of ALS. (B) The performance of the four established models. This figure details 
the validation process of the binary classifiers designed to distinguish ALS samples from controls, using an 
independent dataset that was not included in the model-building phase. This “unseen dataset” is critical for 
evaluating how well the classifiers generalize to new data and ensuring that their performance holds up outside 
the training environment. The unseen dataset contains samples that the models have not encountered before, 
which allows us to assess the true predictive power of the classifiers in real-world scenarios. This validation 
process is a crucial step in confirming that the binary classifiers are not overfitted to the training data and can 
reliably generalize to new, unseen datasets.

 

Fig. 2.  The building and performance of the binary classifiers of ALS. (A) The program setup for building 
binary classifiers of ALS. The subprocess inside the Cross-validation process is shown in the lower part. 
(B) The performance of the four established models. (C) ROC curve of the established binary classifier of 
ALS. This section focuses on the construction and evaluation of the binary classifiers used to distinguish 
between ALS and control samples. The process of building these classifiers involved several steps to ensure 
accuracy and robustness. In Figure A, we illustrate the overall program setup that was used for the creation 
of the binary classifiers targeting ALS. This diagram outlines the key components involved in developing the 
models, starting with data preprocessing, followed by feature selection and the subsequent model training. 
In (B), we present the performance metrics of the four different models that were established during the 
study. These models employed distinct machine learning algorithms, each optimized for binary classification 
tasks. The performance evaluation focused on key metrics such as accuracy and recall, all of which provided 
a comprehensive assessment of how well the classifiers were able to distinguish between ALS and control 
samples. (C) features the receiver operating characteristic (ROC) curve of the established binary classifier 
for ALS. The ROC curve is a crucial graphical representation of the classifier’s performance across different 
threshold settings. It plots the true positive rate (sensitivity) against the false positive rate (1-specificity) to 
evaluate the trade-offs between these two measures. A higher area under the ROC curve (AUC) indicates a 
better-performing model.
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high, with all classifiers achieving a recall rate above 76%. This indicates that the classifiers were effective in 
correctly identifying ALS cases from the new dataset, which is crucial for ensuring that the models can be used 
to detect ALS with confidence.

However, the performance of the classifiers was more variable when it came to predicting control samples. 
The recall rate for controls ranged widely, from as low as 34% to as high as 83%, depending on the algorithm. 
This variation in recall rates for the control group may be due to several factors. The consistently high recall rate 
for ALS predictions suggests that the pathological genetic features associated with ALS are relatively similar 
across different parts of the spinal cord. In other words, the genetic patterns found in the cervical spinal cord, 
which were used to train the classifiers, appear to also be present in the lumbar spinal cord, making it easier for 
the models to detect ALS regardless of spinal cord region.

On the other hand, the lower recall rates for control samples in some classifiers could indicate that there 
are slight differences in the genetic background of the non-neurological disease controls between the cervical 
and lumbar regions of the spinal cord. These subtle genetic variations might make it more challenging for 
the classifiers to accurately identify control samples in the lumbar dataset, leading to a wider range of recall 
performance. This finding highlights the possibility that different parts of the spinal cord may exhibit distinct 
genetic characteristics, especially in non-neurological conditions, and it suggests that further refinement of the 
classifiers may be necessary to improve their performance in detecting control samples across diverse spinal 
cord regions.

The classifiers that were developed and trained during our study are displayed in various figures and 
supplementary tables. Specifically, Fig. 4A illustrates the Rule Induction classifier, Fig. 4B shows the Decision 
Tree classifier, and Fig. 4C–E depict the Random Forest classifiers. Additionally, the Generalized Linear Model 
(GLM) is provided in Supplementary Table 1. Together, these four classifiers collectively identified 114 genes, 
which are listed in Supplementary Table 2. These genes represent key distinguishing features between ALS spinal 
cord samples and those from non-neurological disease controls.

