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Experience-driven development of decision-related
representations in the auditory cortex
Itay Kazanovich1,2, Shir Itzhak1,2 & Jennifer Resnik 1,2✉

Abstract

Associating sensory stimuli with behavioral significance induces
substantial changes in stimulus representations. Recent studies
suggest that primary sensory cortices not only adjust representa-
tions of task-relevant stimuli, but actively participate in encoding
features of the decision-making process. We sought to determine
whether this trait is innate in sensory cortices or if choice repre-
sentation develops with time and experience. To trace choice
representation development, we perform chronic two-photon cal-
cium imaging in the primary auditory cortex of head-fixed mice
while they gain experience in a tone detection task with a delayed
decision window. Our results reveal a progressive increase in
choice-dependent activity within a specific subpopulation of neu-
rons, aligning with growing task familiarity and adapting to chan-
ging task rules. Furthermore, task experience correlates with
heightened synchronized activity in these populations and the
ability to differentiate between different types of behavioral deci-
sions. Notably, the activity of this subpopulation accurately
decodes the same action at different task phases. Our findings
establish a dynamic restructuring of population activity in the
auditory cortex to encode features of the decision-making process
that develop over time and refines with experience.
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Introduction

Our understanding of the role played by sensory cortices in
decision-making has undergone significant refinement in the last
two decades through studies in behaving animals. Departing from
the conventional feedforward model, where primary sensory areas
were viewed as static entities primarily responsible for extracting
and encoding the physical attributes of stimuli before transmitting
them to higher cortical areas, our perspective now acknowledges
the dynamic nature of information representation in these primary
sensory regions. We recognize that the information encoded in
primary sensory areas, such as the auditory or visual cortex, is

heavily influenced by task demands and expectations, with stimulus
representations undergoing substantial changes as animals learn
the association between sensory stimuli and their behavioral
significance (Recanzone et al, 1993; Bagur et al, 2018; David et al,
2012; Lee and Middlebrooks, 2011; Rodgers and DeWeese, 2014;
Bao et al, 2004; Polley et al, 2006; Poort et al, 2015; Francis et al,
2018; Guo et al, 2019; Rutkowski and Weinberger, 2005; Fritz et al,
2003; Li et al, 2004; Jaramillo and Zador, 2011; Carcea et al, 2017;
Brosch et al, 2011; Mohn et al, 2021; Froemke et al, 2013; Blake
et al, 2002; Otazu et al, 2009). These changes enhance and refine
representations for task-relevant stimuli, thereby improving the
salience of information transmitted to downstream areas (Gilbert
and Sigman, 2007; Zhang and Xu, 2022).

Recent studies also show that primary sensory cortices in expert
animals are not merely adjusting representations of task-relevant
stimuli but are actively involved in encoding decision-making
processes (Rodgers and DeWeese, 2014; Francis et al, 2018; Guo
et al, 2019). For instance, reward expectation and choice direction,
two main aspects of decision-making, can modulate the primary
auditory cortex (ACtx) neural activity in periods when no auditory
stimulus is present (Guo et al, 2019; Jaramillo and Zador, 2011;
Brosch et al, 2011; Carcea et al, 2017).

The challenge arises when attempting to separate the distinct
stages through which sensory information is transformed into a
decision, encompassing sensation, decision formation, preparatory
motor output, and the eventual behavioral response. In classical
learning paradigms, where animals must make decisions based on
specific sensory features, such as licking left or right when they
detect a specific sound to get a water reward, the activity is typically
measured within the stimulus window or immediately after it
(Francis et al, 2018; Liu et al, 2021). This makes it challenging to
separate the activity evoked by the stimulus, the decision-making
process, and the subsequent behavioral output. In freely-moving
two-alternative choice tasks, where the animal has to move toward
a port to get the reward, there is a separation between stimulus and
response, but usually, periods of movement are tested against
periods of quiet waiting (Jaramillo and Zador, 2011), making it
difficult to separate the motor from the decision and reward
expectation process.

To address this challenge, decision tasks incorporating delay
periods have been widely used in non-human primates to
investigate choice-dependent activity in higher cortical areas.
Studies introducing a delay period between the stimulus and the
behavioral output that examined the activity in sensory regions,
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have uncovered enhanced or suppressed neuronal activity in
primary sensory areas of expert mice, such as the visual cortex
(Goard et al, 2016) and the barrel cortex (Guo et al, 2014). These
findings suggest an active involvement of sensory cortices in
encoding aspects of decision-making processes, prompting intri-
guing questions about the development of perceptual decision

representations within these regions. Is choice representation in
sensory cortices an innate trait, or does it emerge with task
experience? Moreover, is it primarily influenced by motor actions
such as licking, or by task rules and accumulated experience?

If changes in activity are experience-dependent, one would
anticipate alterations in activity, at a single cell and network level,
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over time, as the mouse becomes experienced with the task and his
new surroundings. For example, in a novice mouse with limited
comprehension or predictive abilities concerning when a lickspout
will dispense water, we would expect some degree of innate lick-
evoked or motor-related activity in the sensory cortices (Morandell
et al, 2024; Clayton et al, 2021; Vinck et al, 2015). Then, as the
mouse gains experience with the task, we would expect to find a
progressive alteration in activity surrounding the lick, reflecting the
mouse’s growing understanding of task rules and the integration of
decision-making processes with the act of licking. Conversely, if
choice representation in sensory cortices is primarily driven by
motor-related activity (Clayton et al, 2021; Schneider et al,
2014, 2018), cortical modulation would likely be evident from the
outset, when the mouse starts licking, showing minimal change
even as task rules evolve.

To test whether experience drives the development of behavioral
decision representation in sensory cortices, we devised a behavioral
task for head-fixed mice incorporating a delay period between stimulus
presentation and behavioral choice. Employing calcium imaging, we
monitored single-cell activity in the auditory cortex while mice
familiarized themselves with the task. Following the activity of the
auditory cortex for more than two weeks of training and testing,
revealed a progressive increase in activity starting before the lick within
a specific sub-population of neurons as mice became experienced with
the task. This activity was task-dependent, was modulated by changing
task rules, and wasn’t driven by changes in lick dynamics.
Furthermore, task experience correlated with heightened synchronized
activity in these populations, especially during successful trials,
accompanied by a gradual improvement in the ability to differentiate
between different behavioral choices. Notably, the activity of this
subpopulation accurately decoded whether a mouse licked before or
after the sound stimulus, highlighting the development of behavioral
choice representation in a primary sensory cortical area through task
experience.

Results

Mice gain experience in an auditory detection delay task

To study the development of behavioral choice representation in
sensory cortices, we performed chronic two-photon calcium
imaging in the ACtx of awake, head-fixed mice that expressed

GCaMP6s non-selectively in L2/3 neurons (n = 4335 Cells/N = 6
Mice) while mice gained experience with a tone detection task with
a delayed decision window (Fig. 1A). To disentangle the encoding
of auditory stimuli and subsequent behavioral choice, we presented
mice randomly with one of two auditory cues (6 or 16 kHz tone at
60 dB SPL). The mice were required to detect the tone and delay
their response for 1.5 s. Following this delay period, they had 1.5 s
to lick the water lickspout. If mice managed to detect the sound and
delay their response (Hit) a big rewarding dose of sweetened water
was dispensed 1 s after the lick (Fig. 1A,B). By introducing a delay
in water delivery, we could analyze activity surrounding the lick
independently from water-evoked activity. An early lick (EL)
during the delay response window led to no water and a timeout.
The mice could wait until the end of the high-water period without
licking, and a small water droplet would be dispensed (late lick
period - LL). This could be a valid, and potentially simpler strategy,
with no need to calculate the delay accurately, but it offered less
water. Licking in catch trials where no sound was presented was
counted as a False Alarm (FA) and refraining from licking during
the trials where the sound was presented was counted as a Miss. At
the end of each trial, there was a silent period lasting between 5 to
10 s, randomly chosen from an exponential distribution (not to
scale in Fig. 1A), preventing the mouse from anticipating when the
next sound would be played. To trace the development of
behavioral choice encoding over time, we initiated a week-long
Pavlovian training period followed by a testing phase (Fig. 1C).
During Pavlovian training, water rewards were provided at the end
of the high-water period window (3 s after the sound) irrespective
of the response timing, ensuring a reward for the mice regardless of
when they licked. In this phase, mice got acquainted with their new
environment, but there was no need to make a sound base decision.
Mice could randomly lick and still get a reward. Despite this, mice
started licking after the sound more often and less often in the pre-
sound period (Fig. 1D two-way ANOVA for Bins 1–3, bin x period
interaction F = 8.38, p = 7e−04 and for Bins 1–6 bin x period
interaction F = 5.8, p = 0.0001), and the timing of their first lick
post-sound neared 3 seconds, matching the water delivery timing
(Appendix Fig. S1a, one-way Anova F = 14.46, p = 2.023e−07).
Moreover, the miss rate went down (Fig. 1E, two-way ANOVA
bin x type of trial interaction F = 16.24, p = 3e−06), suggesting a
growing understanding that the water reward was contingent on
the sound being played. After this initial phase, the mice progressed
to the testing phase where the task rules changed, and correct

Figure 1. Mice gain experience in an auditory detection delay task.