What is particularly noteworthy about these 114 genes is their emphasis on the composition of vesicles and 
lipid transport as the primary factors differentiating ALS from controls, as visualized in Fig.  5. This finding 
is important because it suggests that disruptions in vesicle formation and lipid movement may play a central 

Fig. 4.  The binary classifiers of ALS. (A) Rule induction. Rule induction systematically identifies patterns in 
the data and constructs a set of "if–then" rules that can be used to make predictions. For ALS classification, 
the rule induction classifier determines a series of logical conditions that differentiate ALS samples from 
control samples based on gene expression patterns. (B) Decision tree. The decision tree classifier uses the gene 
expression data to form a tree-like structure where each node represents a decision about a specific gene. The 
branches of the tree lead to different classifications—either ALS or control—based on the outcomes of these 
decisions. (C–E) Decision trees from Random forest. Each individual decision tree in a Random Forest is 
constructed from a random subset of the data, and the final classification is determined by aggregating the 
predictions from all the trees. In (B–E), the judgment criteria are noted near the splitting arrows, and the 
thickness of the arrows roughly represents the fraction of samples that fall in this criterion.
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role in the pathological mechanisms of ALS, offering a potential area for further investigation into the disease’s 
molecular underpinnings.

Out of the 114 genes identified by the classifiers, 41 had been previously reported in other ALS research, as 
shown in Table 1. This overlap reinforces the relevance of these genes to ALS and suggests that our machine-
learning approach was successful in pinpointing key genetic markers that have already been associated with the 
disease. However, the study also revealed 73 genes that are novel to ALS research, meaning they had not been 
reported in prior studies. This is a significant finding, as it expands our understanding of the genetic factors 
involved in ALS. Among these 73 newly identified genes, eight have been linked to other neurological diseases, 
as outlined in Table 2. This connection suggests that some genetic pathways may be shared across multiple 
neurological disorders, opening up potential avenues for cross-disease research.

Additionally, 21 of the novel genes are involved in vesicle formation, ion channel function, or lipid transport, 
as detailed in Table 3. These genes are particularly intriguing because they point to new areas of investigation in 
ALS research. Their involvement in key cellular processes that are essential for neuron function and signaling 
suggests that further exploration of these pathways could yield valuable insights into how ALS develops at the 
molecular level. Given that these 21 genes have not been previously associated with ALS, their discovery offers a 
fresh perspective on the disease’s biology and could help to identify new therapeutic targets aimed at addressing 
these specific mechanisms.

To evaluate whether age, sex, and genetic variations correspond to specific RNA expression patterns in ALS, 
we re-run the analysis using age, sex, and the GGGGCC repeat size of C9orf72 or CAG repeat size of ATXN2 as 
the Machine-learning “labels” according to the clinical information of ALS samples.

For age as the ML label, the two strategies shown in Supplementary Fig. 1 were used. In the first strategy 
(the left flow in Supplementary Fig. 1), the label age was treated as continuous numbers, and the ML model 
of linear regression was trained using RNA expression. The resulting root-mean-square deviation (RMSD) of 
the regression model was 9.459 ± 3.604 years, which is not significantly different from the standard deviation 
of ALS samples of 10.05  years. This means the linear regression model could not effectively predict the age 
of ALS samples. In the second strategy (the right flow in Supplementary Fig. 1), the label age was treated as 
discrete data, i.e., label = 1 if age < 55, else label = 0, and the trained classification models were GLM, decision 
tree, random forest, and rule induction. The resulting AUC of the ROC curve for GLM, decision tree, random 
forest, and rule induction were 0.684, 0.500, 0.577, and 0.573, respectively, not much better than a 50% chance of 
flipping a coin. Meanwhile, the recall rate of age-under-55 ALS samples was 12.5%, 31.25%, 18.75%, and 12.5%, 
respectively. This means that trained classification models could not effectively predict the age of ALS samples. 
In sum, neither strategy could predict the age of ALS samples, i.e., we cannot claim the correlation between the 
age and the RNA expression pattern of ALS samples.

For sex as the ML label, i.e., the label for male = 1 and female = 0, we conducted two rounds of ML as shown 
in Supplementary Fig. 2. In the first round (the left flow in Supplementary Fig. 2), all RNA of ALS samples in the 
dataset were kept for the training of prediction models; as a result, we got 100% recall rate for both sexes. This 

Fig. 5.  Interaction network of the genes used in the binary classifiers of ALS. The colors of the nodes denote 
their enriched biological processes. The thickness of the edges denotes the confidence of the connection 
between nodes.
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result met our anticipation since Y chromosome genes were included. Therefore, in the second round (the right 
flow in Supplementary Fig. 2), Y chromosome genes were excluded from the training dataset, and the recall rate 
for both sexes was > 70% for three models (see Fig. 6A for detail, 6B for the rule induction, 6C for the decision 
tree, and Supplementary Table 6 for the GLM models). Interestingly, there is a common gene in the three models: 
ENSG00000147050.14 (KDM6A, lysine demethylase 6A).

For genetic variation as the ML label, we set the label = 1 for those ALS samples carrying more than 30 
GGGGCC repeats in C9ORF72 or intermediate (i.e., 30–33,) CAG repeats in ATXN2, and label = 0 for those 
ALS samples who did not meet the previous criteria. Using the workflow shown in Supplementary Fig. 3, the 
resulting AUC of the ROC curve for GLM, rule induction, decision tree, and random forest, were 0.508, 0.558, 
0.508, and 0.454, respectively. Meanwhile, the recall rate of ALS samples carrying genetic mutation was 5.00%, 
15.00%, 25.00%, and 30.00%, respectively. This means that trained classification models could not effectively 

Accession Symbol Used in Classifiers ALS study References

ENSG00000165092.13 ALDH1A1 GLM ALS association 22

ENSG00000130208.9 APOC1 GLM ALS association 23

ENSG00000224389.9 C4B GLM ALS association 24

ENSG00000042493.16 CAPG GLM ALS association 25

ENSG00000103811.16 CTSH GLM ALS association 26

ENSG00000187775.16 DNAH17 GLM ALS association 27

ENSG00000268388.5 FENDRR GLM ALS association 28

ENSG00000170266.16 GLB1 Random forest ALS association 29

ENSG00000204252.14 HLA-DOA GLM ALS association 30

ENSG00000145703.16 IQGAP2 GLM ALS association 13

ENSG00000154721.15 JAM2 Random forest ALS association 31

ENSG00000131981.16 LGALS3 GLM ALS association 32

ENSG00000186818.12 LILRB4 GLM ALS association 33

ENSG00000197971.15 MBP GLM ALS association 34

ENSG00000116701.14 NCF2 GLM ALS association 35

ENSG00000134250.20 NOTCH2 Random forest ALS association 36

ENSG00000073756.12 PTGS2 GLM ALS association 37

ENSG00000187714.7 SLC18A3 GLM ALS association 38

ENSG00000162383.12 SLC1A7 GLM ALS association 39

ENSG00000286159.1 Antisense To PREX1 GLM ALS GWAS 40

ENSG00000122359.18 ANXA11 GLM ALS GWAS 41

ENSG00000130203.10 APOE GLM ALS GWAS 42

ENSG00000116133.13 DHCR24 GLM ALS GWAS 43

ENSG00000113657.13 DPYSL3 Rule induction ALS GWAS 44

ENSG00000113719.16 ERGIC1 Random forest ALS GWAS 45

ENSG00000196743.8 GM2A Random forest ALS GWAS 46

ENSG00000168314.17 MOBP GLM ALS GWAS 47

ENSG00000132170.21 PPARG GLM ALS GWAS 48

ENSG00000165029.16 ABCA1 GLM ALS mechanism 49

ENSG00000085563.14 ABCB1 GLM ALS mechanism 50

ENSG00000158859.10 ADAMTS4 GLM ALS mechanism 51

ENSG00000147256.12 ARHGAP36 Random forest ALS mechanism 52

ENSG00000129226.14 CD68 GLM ALS mechanism 53

ENSG00000105810.9 CDK6 Random forest ALS mechanism 54

ENSG00000187908.18 DMBT1 GLM ALS mechanism 55

ENSG00000136235.16 GPNMB GLM, Rule induction ALS mechanism 56

ENSG00000019991.17 HGF GLM ALS mechanism 57

ENSG00000177807.9 KCNJ10 Random forest ALS mechanism 58

ENSG00000148053.16 NTRK2 Decision tree, Random forest ALS mechanism 59

ENSG00000187764.11 SEMA4D GLM ALS mechanism 60

ENSG00000101558.13 VAPA Random forest ALS mechanism 61

Table 1.  Identified genes that have been reported in previous ALS studies. The first column contains the 
Ensembl transcript ID. The second column contains the gene symbol of the transcript. The third column shows 
the involvement of the transcript in the trained ML classifier. The fourth and fifth columns show the type of 
previous study and reference that identified the involvement of the gene in ALS.
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Fig. 6.  The binary classifiers of the sex of ALS. (A) The performance of the four established models. (B) Rule 
induction. (C) Decision tree.