(A) Task outline: Six animals were required to detect a tone and wait for 1.5 s before licking. After waiting, they had 1.5 s to lick the lickspout to receive a large dose (12 μL)
of sweetened water (Hit). An early lick (EL) during the delay period led to a timeout with no water. Mice could refrain from licking until the end of the high-water period
and receive a small water droplet (4 μL of water, late lick period - LL). Failure to lick throughout the trial was counted as a Miss. (B) Lick probabilities after the first lick in
the different Bins and the different behavioral outputs: Hit, Late Lick, and Early Lick. (C) Division of the sessions to bins according to task experience in the training and
testing phases. (D) Likelihood of licking before or after the auditory cue. During the training phase, mice started licking after the sound more often and less often in the pre-
sound period (two-way ANOVA for Bins 1–3, bin x period interaction F= 8.38, p= 7e−04 and for Bins 1–6 bin x period interaction F= 5.8, p= 0.0001, n= 66 sessios).
Values represent mean ± se across sessions. (E) Likelihood of licking following the auditory cue. During the training phase, mice exhibited an increased frequency of licking
following the auditory cue, resulting in a reduction of missed responses (n= 30 sessions and 60 hit and miss rates, 1e two-way ANOVA bin x type of trial interaction
F= 16.24, p= 3e−06). Values represent mean ± se across sessions. (F) Behavioral performance in the testing phase: d prime increased as mice gained experience with the
task (n= 36 sessions). Values represent mean ± se across sessions. (G) Performance rate for the different behavioral outputs during testing; in trials that the mice licked
after the sound (n= 3 outcome possibilities for each of the 36 sessions). Values represent mean ± se across sessions. (H) Length of lick burst for in the pre- and post-
sound periods in the different Bins and trial outcomes (n= 14,450 licks). Lick bursts became shorter between training and testing and lick bursts in the post-sound period
were generally longer than those in the pre-sound period. Values represent mean ± se. Source data are available online for this figure.
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timing of licking became crucial for obtaining a reward. During this
testing phase, as mice got more experience with the new task’s
rules, task performance improved (Fig. 1F, one-way ANOVA
F = 4.14, p = 0.02).

Having a week of training followed by a change of rules, allowed
us to categorize all behavioral and neural data into predefined bins
representing distinct experience stages within the task. Importantly,
it allowed us to examine if there were changes in the activity in the
ACtx when the task rules changed. The first three bins constituted
the training phase, while the last three bins constituted the test
phase (Fig. 1C). Licks occurring before the auditory stimuli in the
pre-sound period were deemed out-of-task licks with no con-
sequences and no chance of obtaining a water reward.

While all licks following sound presentation could indicate tone
detection, licks occurred more often in periods where licks were
rewarded (Fig. 1G, two-way ANOVA, trial type: F = 55.5,
p = 6.7e−17). The task’s structure ensured an adequate distribution
of licks in the delay (EL trials), high water (Hit trials), and low
water periods (LL trials), facilitating the exploration of diverse
behavioral choices. Comparing Hit to LL trials allowed us to
compare trials with similar motor responses, licking, but differ-
entiated by different strategies. Active sound-based decision to get a
large water reward in Hit trials versus a lick for a guaranteed small
water reward in LL trials. Both Hits and EL trials indicated tone
detection. Therefore, the comparison between Hit and EL trials
provided insights into instances where the mice made a similar
decision, even if prematurely executed in certain circumstances. By
comparing pre-sound and post-sound licks, we were able to
contrast similar motor and preparatory responses, which lack
behavioral consequences in the former but exhibit behavioral
outcomes in the latter. As mice gain experience with the task, we
expect to find differences in the licking behavior and neural activity
surrounding licks between the pre-sound period, where there are
no behavioral repercussions, and the post-sound period, where licks
result in either reward or timeout.

When we examined the lick dynamics, we observed differences
in the lick patterns between the pre-and post-sound periods and the
different behavioral outcomes (Hit, EL & LL). As the Bins advanced
and animals gained experience with the task, there were notable
changes in lick probability: the probability of the animals licking

again after the first lick decreased, and the lick bursts became
shorter (Fig. 1H). We found a significant difference in lick bursts’
length between train and test bins (Fig. 1H, two-way Anova Bin x
time interaction F = 8.6, p = 3.7e−08). Lick bursts were shorter in
Bins 4–6 compared to Bins 1–3 (post hoc p < 0.05 for all
comparisons, Bonferroni corrected). This difference was particu-
larly pronounced after Bin 1, both in the pre-and post-sound
periods (Fig. 1H, two-way Anova Bin: F = 64.3 p = 1.1e−66; post hoc
p < 0.01 for all comparisons between Bin 1 and all other Bins).
Additionally, lick bursts in the post-sound period were generally
longer than those in the pre-sound period (Fig. 1H, two-way Anova
time: F = 109, p = 1.6e−25). This suggests that in the initial bins, lick
timing was less critical, and mice were less familiar with the task
rules and water delivery timing, resulting in longer lick bursts. As
the mice gained experience, their lick bursts became shorter and
more efficient.

We repeated this analysis using down-sampled lick data,
reducing the sampling rate from 500 Hz to 30 Hz to match the
neural data sampling rate. In both cases, we observed changes in
lick patterns as the animal became more experienced with the task
(Appendix Fig. S1b, lick burst length; two-way Anova F = 122,
p = 1.9e−28, Bin x time interaction F = 7.3, p = 6.2e−07). We observed
notable changes in lick probability and patterns, reflecting their
growing experience with the task and the timing of water delivery.
Especially, in Bin 1, when the mice were less experienced, they
licked more indiscriminately. In contrast, by Bin 6 with increased
experience, their licking became more efficient and targeted.

Task-driven activity during behavioral choice evolves in
the auditory cortex as the mice gain experience
with the task

When we examined the cortical activity surrounding the first lick,
we noticed cells that increased or decreased their activity starting
before the lick (Fig. 2A,B). To determine if this was an experienced-
based change in activity, we examined the activity from the
deconvolved calcium traces (Pachitariu et al 2016) surrounding the
first lick in the post-sound period. We compared the activity during
training, where mice were novices in the task (Fig. 2B top: example
of a training session—session 3 bin 2), to the first lick during

Figure 2. Task-driven activity during behavioral choice evolves in the auditory cortex as the mice gain experience with the task.

(A) We performed chronic two-photon calcium imaging from the primary auditory cortex of awake, head-fixed mice that expressed GCaMP6s non-selectively in L2/3
neurons (n= 4335 Cells/N= 6 Mice) while mice gained experience with the behavioral task. All analysis was performed on the deconvolved calcium traces. Bottom:
Example of calcium traces and deconvolved calcium activity traces for three ACtx cortical cells during white noise presentation at 70 dB SPL. (B) Maps of population
activity of all cells (averaged across trials per cell) in training (session 3, bin 2) and testing (session 14, bin 6) for the same four mice. Time zero indicates the lick onset.
(C) Example of the activity of the same ten cells in pre-sound (softer colors, bottom) and post-sound periods (darker colors, top). Time zero indicates the lick onset.
Values represent mean ± se across trials. In many of the cells, the enhancement or suppression of activity starts before the lick. (D) Z-Scored activity surrounding the lick
onset for: Enhanced-red, Suppressed-blue, and non-modulated-gray cells. Sessions were grouped by bin, shaded areas indicate se. Top: activity of cells classified in the
post-sound period (licks with behavioral consequences – water or time out). Bottom: activity of the same cells during the pre-sound period (licks with no behavioral
consequences). (E) Absolute peak of z-scored activity in the period surrounding the lick (from 165 ms before to 165 ms after the lick onset), per bin and cell group. Dark
colors: activity in the post-sound period, Light colors: activity in the pre-sound period. Values represent mean ± se. Enhanced cells exhibited higher absolute peak activity
during the post-sound period (two-way ANOVA, F= 127.7, p= 2.05e−28) and their activity increased as the mice gained experience with the task (post hoc, bin 1 vs bin 6
post-sound p < 0.001 Bonferroni corrected). (F) Percentage of cells divided by type and bin. The percentage of enhanced cells increased as the mice gained experience
with the task. Points indicate individual sessions in each bin (pearson r= 0.9, p= 0.001 and two-way ANOVA, cell x bin interaction F= 10.4 p= 0.0093, post hoc bin 1 vs
bin 6 p= 0.009 Bonferroni corrected). Values represent mean ± se across sessions. (G) Activity of enhanced, suppressed, and none cells before and after the lick
(deconvolved spikes per second). The activity was calculated as the average activity during the 165 ms before the lick (solid line) and the average activity during the
165 ms following the lick (dash line). (H) Proportional change in activity per cell divided into enhanced, suppressed, and none. Values closer to zero mean no change in
activity from the pre-lick to post-lick periods. Source data are available online for this figure.
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testing, where the mice had acquired more experience (Fig. 2B
bottom: example of a testing session—session 14 bin 6). In the early
training sessions, few units exhibited modulation in their activity
surrounding the lick onset. However, a discernible shift occurred in
later sessions, as mice gained experience with the task; several cells
started to exhibit either enhanced or suppressed activity surround-
ing the lick (Fig. 2B, more examples in Appendix Fig. S2a). When
we looked closer at the activity per cell, we found that the change in
activity surrounding the lick was specific to licks in the post-sound
period; the same cells did not exhibit a response to licks in the pre-
sound period, where the licks had no behavioral consequence
(Fig. 2C), suggesting task experience-dependent plasticity. These
findings suggest a change in cortical activity specifically during
post-sound licks. Crucially, this heightened activity does not
manifest initially during the early stages of training but seems to
evolve as mice progressively gain experience with the task and their
new surroundings such as the presence of the lickspout or tones
being played.

To further delineate the characteristics of cells influenced by
behavioral choice and task experience, we categorized them into three
groups—enhanced, suppressed, or non-modulated (Fig. 2D)—based
on the activity surrounding the lick period after the sound (165ms
before to 165ms after the lick onset compared to the same window of
330ms earlier). This time frame was chosen to capture activity changes
beginning before the lick (Clayton et al, 2021; Schneider et al, 2014),
but without overlapping with any other stimulus. Pre-sound licks were
used to dissect task experience-related modulation from predomi-
nantly motor-related signals. While we anticipated some activity
modulation surrounding licks before the sound as mice familiarized
themselves with their new environment, we expected it to be
comparatively smaller due to the absence of sound information, lack
of consequences for the licks, and no possibility of water reward during
this period (Fig. 2D light colors).

When comparing activity in the pre-and post-sound periods,
both enhanced and suppressed cells exhibited higher absolute peak
activity surrounding the lick (Z-scored activity, 165 ms before to
165 ms after the lick onset) in the post-sound period (Fig. 2E, two-
way ANOVA, F = 127.7 and 126.15, p = 2.05e−28 and 1.77e−28

accordingly). Interestingly, enhanced cell activity increased as the
mice gained experience with the task and their environment (post
hoc, bin 1 vs bin 6 and bin 1 vs bin 3 post-sound p < 0.001 and
p = 0.01 Bonferroni corrected) while suppressed cells maintained
higher absolute activity during post-sound periods without
experience-related modulation (bin 1 vs bin 6 and bin 1 vs bin 3
post-sound p = 1 Bonferroni corrected). As expected, non-
modulated cells showed no significant task or experience-related
modulation (Fig. 2E, two-way ANOVA, F = 0.21, p = 0.96, bin 1 vs
bin 6 post-sound p = 1). We hypothesized that the rise in peak
activity might result from an increase in the percentage of cells
active during the lick as the mice gained experience with the task.
Indeed, as the mouse transitioned from novice to experienced, the
proportion of cells that increased their activity surrounding the lick
(165 ms before to 165 ms after the lick onset) increased significantly
(Fig. 2F, Pearson r = 0.9, p = 0.001 and two-way ANOVA, cell x bin
interaction F = 10.4 p < 0.0001, post hoc bin 1 vs bin 6 p < 0.01
Bonferroni corrected), while the proportion of cells that suppressed
their activity remained unchanged (Fig. 2F, pearson r =−0.4,
p = 0.355, post hoc bin 1 vs bin 6 p = 1 Bonferroni corrected). The
heightened activity in enhanced cells, along with their increased

prevalence in the population with task experience, suggests a
potential role in encoding behavioral experience. To examine
whether the distinct functional cell groups were spatially organized,
we calculated the Euclidean distance between each pair of cells per
cell group and found no significant difference (Appendix Fig. S2b,
one-way ANOVA, F = 1.31, p = 0.27). Also, there was limited
overlap between sound-responsive and enhanced or suppressed
cells, with most enhanced or suppressed cells showing no
modulation during sound presentation (Appendix Fig. S2c) and
no special proximity to sound responsive cells (Appendix Fig. S2d).

Having identified distinct responses in various cell sub-
populations, we examined with more detail the activity surrounding
the lick period, categorizing it by cell type and distinguishing
between activity before and after the lick (165 ms before and 165 ms
after). A decrease in activity during both pre-lick and post-lick
periods emerged as mice gained task experience (Fig. 2G). The
more pronounced reduction in pre-lick activity (solid line) led to
increased deltas of activity between the post and pre-lick periods
for enhanced cells (Fig. 2H, two-way ANOVA, cell types x bin
interaction F = 16.03, p = 1e−28, post hoc enhanced cells Bin 1 vs Bin
6 p = 0.01, Bonferroni corrected), but a reduction in activity
difference for suppressed cells (Fig. 2H, post hoc Bin 1 vs Bin
6 suppressed p = 3e−4 Bonferroni corrected). This explains why,
when examining the z-scored data in Fig. 2E, we observed an
increase in peak activity: the larger difference in activity between
the pre- and post-lick periods translated to higher peaks for
enhanced cells when the activity was normalized per cell. The
different way task experience modulates the activity of specific sub-
populations in the ACtx could enhance the salience of choice-
related information relayed to downstream areas to better inform
behavioral decisions.

Interestingly, during the transition from training to testing,
there was a resurgence to novice activity levels in enhanced cell
activity (Fig. 2G,H). While, as anticipated, activity during the lick
period was higher for enhanced cells and lower for suppressed cells
in all bins, during the transition from training to testing (bin 3 to
bin 4), there was an increase in both pre- and post-lick activity,
specifically in enhanced cells. This rise in activity during both pre-
and post-lick periods led to an overall increase in activity around
the lick period. It also caused a decrease in the activity difference
between pre-and post-lick periods in Bin 4, to values similar to
baseline levels (Fig. 2H post hoc enhanced cells Bin 1 vs Bin 4
p = 0.9, Bonferroni corrected). This return to baseline values in Bin
4 explains the reduction in the lick-induced peak activity observed
in the normalized data (Fig. 2E). The significant change in activity
between Bin 3 and Bin 4 suggests an adaptation in response to the
new task rules.

To explore if the reduction in activity was a global change in
neural activity caused by learning and experience, we examined the
activity surrounding the tone presentation. Here, we found a
significant change in the tone-evoked activity (Fig. 3 middle, one-
way Anova F = 211.8, p = 3.6e−147), characterized by an increase in
activity during the first four bins, peaking at Bin 4 (post hoc, bin1
vs bins 3 and 4 p < 0.05, Bonferroni corrected), followed by a
subsequent decrease in activity (post hoc, bin 4 vs bins 5 and 6
p < 0.05, Bonferroni corrected). Additionally, we observed a small
decrease in spontaneous activity as the bins progressed (Fig. 3 left,
one-way Anova F = 16.4, p = 1.7e−15). Interestingly, these changes in
spontaneous activity didn’t seem to be driving the changes in
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tone-evoked activity across bins, as the same pattern of increased
tone-evoked activity was observed even when accounting for pre-
sound activity per cell (Fig. 3 right, one-way Anova F = 636,
p = 3.9e−286). Therefore, while changes in spontaneous activity were
present, they did not strongly influence changes in tone-evoked
responses. In contrast, as we observed above, the greater reduction
in pre-lick activity with increased task experience, did lead to a
relative enhancement in neural responses following the lick.