 

Accession Symbol Used in classifiers Involves in

ENSG00000177076.6 ACER2 GLM Lipid metabolism

ENSG00000111269.3 CREBL2 Decision tree Lipid genesis

ENSG00000070882.13 OSBPL3 GLM Lipid transport

ENSG00000164211.13 STARD4 GLM Lipid transport/vesicle

ENSG00000080166.16 DCT GLM Vesicle

ENSG00000162654.9 GBP4 GLM Vesicle

ENSG00000181619.11 GPR135 Random forest Vesicle

ENSG00000005893.15 LAMP2 Random forest Vesicle

ENSG00000130592.15 LSP1 GLM Vesicle

ENSG00000103111.14 MON1B Random forest Vesicle

ENSG00000173947.14 PIFO GLM Vesicle

ENSG00000128567.17 PODXL GLM Vesicle

ENSG00000181467.4 RAP2B GLM Vesicle

ENSG00000078269.15 SYNJ2 GLM Vesicle endocytosis

ENSG00000108239.8 TBC1D12 Random forest Vesicle

ENSG00000148408.13 CACNA1B Random forest Calcium channel

ENSG00000153822.13 KCNJ16 Random forest Potassium channel

ENSG00000120457.12 KCNJ5 GLM Potassium channel

ENSG00000101198.15 NKAIN4 GLM Sodium–potassium pump

ENSG00000065600.12 PACC1 Decision tree Chloride channel

ENSG00000115616.2 SLC9A2 GLM Sodium antiporter

Table 3.  Identified genes that are involved in vesicle, ion channel, or lipid transportation. The first column 
contains the Ensembl transcript ID. The second column contains the gene symbol of the transcript. The third 
column shows the involvement of the transcript in the trained ML classifier. The fourth column shows the 
biological pathway that the gene is involved in.

 

Accession Symbol Used in classifiers Diseases References

ENSG00000048740.18 CELF2 Random forest Encephalopathy 62

ENSG00000182890.4 GLUD2 GLM Parkinson’s disease 63

ENSG00000167755.15 KLK6 GLM Hydrocephalus 64

ENSG00000204103.4 MAFB GLM Alzheimer’s disease 65

ENSG00000198763.3 MT-ND2 GLM Leigh syndrome 66

ENSG00000198695.2 MT-ND6 GLM, rule induction Leigh syndrome 67

ENSG00000007908.16 SELE GLM Brain ischemia 68

ENSG00000187554.13 TLR5 GLM Brain ischemia 69

Table 2.  Identified genes that are related to other neurological diseases. The first column contains the Ensembl 
transcript ID. The second column contains the gene symbol of the transcript. The third column shows the 
involvement of the transcript in the trained ML classifier. The fourth and fifth columns show the type of 
diseases and references that identified the involvement of the gene.
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predict the genetic mutation of ALS samples, i.e., we cannot claim the correlation between the genetic mutation 
and the RNA expression pattern of ALS samples.

Discussion
In this study, we generated several ALS-Control classifiers using an RNA-seq dataset from the cervical spinal 
cord and used the counterpart from the lumbar spinal cord as the unseen dataset for validation. The accuracy of 
classifiers was higher than 83% for the cross-validation during model building and 77% for the unseen dataset, 
which not only justifies the performance of the classifiers but also indicates the similarity of ALS transcriptomic 
signatures between different parts of the spinal cord. The relevance to previous ALS studies and the biological 
meaning of the novel findings are discussed below.

In the generated ALS- Control classifiers, 41 genes have been reported in previous ALS studies (Table 1), 
which cover different study types, including association studies, genome-wide association studies (GWAS), and 
mechanism research. We will not discuss these genes, but we have provided a reference list in Table 1 if more 
detail is needed. Notably, the rediscovery of the previously identified ALS genes strengthens the reliability of 
our study. In addition to those rediscovered ones, we identified 73 genes novel to ALS research. Among the 
novel genes, those eight genes in Table 2 have been mentioned in other neurological diseases, and those 21 
genes in Table 3 involve critical biological functions of the spinal cord. Some of them may passively reflect the 
biological environment of ALS, but some may actively make progress in ALS pathology. We shall focus our 
discussion on the later part, which will be divided into four groups according to their biological functions, 
including mitochondrial respiration, lipid metabolism, endosomal trafficking, and ion channel.