To ascertain that the changes in activity surrounding the lick were
driven by experience and task rule changes, we categorized cells also as
enhanced, suppressed, or non-modulated based on their activity in the
pre-sound period (Appendix Fig. S3a). During the pre-sound period
there is information related to the environment the mouse is in, such
as the presence of the lick spout or being head fixed, but there is no
specific information about the sound and there is no chance of getting
a water reward. Therefore, we expected to find lick-evoked activity
(Clayton et al, 2021; Schneider et al, 2014; Zhou et al, 2014; Bigelow
et al, 2019; Henschke et al, 2021; Vivaldo et al, 2023), but fewer task-
dependent modulations. Indeed, while there was lick-dependent
activity (Appendix Fig. S3a left) and an overall decrease in activity
(Appendix Fig. S3b left), and a small dip in the proportional change
for enhanced cells in Bin 4, there was no significant increase in the
ratio between pre- and post-lick activity as mice gained experience in
the task (Appendix Fig. S3b right, two-way ANOVA, cell types x bin
interaction F = 2.2, p = 0.06 post hoc, enhance cells Bin 1 vs Bin 6
p = 1, Bonferroni corrected). As expected from this, experience had no
significant effect on the peak activity of any of the cell types defined by
the pre-sound activity (Appendix Fig. S3a right, normalized activity,
two-way Anova Bin: F = 1.7 p = 0.1131; Bin 1 in all cell types vs bins 3
or 6 p < 0.05 for all post hoc Bonferroni corrected). The specificity of
these changes to licks in the post-sound period implies that the
alterations in activity cannot be accounted for only by the lick
movement itself or the preparatory phase before the lick.

However, licking is not necessarily an all-or-nothing event; mice
can exhibit a range of licking patterns, including prolonged bursts,
brief episodes, and everything in between. Could different lick-bout
dynamics in the pre-sound and post-sound periods be driving the
changes we observed in neural activity? When we examined the lick
probability in the 165 ms time window following the first lick (same
window we used in our analysis above), we observed, as before, a
general decrease in the lick probability following the first lick as
mice gained experience with the task (Appendix Fig. S4a, two-way
Anova, Bin: F = 142.9 p = 1.4e−148). This decrease appears to be
primarily due to the reduced probability of licking after the first
bin, as mice start to learn the rules of their new environment and
understand when licking will result in water. Notably, lick
probability in Bins 1 and 6 differed significantly from the other
bins, with mice licking significantly more in Bin 1 and less in Bin 6
compared to the rest (post hoc p < 0.01 for all comparisons between
Bin 1 and 6 and the remaining bins, Bonferroni corrected).

A decrease in lick activity between the pre- and post-sound
periods could drive the changes in activity we found in enhanced
cells. To test this hypothesis, we repeated the analysis examining
changes in neural activity in lick-matched trials. For lick bursts
starting with the first lick, we categorized the trials into three
groups: short, intermediate, and long bursts. This categorization
was performed twice—once using the down-sampled lick data for
consistency with our neural data, and once using the original lick
data for more precision and higher temporal resolution. A licking
burst was defined as two or more consecutive licks with pauses
greater than 500 ms (Boughter Jr et al, 2007; Johnson et al, 2010).
The 500 ms threshold helped us to distinguish between bursts of
licking (clusters of licks with short intervals between them) and
pauses between bursts.

In all lick-burst-matched groups, we observed, consistent with
our findings above, an increase in absolute peak activity around the

Figure 3. Experience-dependent changes in sound-evoked activity.

Pre-sound and Post-sound activity of sound-responsive cells (n= 6 mice, responsive cells per bin = 143, 132, 128, 154, 162, and 148) were calculated during the half-second
before or after the sound’s onset. Post-pre sound activity was the difference between the post- and pre-sound activity per cell. There was a significant change in the tone
evoked activity (one-way Anova F= 211.8, p= 3.6e−147), characterized by an increase in activity during the first four bins, peaking at Bin 4 (post hoc, bin1 vs bins 3 and 4
p= 2.2e−16 and 6.4e−18, Bonferroni corrected), followed by a reduction in activity (post hoc, bin 4 vs bins 5 and 6 p= 1.4e−16 and 2.2e−17, Bonferroni corrected). Additionally,
there was a small decrease in spontaneous activity as the bins progressed (one-way Anova F= 16.4, p= 1.7e−15). The bigger change in Post-sound activity compared to
Pre-sound activity led to small changes when analyzing tone-evoked activity with baseline correction (one-way Anova F= 636, p= 3.9e−286). Values represent
mean ± se. Source data are available online for this figure.
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lick in the post-sound period for both enhanced and suppressed
cells and an increase in enhanced cell activity as the mice gained
experience with the task (Appendix Fig. S4b, two-way ANOVA,
short burst F = 41.43, p = 1.4e−10 and F = 29.62, p = 6.21e−08

accordingly, intermediate F = 45.3, p = 2.06e−11 and F = 28.1,
p = 1.28e−07 accordingly, long F = 8.19, p = 0.004 and F = 9.01
p = 0.0027 accordingly & Appendix Fig. S4c Down-sampled data:
short burst F = 31.16, p = 2.6e−08 and F = 11.9, p = 0.0006 accord-
ingly, intermediate F = 32.7, p = 1.19e−08 and F = 30.9, p = 3.2e−08

accordingly, long F = 15.1, p = 0.0001 and F = 15.5, p = 0.0001
accordingly).

Consistent with Fig. 2G,H, we also found a decrease in activity
during both pre-lick and post-lick periods across all lick-burst-
matched groups as mice gained task experience (Appendix Fig.
S5a). The more pronounced reduction in pre-lick activity (solid
line) led to increased deltas of activity between the post and pre-lick
periods for enhanced cells (Appendix Fig. S5b, two-way ANOVA,
cell types x bin interaction short burst F = 11.21, p = 3.7e−19,
intermediate F = 8.25, p = 2.2 e−13, long F = 3.76, p = 4.6e−05).
Importantly, we also found here a resurgence to novice activity
levels during the transition from training to testing.

Collectively, these results indicate that, as mice become more
experienced with the behavioral task and the new environment, a sub-
population of cells emerges, encoding the animals’ task-driven
behavioral choices or expectations. This specific emerging cell
ensemble modulates its activity in response to changing task demands,
and it doesn’t seem to be driven by changing lick dynamics.

Experience-dependent enhancement of noise
correlations in auditory cortex sub-populations during
behavioral choice

To establish the potential role of enhanced cells in encoding features of
behavioral choice, it is crucial to assess if their elevated activity and
greater representation in the population impact functional connectivity
and information flow within the neural network as mice gain
experience in the task. To test if this is the case, we calculated noise
correlations as a measure of trial-to-trial co-variability of responses,
providing an estimate of mutual connectivity and shared inputs
between and within cell classes (Cohen and Kohn, 2011). We
compared the noise correlations surrounding the first lick (Fig. 4A,
330ms “during”, same window used in Fig. 2) and the period before
(330ms, “before”). We consistently observed higher noise correlations
for enhanced and suppressed cell groups during the lick window
(Fig. 4A, two-way ANOVA, enhanced: F = 587.2, p = 4.5e−127, sup-
pressed: F = 520.06, p = 3.8e−14). This effect persisted when controlling
for lick burst length (Appendix Fig. S6a, two-way ANOVA, enhanced
cells short burst F = 217.7, p = 6.6e−49, intermediate F = 321, p = 3.6e−71,
long F = 206, p = 5.2e−58, suppressed cells short burst F = 178,
p = 1.6e−40, intermediate F = 197 p = 1.1e−44, long F = 144, p = 3.8e−33).
This suggests a heightened level of functional connectivity or shared
input among those neurons when making a behavioral choice. Notably,
only enhanced cells showed an experience-related increase in noise
correlations, with a significant rise in noise correlation strength from
early to later sessions (Fig. 4A, Bin 1 vs. Bin 6, enhanced p = 3.8e−6,
suppressed p = 1, non-modulated p = 1). This effect was much less
pronounced when dividing the cells based on their pre-sound activity
(Appendix Fig. S3c). This increase in noise correlations might reflect
experience-driven circuit plasticity as the mice become more familiar

with the task (Nassar et al, 2021). Interestingly, we also observed here a
return to near baseline values during the transition from training to
testing when task rules changed (Fig. 4A, bin 4).

While higher noise correlations during stimulus presentation limit
the information capacity of a neural population, higher noise
correlations during the decision period can enhance task performance
by promoting information consistency and facilitating the conversion
of sensory information into behavioral choices (Valente et al, 2021;
Nassar et al, 2021). Thus, we anticipated higher noise correlations
surrounding the lick period, when mice made the correct rather than
incorrect behavioral choices, similar to higher noise correlations found
in association areas when the mice executed correct behavioral choices
(Valente et al, 2021). If noise correlations are indicative of a behavioral
choice, we would also expect them to increase as the animal
approaches a decision. To test these two predictions, we compared
noise correlations’ strength in Hit, LL, and EL trials (Fig. 4B left)
during the before window and a 330ms window “farther” from the
lick. We found that noise correlations were higher in Hit trials than EL
and LL trials in both time windows (Fig. 4B left, two-way ANOVA,
condition: F = 577.3, p = 3.5e−251, post hoc Hit vs LL (farther)
p = 4.3e−22, Hit vs LL (before) p = 7.8e−7, Bonferroni corrected). The
effect persisted when repeating the analysis in lick burst matched trials
(Appendix Fig. S6b). We also found higher noise correlations in the
window “before” the lick than the window “farther” from the lick
(Fig. 3b, two-way ANOVA, time window- F = 256.66, p = 9.44e−58,
time window x condition interaction F = 5, p = 0.006, post hoc Hit
farther vs Hit before p < 0.0001 Bonferroni corrected). These results
support previous findings showing higher noise correlations during
decision periods (Nassar et al, 2021; Valente et al, 2021) and suggest a
role for enhanced and suppressed cells in this process.

When performing the same analysis per cell group, we found
that during the post-sound period, the noise correlation increased
in the transition between farther to before time points for enhanced
and suppressed cells but not for non-modulated cells (Fig. 4B right,
two-way ANOVA, post hoc Hit “farther” vs. “before”, Enhanced
p = 0.013, Suppressed p = 4.8e−37, non-modulated p = 1). Collec-
tively, these results suggest a strengthening of coupling among
enhanced and suppressed cell ensembles that starts before the lick.
Correlations between enhanced cells also increased across beha-
vioral sessions, suggesting specific experience-related circuit
plasticity (Komiyama et al, 2010).

Task experience improves discriminability between
behavioral choices by specific populations in
the auditory cortex

Next, we investigated how experience-related changes in both
single-cell and pairwise activity impacted the ability of neuronal
populations to differentiate between behavioral choices, such as
licking with the prospect of a substantial water reward (Hit) versus
licking for a small amount of guaranteed water (LL). To this end,
we investigated the trajectories of neural population activity across
trials. Neural trajectories are a simple way to express the network
state of multi-neuronal data. Similar trajectories with small
Euclidian distances between Hit and LL trials would suggest no
difference in the neural representation between the conditions
while differing trajectories would indicate a difference in the
population activity structure (Churchland et al, 2012; Allsop et al,
2018; Asokan et al, 2023).
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Before calculating the Euclidian distances, we used canonical
correlation analysis (CCA) to “align” the latent dynamics across the
different Bins (Dabagia et al, 2023; Veuthey et al, 2020; Gallego
et al, 2020, 2018). We found the linear transformations that make

the latent dynamics from Bin 5 and 6 maximally correlated to those
from Bin 4 and projected them back to the original data. These
transformations should compensate for the changes in the recorded
population of neurons caused by turnover. The three leading

Figure 4. Experience-dependent enhancement of noise correlations in auditory cortex sub-populations during behavioral choice.

(A) A comparison of noise correlations in neural activity across different cell types for the six mice participating in the behavioral task, both during and before the lick.
“During”— a 330ms window starting 165 ms before the lick, and “before”— a 330ms window starting 495 ms before the lick. Enhanced and suppressed cells had higher
noise correlations during the lick window compared to the window before the lick (two-way ANOVA, enhanced: F= 587.2, p= 4.5e−127, suppressed: F= 520.06,
p= 3.8e−14), and enhanced cells showed a rise in noise correlations strength as the mice gained experience with the task (Bin 1 vs. Bin 6, p= 3.8e−6). (B) Left: Comparison
of noise correlations in Hit, LL, and EL trials during two windows before the lick onset: “before”— the same window as above, and “farther”— a 330ms window starting
825 ms before the lick. Noise correlations were higher in Hit trials and in the window closer to lick. Right: The same analysis was performed for each cell group. Values
represent mean ± se. Source data are available online for this figure.
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canonical correlations (CCs) were relatively high (Fig. 5A),
demonstrating the preservation of significant components of the
neural mode dynamics across bins (see methods for more details).

Examining the Euclidean distance between Hit and LL
trajectories revealed an increased distance in Bins 5 and 6 when
compared to Bin 4 (Fig. 5B, t-test p = 7.3e−99 and 5.1e−33 accordingly
and permutation test p < 0.01 for both). We observed the same
phenomenon when comparing Euclidean distances between Hit
and LL trajectories in lick-matched trials (Appendix Fig. S7a, t-test
Bin 4 vs Bin 5 p = 1.4e−104 and Bin 4 vs Bin 6 p = 5e−74). To
determine whether this increased discriminability was due to the
presence of the water reward—since the lick results in water
consumption in LL trials but not in Hit trials—we repeated the
analysis, dividing activity into pre- and post-lick periods. As
expected, discriminability increased during the post-lick period;

however, we also found heightened discriminability even before the
lick occurred (Appendix Fig. S7b, t-test Bin 4 vs Bin 5/6 pre and
post p < 0.001 for all comparisons).

To investigate the role of enhanced cells in this process, we tested
whether cell-specific population activity could also discriminate
between conditions (Fig. 5C). We examined the Euclidean distances
between Hit and LL trials, categorizing them by cell type and
distinguishing between pre- and post-lick periods. Examining the
Euclidean distances, we found an increase in distances between Hit
and LL trials for enhanced cells both in the pre-and post-lick periods
when comparing Bin 4 to Bins 5 and 6 (Fig. 5C, one-sided t-test
enhanced cells: pre-lick p = 7.5e−10 & p = 6.7e−04, post-lick: p = 5.7e−34

& p = 2.1e−38 Bin 4 vs 5 and Bin 4 vs 6 accordingly). We also found an
increase in distance for suppressed cells, but only in the post-lick
period between Bins 4 and 5 (pre-lick p = 1 & p = 1, post-lick: p = 9e−12

A C

B

Figure 5. Task experience improves discriminability between behavioral choices by specific populations in the auditory cortex.

(A) Canonical correlations for the three main canonical variables for alignment of Bins 4 & 5 and Bins 4 & 6, upper bound calculated from within-day variability in the
latent dynamics in Bin 4, and the lower bound calculated by the unaligned spaces. The aligned spaces maintained a higher correlation across days than the unaligned
spaces. The analyses were conducted using neural activity data from the six mice that participated in the behavioral task. (B) Comparison of Euclidian distance between
Hit and LL trials in Bins 4 & 5 and Bins 4 & 6 in the aligned spaces. (C) Comparison of Euclidian distance between Hit and LL trials in Bins 4 & 5 and Bins 4 & 6 in the
aligned spaces for the different cell types in the pre-lick (top) and post-lick (bottom) periods. Source data are available online for this figure.
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& p = 0.9 Bin 4 vs 5 and Bin 4 vs 6 accordingly) and no increase in
distance for none cells (pre-lick p = 1 & p = 0.99, post-lick: p = 1 &
p = 0.73 Bin 4 vs 5 and Bin 4 vs 6 accordingly). These findings suggest
that as mice become more experienced with the task, the enhanced cell
population shows an improved ability to discriminate between Hit and
LL trials both before and after the lick.