The mitochondrial NADH dehydrogenase 2 (mt-ND2) and NADH dehydrogenase 6 (mt-ND6) are subunits 
of the NADH dehydrogenase, which is the largest electron transport chain complex in the mitochondrial 
inner membrane and responsible for mitochondrial ATP synthesis70. As shown in the Rule Induction classifier 
(Fig. 4A), a sample is classified as a non-ALS control if the expression of ENSG00000198695.2, i.e., mt-ND6, is 
greater than a certain level. This criterion indicates that the quantity of the NADH dehydrogenase subunit is 
fewer for the ALS spinal cord. Importantly, mt-ND6 is essential for the assembly of the membrane arm of the 
NADH dehydrogenase and is indispensable for mitochondrial respiratory function70. Interestingly, disrupted 
TCA cycle71 and increased glycolysis72 have been reported in ALS models. Thus, insufficient levels of mt-ND6 
may directly limit the efficiency of mitochondrial respiration and indirectly force the utilization of glycolysis to 
fulfill the energy demand.

Altered lipid metabolism has been identified in animal models29,73 and cohorts74 of ALS. Interestingly, several 
rediscovered ALS genes in previous studies are relevant to lipid transport (Fig. 5), including APOE, APOC1, 
ABCA1, ABCB1, GM2A, PPARG, and VAPA. The novel ones are oxysterol-binding protein-related protein 3 
(OSBPL3), StAR-related lipid transfer protein 4 (STARD4), and sphingolipid long chain base-responsive protein 
LSP1 (LSP1). OSBPL3 is located in the membrane contact site between plasma and endoplasmic reticulum 
(ER) membranes and forms a complex with VAPA75. OSBPL3 regulates plasma membrane phosphatidylinositol 
4-phosphate (PI4P) levels and Ca2+ entry by exchanging phosphatidylcholine76. STARD4 regulates intracellular 
cholesteryl ester formation, sterol transport to the ER, and SREBP-2-mediated sterol sensing by SCAP/
SREBP-277. LSP1 localizes at eisosomes and participates in lipid endocytosis78. The dysregulation of OSBPL3, 
STARD4, and LSP1 may exacerbate the altered lipid metabolism in ALS. In sum, the lipid transport pathway 
plays an important biological role in ALS, particularly in relation to how it affects neurons and their ability to 
function properly. Lipids are essential for maintaining the structure and function of cell membranes, particularly 
in neurons. They also serve as a source of energy. Lipid metabolism disruptions have been linked to ALS, with 
many patients experiencing altered lipid profiles, including elevated cholesterol and triglycerides15. These genes 
may affect how lipids are transported within neurons, leading to cellular stress or degeneration. Dysregulation of 
these genes can impair the normal trafficking and metabolism of lipids, disrupting cellular energy balance and 
membrane integrity. Defects in lipid transport can lead to neuronal dysfunction and contribute to motor neuron 
death, a hallmark of ALS.

The synaptic vesicle plays a crucial role in the pathology of ALS, primarily through its involvement 
in neurotransmitter release and neuronal communication79. Synaptic vesicles are small sacs that store 
neurotransmitters, which are chemicals used for communication between neurons. During synaptic transmission, 
vesicles fuse with the presynaptic membrane, releasing neurotransmitters into the synaptic cleft. This allows for 
the activation of postsynaptic neurons, facilitating communication between neurons, including motor neurons. 
Importantly, motor neurons, with their long axons, depend heavily on the efficient transport of synaptic vesicles 
from the cell body to the synapse. Disruptions in axonal transport mechanisms, often associated with ALS80, 
affect the delivery of synaptic vesicles, leading to synaptic dysfunction and degeneration of motor neuron 
connections. Endosomal trafficking is critical in maintaining the proper function of neurons, in the context of 
targeted transportation and protein recycling in the extremely asymmetric and complex intracellular space of a 
neuron81. Interestingly, endosomal trafficking is disrupted by either C9ORF7282 or SOD183 mutant in ALS. In 
this study, five identified genes involved in the endosome, including G-protein coupled receptor 135 (GPR135), 
Lysosome-associated membrane glycoprotein 2 (LAMP2), Vacuolar fusion protein MON1 homolog B (MON1B), 
Ras-related protein Rap-2b (RAP2B), and TBC1 domain family member 12 (TBC1D12). The dysregulation of 
these genes may contribute to the disruption of endosomal trafficking and promote neurodegeneration in ALS.