These findings suggest that the enhanced population becomes
increasingly adept at distinguishing between Hit and LL trials as mice
become more experienced with the task. If the enhanced population
activity indeed discerns between conditions involving licks with the
potential for a significant water reward and licks for a small amount of
certain water, we would expect the population activity to also
differentiate between EL and LL trials. EL trials represent instances
where a lick is made without the certainty of obtaining water, even if
the lick was premature. We tested the discriminability between EL and
LL trials, and indeed, we found higher discriminability in enhanced
cells during the post-sound period when compared to the pre-sound
period (Appendix Fig. S7c, t-test for Bin 4 vs 5 and Bin 4 vs 6, both
p < 0.01). Together these findings suggest that the activity of the
enhanced sub-population can distinguish between states where the
mouse licks in order to get a large water reward and instances of licking
for a guaranteed small water reward.

The enhanced cell population in the auditory cortex can
accurately discriminate between task phases

Our analysis of enhanced cells’ activity consistently found task-
specific modulations, specifically in the post-sound period. These
observations led us to hypothesize that the activity of this sub-
population would be enough to decode whether the mouse was
licking in the pre- or post-sound phases of the task. To test this
hypothesis, we used a neural decoder to determine if the observed
licks could be accurately classified as occurring during the pre-
sound or post-sound period solely by the activity in the ACtx. We
first reduced the dimensionality of the ensemble data matrix with
principal component analysis and then used a support vector
machine on the principal component projections to classify
whether the mouse was licking during the pre-sound or post-
sound period. The general population neural data exhibited high
prediction accuracy for distinguishing licks in different task phases
when compared with data with shuffled labels (Fig. 6A, two-way
ANOVA, F = 675.7, p = 3.69e−48). As expected, the decoder’s
prediction accuracy increased when comparing novice and
experienced stages (Fig. 6A, post hoc Bin 1 vs. Bin 6, p = 0.006).

We next examined which cell group could better discriminate
between the task phases, with a particular focus on the enhanced cells
based on our earlier findings. Indeed, the enhanced cell ensemble
exhibited higher prediction accuracy than suppressed (Fig. 6B top left,
Permutation tests, p = 2e−4, inset: same analysis with shuffled labels)
and non-modulated cell groups (Fig. 6B top right, Permutation tests,
p = 2e−4, inset: same analysis with shuffled labels).

Incorporating additional behavioral measures such as lick prob-
ability (Fig. 1D) and the proportion of modulated cells (Fig. 2F)
improved the overall prediction accuracy. Even after incorporating
these measures, the enhanced cell group maintained higher prediction
accuracy than the suppressed and non-modulated cell groups (Fig. 6B
bottom, Inset: same analysis with shuffled labels).

To test if the changes in lick probability between pre- and post-
sound periods drove these findings, we repeated the analysis in

match-lick trials. Similarly to our previous results, we found that
the enhanced cell group had higher prediction accuracy when
testing all groups (Appendix Fig. S8, long, short & intermediate lick
bursts, Permutation tests, p < 0.0001), suggesting that changes in
lick dynamics are not driving the phenomenon. As another control,
we repeated the analysis after dividing the cells based on their pre-
sound activity. We didn’t find a significant difference in the
prediction accuracy between enhanced and suppressed or none
cells (Appendix Fig. S3d), suggesting that while there is lick-
induced activity in the pre-sound period, the effect of experience
seems to be gated by the sound.

These findings underscore that the enhanced cell population can
reliably predict whether the mouse is licking before or after the
sound. This reaffirms our previous results, demonstrating that the
enhanced cell population encodes not only motor signals but also
aspects of behavioral choice.

Discussion

We used two-photon calcium imaging and a reward-driven licking
task with a delayed period (Fig. 1) to capture the activity of numerous
cells in the ACtx of mice making behavioral decisions. Following the
activity of the ACtx for more than two weeks of training and testing
revealed a progressive increase in choice-dependent activity within a
specific subpopulation of neurons as mice became experienced with
the task. Groups of primarily non-sensory cells, initially mainly
unresponsive at decision times, underwent task-specific alterations in
their activity, particularly in activity starting before licks following the
sound stimulus (Figs. 2–4). These changes aligned with the mice’s
growing familiarity with the task, its environment, and the changes to
the task rules. We categorized cells based on the type of modulations of
activity they exhibited surrounding the lick: enhanced, suppressed, or
non-modulated (Fig. 2). A closer examination revealed distinct
dynamics in the modulated cells, especially in the activity of enhanced
cells, which exhibited changes as the mice gained experience with the
task. Our results indicate a dynamic restructuring of population
activity in the ACtx to encode features of the decision-making process
that develop over time with experience.

While both enhanced and suppressed cells exhibited activity related
to the task, we observed distinctive changes, particularly in enhanced
cells, encompassing alterations in the size of the representational
ensemble, the magnitude of response, and the relationship between
activity preceding and following the lick as mice gained experience
with the task (Fig. 2). These patterns align with prior observations in
the visual (Guo et al, 2014) and parietal cortex of expert mice (Goard
et al, 2016), where suppressed neurons played less of a role in
encoding task-relevant variables. Without specifically manipulating
the activity of the suppressed neurons, it is difficult to determine what
role they may play in the behavioral choice. One possibility could be
that the suppression during the behavioral choice serves to diminish
ongoing, task-irrelevant activity. This could amplify the readout of
task-relevant activity by the enhanced cell population by higher-order
regions. Interestingly, the changes in neural and behavioral activity
began during the training phase, when sound detection was not
required for obtaining a water reward, allowing alternative behavioral
strategies. By Bin 2, we noted an increase in licking frequency post-
sound, a reduction in lick burst length, and significant differences in
neural activity surrounding licks between pre- and post-sound periods.
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The concurrent increase in the percentage of cells responsive during
the lick period, coupled with an increase in activity as the mice gain
experience with the task, indicates that the representation of features
of the decision-making process in the ACtx is not innate but develops
early and continues to be refined with experience by recruiting cortical
cells to encode the behavioral choice. The dynamic recruitment of
cortical cells suggests a reorganization of top-down signals to the
ACtx, potentially facilitating the transmission of the decision’s
significance upstream.

We utilized noise correlations as a metric for assessing
functional connectivity and information flow within the network
(Fig. 4). Our observations revealed heightened noise correlations
during post-lick periods, with task-dependent variations, consistent
with our earlier findings, particularly evident in enhanced cells. The
noise correlations in enhanced cells increased progressively as mice
gained experience with the task, with a notable decrease in Bin 4 as
the animal transitioned from training to testing. The observed
increase in noise correlations as mice approached a decision and

Figure 6. The enhanced cell population in the auditory cortex can accurately discriminate between the task’s phases.

(A) Classification of licks to the pre-sound or post-sound period, based on the activity of all cell types (black, mean ± se across sessions, n= 66 sessions N= 6 mice).
Gray: The decoder’s prediction accuracy dropped to chance levels when labels were shuffled. Prediction accuracy increased when comparing novice and experienced
stages (two-way ANOVA, F= 675.7, p= 3.69e−48, post hoc Bin 1 vs. Bin 6, p= 0.006). (B) Top: Prediction accuracy by cell type activity. X marker represents the mean
prediction accuracy. Inset — same analysis with shuffled labels. Enhanced cells exhibited higher prediction accuracy than suppressed and non-modulated cells
(Permutation tests, p= 2e−4 and p= 2e−4). Bottom: incorporating additional behavioral measures, such as lick probability and the proportion of modulated cells, enhanced
the overall prediction accuracy. Inset — same analysis with shuffled labels. Source data are available online for this figure.
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the stronger correlations in correct trials provide additional
evidence supporting the notion that enhanced cells contribute to
the encoding of the diverse behavioral choices.

Our analysis of population activity revealed that the activity of
the enhanced ensemble, as opposed to the suppressed and non-
responsive ensembles (Fig. 6), was sufficient to decode whether a
mouse licked in the pre- or post-sound stage of the task.
Interestingly, the decoding accuracy of this small ensemble
improves as the mice gain experience with the task, suggesting a
circuit reorganization driven by experience.

Our analysis of population activity also uncovered a progressive
improvement in differentiating between Hit trials, where mice had
the potential for a substantial water reward, and LL trials, where
mice were guaranteed a minor reward. This refinement in trial-type
discrimination was also primarily driven by the varied activity
trajectories exhibited by the ensemble of enhanced cells across the
diverse behavioral choices (Fig. 5). Additionally, these ensembles
demonstrated the ability to discriminate between EL and LL trials,
suggesting that their population activity can effectively differentiate
between trials involving different types of behavioral choices.

The population activity of enhanced cells may represent distinct
choice types (e.g., taking a risk vs. playing it safe) or varying reward
expectations (large vs. small water reward). However, disentangling
decision-making from reward anticipation in our behavioral paradigm
is challenging. Prior work has shown that the activity in the ACtx of
expert mice (Jaramillo and Zador, 2011) or expert non-human
primates (Brosch et al, 2011) can indeed reflect reward expectations.
Yet, these studies often struggled to separate activity linked to specific
movements from activity dependent on perceptual choices, as they
compared periods of movement with periods of quiet waiting. To
address this issue and delineate which part of the activity modulation is
due to perceptual choice versus primarily motor-related activity
(Clayton et al, 2021; Schneider et al, 2014, 2018), we compared lick-
triggered activity during two distinct periods: the pre-sound period,
where licks had no chance of eliciting a water reward, and the post-
sound period, where the lick could trigger a reward. Although lick-
triggered activity was observed in the pre-sound period, consistent
with previous findings in ACtx (Clayton et al, 2021; Schneider et al,
2014; Zhou et al, 2014; Bigelow et al, 2019; Henschke et al, 2021;
Vivaldo et al, 2023), the modulation of activity, correlations, and
condition coding seem to be gated by the sound.

Since, as expected from the learning process and increased
efficiency in task performance, we observed changes in lick
dynamics during the different bins and trial outcomes, we further
explore whether the effects we found in neural activity were driven
by changes in lick dynamics or if motor signals that represent a
behavioral choice in the auditory cortex were being gated by their
auditory task relevance. To distinguish between these possibilities,
we repeated all our main analyses in lick-burst matched trials and
tested if changes in lick dynamics could explain our findings. We
found that this wasn’t the case and that the alterations in activity in
the ACtx—whether they are driven by choice or reward prediction
—are not solely attributable to changes in lick dynamics. Instead,
they indicate the presence of an experience-specific mechanism
influencing motor signals in the ACtx.

An intriguing pattern that consistently emerged in our data is
the resurgence of activity (Fig. 2) and noise correlations (Fig. 4) to
levels near baseline during the transition from training to testing.
This shift signifies a change in rules, moving from the assured

receipt of water to the requirement of actively licking within the
correct time window to secure the reward. The observed rebound in
activity during this transition robustly supports our conclusion that
the activity in the auditory cortex is not exclusively driven by motor
functions but is intricately tied to task demands, expectations, and
the gained experience. This is evident in the changes in the ACtx
activity to alterations in task rules, despite the constancy of the
motor output, i.e., licking. Importantly, this rebound phenomenon
is notably driven by changes in the activity of enhanced cells
(Fig. 2), implying a distinctive role for them in behavioral decision-
making and potentially representing the certainty of the decision.

The temporal separation between sensory perception and the
behavioral expression of the animal’s choice in the task allowed us to
analyze distinct behavioral components. However, it is important to
consider that in delayed-response tasks, the subject may reach its decision
at various time points: immediately after hearing the sound, during the
delay period, or just prior to the lick. enabling us to examine how cortical
activity is modulated during the behavioral output phase. Consequently,
our emphasis stayed on the activity surrounding the behavioral output of
the decision—specifically, the lick onset. At this juncture, the animal has
already made its decision, enabling us to examine how cortical activity is
modulated during the behavioral output phase.

Our collective findings highlight experience-dependent modifica-
tions in the ACtx, encompassing neural activity, functional con-
nectivity, and information representation, particularly within the
enhanced cell population. We show that the representation of the
diverse behavioral choices develops with time and experience and is
modulated by changes in task rules. Furthermore, we establish that the
alterations in activity in the ACtx could not be solely attributed to
changes in lick dynamics; rather, they reflect the behavioral
significance of the decision and motor action. The specificity of the
alterations to licks in the post-sound period and the evolving nature of
the changes in activity underscore the ACtx’s remarkable adaptability
to represent more than sensory information. This adaptability enables
the development and modulation of non-sensory, decision-related
signals, especially in response to changing task demands.

Methods

Reagents and tools table

Reagent/Resource
Reference
or Source

Identifier or Catalog
Number

Experimental Models

Mice PV-Cre x Ai14 Jackson
Laboratory

Cross between stock no:
017320 and 024109

Recombinant DNA

N/A

Antibodies

N/A

Oligonucleotides and other sequence-based reagents

N/A

Chemicals, Enzymes and other reagents

N/A
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Reagent/Resource
Reference
or Source

Identifier or Catalog
Number

Software

MATLAB 2023 MATLAB N/A

Other

AAV5.Syn.GCaMP6s.WPRE.SV40 Addgene 100843-AAV5

Bergamo III Multiphoton
Microscopes

Thorlabs N/A

Mai Tai Laser Spectra-
Physics

N/A

Experimental model and subject details

All procedures were approved by the Ben-Gurion University
animal care and use. Data were collected from 6 adult mice (8–16
weeks postnatal; PV-Cre x Ai14, JAX stock no: 017320 and 024109,
respectively). Mice of both sexes were used for this study. Mice
were maintained on a reverse 12 h light/12 h dark cycle and were
provided with ad libitum access to food and water unless they were
undergoing behavioral testing, in which case they had restricted
access to water in the home cage.

Survival surgeries for awake, head-fixed imaging, and
behavior experiments

Mice were anesthetized with isoflurane in oxygen (5% induction, 1.5%
maintenance). The dorsal surface of the mice’s heads was trimmed and
sterilized. ThermoStar homeothermic blanket monitoring system was
used to maintain body temperature at 36.6 °C (RWD). Lidocaine
hydrochloride was administered subcutaneously to numb the scalp. The
dorsal surface of the scalp was reduced using surgical scissors, and the
periosteum was removed. The skull surface was prepped with an
etchant (C&B metabond) and vetbond (3M) before affixing a custom
stainless-steel headplate to the dorsal surface with dental cement (C&B
metabond). At the conclusion of the headplate attachment and any
additional procedures listed below, Buprenex (0.05mg/kg) and
meloxicam (0.1mg/kg) were administered, and the animal was
transferred to a warmed recovery chamber.

Virus mediated gene-delivery

For mice used in imaging experiments, two burr holes were made in
the skull over the auditory cortex (1.75–2.25 mm rostral to the
lambdoid suture). A precision injection system (Nanoject III) was
used to inject 75 nL of AAV5.Syn.GCaMP6s.WPRE.SV40 in each
burr hole 180–230 mm below the pial surface. Before starting the
imaging sessions, we waited ~3 weeks of virus incubation.

Two-photon calcium imaging

Three round glass coverslips (one 4 mm, two 3 mm, #1 thickness)
were etched with piranha solution and bonded into a vertical stack
using transparent, UV-cured adhesive. Headplate attachment,
anesthesia and analgesia follow the procedure described above. A
3 mm craniotomy was made over the right ACtx using a scalpel and
the coverslip stack was cemented into the craniotomy. An initial

widefield epifluorescence imaging session was performed to
visualize the tonotopic gradients of the auditory cortex and identify
the position of A1 as described previously (Romero et al, 2020).
Two-photon excitation was provided by a Ti:Sapphire-pulsed laser
tuned to 940 nm. Imaging was performed with a 16 X/0.8NA water-
immersion objective (Nikon) from a 512 × 512 pixel field of view at
30 Hz with a Galvo-Resonant 8 kHz scanning microscope (Thor-
labs). Scanning software was synchronized to the stimulus
generation hardware using digital pulse trains. The microscope
was rotated 50–60 degrees off the vertical axis to obtain images
from the lateral aspect of the mouse cortex while the animal was
maintained in an upright head position. Imaging was performed in
a light-tight, sound-attenuating chamber mounted on a floating
table. Animals were monitored throughout the experiment to confirm
that all imaging was performed in the awake condition. Imaging was
performed in layers L2/3, 180–220mm below the pial surface. Each
session we returned to the same area, guided by the blood vasculature,
but not necessarily the same cells. Fluorescence images were captured
at 2x digital zoom, providing an imaging field of (0.42 × 0.42 mm).
Raw calcium movies were processed using Suite2P (Pachitariu et al,
2016), a publicly available two-photon calcium imaging analysis
pipeline. Spike deconvolution was also performed in Suite2P
(Pachitariu et al, 2016), using the default method based on the OASIS
algorithm (Pachitariu et al, 2018; Stringer and Pachitariu, 2019). All
the following analyses were performed in the deconvolved activity.
Before starting the behavioral sessions, we checked for sound
responsiveness of the neurons using white noise generated from a
Gaussian distribution at different sound levels (15–70 dB SPL with
5 dB SPL steps) with a 3.5 trial duration.