Abnormal accumulation of iron in CNS has been detected in neurodegenerative diseases, including ALS84. 
Iron level in the spinal cord is increased more than 1.5 fold in ALS85. Iron excess may induce oxidative stress86, 
ferroptosis87, and microglia activation88. In this study, we identified a proton-activated chloride channel 
(PACC1). PACC1 is a transmembrane protein that mediates the influx of chloride ions in response to extra-
membrane acidic pH value89. Besides cellular membrane, PACC1 can translocate to endosomes and regulate 
transferrin receptor-mediated endocytosis90. As shown in Fig.  4B, lower PACC1, i.e., ENSG00000065600.12, 
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predicts ALS, and according to the previous study89, PACC1 knockout results in increased transferrin uptake. 
Thus, the PACC1 down-regulation may promote neurodegeneration by mediating abnormal accumulation of 
iron in the spinal cord.

Men are generally more likely to develop ALS than women, particularly in younger age groups. However, 
this sex difference decreases with age. In older populations, the ratio between men and women diagnosed with 
ALS tends to even out91,92. Moreover, sporadic ALS (the most common form, making up 90–95% of cases) 
tends to occur more frequently in men, while familial ALS (accounting for 5–10% of cases) shows less of a 
sex disparity91,93. Although hormonal differences, especially related to estrogen, are considered a possible 
explanation for the sex disparity of ALS94, further investigations are needed to clarify this issue. In this study, 
we identified KDM6A as the common gene in sex classifiers of ALS, and a higher expression level of KDM6A 
predicts female ALS samples. KDM6A belongs to the family of histone demethylases, which modulate epigenetics 
during neurodevelopment and neurodegenerative diseases95. Interestingly, a previous study using microarray to 
probe blood RNA expression also identified higher expression levels of KDM6A in female than male ALS96. The 
exact role of KDM6A in ALS requires further investigation.

In conclusion, binary classifiers build by machine learning on spinal cord RNA-seq data successfully 
differentiate ALS and control samples. Besides, this study identified novel genes in mitochondrial respiration, 
lipid metabolism, endosomal trafficking, and iron metabolism, which may promote the progression of ALS 
pathology.

Methods
Source of NGS datasets
RNA-seq data of ALS and non-neurological control were retrieved from the Gene Expression Omnibus (GEO) 
database97 of the National Center for Biotechnology Information (NCBI) of the USA with the accession number 
GSE1539609, accessed on Sep 12th 2023, which contained RNA-seq data from the cervical and lumbar spinal 
cord, and the lumbar spinal cord samples were from the same cases/controls as the cervical spinal cord samples. 
For the development and cross-validation of the binary classifiers designed to differentiate between ALS and 
non-neurological conditions, we utilized data from 199 ALS samples and 41 non-neurological control samples 
derived from the cervical region of the spinal cord. This dataset provided the foundation for constructing the 
models and performing the necessary cross-validation to ensure the accuracy and reliability of the classifiers. 
Detailed information about this dataset, as well as the specifics of the model-building process, can be found in 
Supplementary Table 3. In addition to the training and validation performed on the cervical spinal cord dataset, 
we employed another independent set of data from the lumbar spinal cord to further test the generalizability 
of the classifiers. This unseen dataset consisted of RNA sequencing data from 179 ALS samples and 43 non-
neurological control samples. By using this new dataset, we aimed to validate the performance of the classifiers 
on data that had not been used during the model training phase, ensuring that the classifiers could reliably 
predict ALS even when applied to samples from a different region of the spinal cord. This process of external 
validation helps to assess how well the classifiers can generalize to new data and different contexts, and the 
results of this validation, along with the details of the lumbar spinal cord dataset, are provided in Supplementary 
Table 4. By using distinct datasets from two different regions of the spinal cord—cervical for model building and 
cross-validation, and lumbar for independent testing—we were able to thoroughly evaluate the robustness and 
reliability of the classifiers. The inclusion of both regions ensures that the models are not overly specific to a single 
area of the spinal cord, increasing the likelihood that they will be applicable across different anatomical regions 
affected by ALS. This two-phase validation approach enhances the credibility of our findings, as it demonstrates 
that the models are capable of accurately predicting ALS across diverse sample sets, which is a critical step in 
advancing the potential for these classifiers to be used in broader clinical applications. The clinical information 
of ALS samples is listed in Supplementary Table 5.

Data cleansing
In the process of building the binary classifiers, we used the field labeled "Sample id alt" to represent the unique 
identifier for each sample, which was referred to as "ID." This “ID” allowed us to track and differentiate between 
individual samples throughout the analysis. Meanwhile, the field labeled “Group” served as the "Label," which 
functioned as the target variable for the binary classification task. The “Label” distinguished between the two 
groups of interest—ALS and non-neurological control—and was the outcome the classifiers were trained to 
predict. For the actual features, or input variables, used to train the classifiers, we relied on the “ENSEMBL 
ID” of transcripts, which was designated as the "Regular Attribute." This means that each transcript, identified 
by its unique ENSEMBL ID, was used as a predictive feature in the machine learning models. The transcripts 
represent the genetic expression data from the samples, and these were the variables that the models analyzed 
to learn patterns associated with ALS or control groups. To focus the learning tasks on the most relevant data, 
we applied a filtering step to reduce the number of transcripts included in the analysis. Specifically, we retained 
only the top 15,000 transcripts with the highest average read counts across the dataset. By keeping only these 
top transcripts, we ensured that the models were trained on the most informative and reliable genetic data, as 
transcripts with higher read counts are generally more robust and less prone to noise or variability. This step was 
crucial for improving the efficiency and accuracy of the learning tasks, as it allowed the classifiers to focus on the 
most significant genetic signals that could differentiate between ALS and control samples.

Machine learning
RapidMiner Studio version 9.5, running on a desktop PC with 16 GB RAM, was used to build and validate the 
binary classifiers of ALS. RNA-seq data of spinal cord cervical were split into 65% and 35% for model building 
and testing, respectively. Four algorithms were used, including the “Generalized Linear Model” (GLM), “Rule 
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Induction”, “Decision Tree”, and “Random Forest”. The parameters are described as follows. Parameters of GLM: 
binomial family, IRLSM solver, use regularization, conduct lambda search, 47 lambdas, lambda min ratio of 0, 
use early stopping, 3 stopping rounds and stopping tolerance of 0.02.

Parameters of Rule Induction: criterion of information gain, sample ratio of 0.9, pureness of 0.9, and minimal 
prune benefit of 0.25.

Parameters of Decision Tree: criterion of gain ratio, with a maximal depth of 10, apply pruning with 
confidence of 0.1, apply prepruning with minimal gain of 0.01, minimal leaf size of 2, minimal split size of 4, and 
number of prepruning alternatives of 3.

Parameters of Random Forest: number of trees of 3, criterion of Gini index, maximal depth of 10, guess 
subset ratio, and voting strategy of confidence vote.

Interaction network
String-db version 12.098, accessed on Nov 20th, 2023, was used to generate the interaction network. The 
enrichment analysis was conducted using DAVID Bioinformatics Resources99, accessed on Nov 22nd, 2023. 
By utilizing String-db, we were able to visualize the potential relationships and interactions between different 
proteins, offering deeper insights into how these proteins might work together or influence one another in the 
context of ALS pathology. The use of such a resource significantly enhanced our ability to interpret the biological 
relevance of the identified genes, particularly in understanding how they may be functionally connected. In 
addition to building the interaction network, we performed an enrichment analysis to identify the biological 
pathways, functions, and processes that are overrepresented in the gene set. For this, we used the DAVID 
Bioinformatics Resources tool. Through this tool, we were able to explore which biological processes and 
molecular functions are significantly enriched in the genes identified in our study. By leveraging DAVID, we 
could link the identified genes to specific biological pathways, providing further context for their roles in ALS 
and other neurological conditions. This analysis enabled us to uncover patterns and commonalities among the 
genes, offering potential clues as to how genetic dysregulation might contribute to the progression of ALS.

Data availability
All data in this study are included in the supplementary data. The RNA-seq dataset can be accessed via the GEO 
database of the NCBI of the USA with the accession number GSE153960, with the website below. ​h​t​t​​​​p​​s​:​​/​/​​w​​w​w​​.​​n​
c​b​​i​​.​n​​l​​​m​.​n​i​h​.​g​o​v​/​g​e​o​/​q​u​e​r​y​/​a​c​c​.​c​g​i​?​a​c​c​=​G​S​E​1​5​3​9​6​0​​​​​.​​
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