Behavioral task

Animals were weighed and placed on a water restriction schedule
(at least 1 mL per day). During behavioral training and testing,
animals were weighed daily to ensure they remained above 80% of
their initial weight and examined for signs of dehydration, such as
fur tenting. Mice were given supplemental water if they received
less than 1 mL during a session or appeared excessively dehydrated.
Mice performed the task in the dark while imaging was performed
at the same time. Before starting the imaging/behavior sessions, the
mice were acclimated to being head-fixed for three days (the
waterspout was presented on the third day).

The task consisted of two phases: a training phase and a testing
phase. During the training phase, a 6 kHz or a 16 kHz pure tone at a
constant level of 60 dB was presented at random and followed by a
reward of sweetened water delivery (1%) after a 3-s delay,
irrespective of the mice’s licking behavior. After a week of training
the mice moved to the testing phase. In the testing phase mice were
rewarded based on their performance. Mice had to delay their
decision (lick) for 1.5 s. Following this delay window, they had 1.5 s
to express their choice by licking the lickspout. Correctly timed
licks (Hit) resulted in a big dose of sweetened water (12 μL) a
second later. Conversely, an early lick (EL) during the delay
response window led to a timeout without water. The mice could
wait until the end of the high-water period without licking and a
small water droplet (4 μL) would be dispensed (late lick period –
LL, also 1.5 s). Licking in catch trials where no sound was presented
was counted as a False Alarm and refraining from licking during
the trials where the sound was presented was counted as a miss. At
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the end of each trial, there was a period of silence (5–10 s randomly
chosen from an exponential distribution), so the mouse would be
able to anticipate when the sound would be played. In Fig. 1D we
compared the percentage of trials with licks for the same time
windows (4.7 s). To do so, we added to the pre-sound period 3.7 s
from the previous trial quiet period. For Fig. 1F, d’ was calculated as
d’ = z(H)−z(F). Where H is the hit rate and F is the false alarm rate
calculated from the catch trials. In Fig. 1E,G, the analysis was done
in the post-sound period.

Data analysis

Two-photon calcium imaging

Neural data was aligned with behavioral task events using
MATLAB (Mathworks) scripts. Behavioral data was down-
sampled from 500 to 30 Hz to match the neural data sampling
rate. Cells with firing rates lower than 1 sp/s were removed from
further analysis. For the analysis of behavioral choice, we analyzed
the activity of licks that occurred after a lapse of at least 330 ms
without any other licks or stimulus, aiming to isolate activity
directly associated with the individual lick event. Per session, a
matrix of Cells X Frames X Trials was obtained for further analysis.
We used trials where the mouse licked for further analyses.

We examined the spatial distance between cells by calculating
the Euclidean distance of each pair in the Enhanced, Suppressed,
and None cell groups per session and mouse. Then, we averaged
across sessions. We repeated this analysis between sound-
responsive cells and Enhanced, Suppressed, and None cell groups.

Cell categorization

Cells were classified as enhanced, suppressed, and none-modulated
based on the comparison of the activity surrounding the lick
period (165 ms before to 165 ms after the lick onset compared to
the same window of 330 ms beforehand) using a non-parametric
statistical test; Wilcoxon signed-rank test. We chose this time
window to capture changes in activity starting before the lick
(Clayton et al, 2021; Schneider et al, 2014), but without
overlapping with any other stimulus. We found no difference
between the response surrounding the lick after the 6 kHz or a
16 kHz tone trials; therefore, we combined all the data for
subsequent analysis. For Appendix Fig. S3, the cells were classified
using the same activity window in the pre-sound period. Cells were
classified as sound responsive based on the comparison of the
activity 500 ms before and 500 ms after the sound onset across
trials.

We used each cell’s x and y locations per imaging session to
calculate the Euclidean distance. We calculated the Euclidean distance
of each pair of cells in the Enhanced, Suppressed, and None cell
groups or per sound-responsive cell and Enhanced, Suppressed, and
None cell per session. Then, we averaged across sessions.

Lick-burst length

We categorized the trials into three groups: short, intermediate, and
long lick bursts. This categorization was performed twice—once
using the down-sampled lick data for consistency with our neural

data, and once using the original lick data for more precision and
higher temporal resolution. A licking burst was defined as two or
more consecutive licks with pauses greater than 500 ms (Boughter
Jr et al, 2007; Johnson et al, 2010). The 500 ms threshold helped us
to distinguish between bursts of licking (clusters of licks with short
intervals between them) and pauses between bursts. We categorized
lick bursts based on their duration as follows: short lick bursts
(0.002 ≤ x < 0.15 s), intermediate lick bursts (0.15 ≤ x < 0.5 s), and
long lick bursts (0.5 ≤ x < 1 s). For the down-sampled lick data, the
categories were adjusted to short lick bursts (0.033 ≤ x < 0.2 s),
intermediate lick bursts (0.2 ≤ x < 0.5 s), and long lick bursts
(0.5 ≤ x < 1.33 s). Bursts longer than 1 s (or 1.33 s for the down-
sampled data) were excluded from this analysis due to insufficient
trial numbers across all bin-trial outcome combinations.

Noise correlations

We quantified noise correlations as the Pearson’s correlation
coefficient between normalized activity of the entire cell ensemble,
or per cell type, per session with the ‘Corrcoef ’ function in
MATLAB and aggregated the outputs per bin. Pair-wise noise
correlations of windows of 0.33 s were compared at different
windows during the lick-triggered activity. If there was no activity
at all through the entire window, the trial was discarded. From the
entire noise correlations matrix, values were averaged over
conditions or cell groups according to the analysis.

Canonical correlations and Eucledian distances

As a first step, we use CCA to align the neural spaces from Bins 5 &
6 to Bin 4. The method systematically finds new directions within
each neural space such that the corresponding one-dimensional
projected activities are maximally correlated. For this analysis, we
included all the concatenated trials for each of the Bins. We first
equalized the number of Hit and Late Lick trials within the
corresponding session to assemble these data matrices. CCA
models were calculated using the MATLAB function canoncorr.

We used the within-day variability in the latent dynamics across
blocks of trials in Bin 4 to obtain an upper bound for the across-day
CCs. We split all the trials in one day into two nonoverlapping sets
of trials, ensuring that the groups were matched by types of trials,
and performed CCA on the latent dynamics (500 repetitions). To
set the lower bound we computed the pairwise correlations between
unaligned spaces.

Next, we calculated the Euclidean distance between the different
trial types (Hit vs LL and EL vs LL) in the aligned spaces. This
approach allowed us to compare the distances between the trials in
Bin 4 vs Bin 5 and Bin 4 vs Bin 6.

Support vector machine classifier

To determine if the ensemble activity could decode whether the lick
occurred during the pre-sound or post-sound periods, we used a
support vector machine classifier (SVM) with a non-linear radial
basis function (RBF) kernel. We fitted the classifier model to a data
matrix of cell activity. For lick phase classification using the entire
cell population, the data matrix consisted of the mean activity rate
within a 330 ms period, starting 165 ms before the lick per trial and
phase. Ensemble analyses included all identified neurons in any
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given field of view. Because there were fewer licks during the pre-
sound phase (because the mice learned the task rules) and to not
bias the classifier towards the majority class, we used an over-
sampling technique that balances class distribution by synthetically
generating new minority class instances along directions from
existing minority class instances towards their nearest neighbors
(SMOTE) (SMOTE: Synthetic Minority Over-sampling Technique|
Journal of Artificial Intelligence Research). To reduce the influence
of any possible inequities in sample sizes across mice or conditions,
and to avoid overestimation and an unstable result resulting from
the larger number of features than the number of samples, we used
principal components analysis to reduce the dimensionality of the
data matrix before classification. We ran the SVM on the principal
components that explained 80% of the variance. 10-fold cross-
validation was then used to train the classifier and compute a
misclassification rate. This process was then iterated according to
the number of sessions. As a control, we repeated this analysis with
shuffled labels. The SVM training and cross-validation procedure
was carried out in MATLAB using the ‘fitcsvm’, ‘crossval’, and
‘kfoldLoss’ functions. To classify the licks by the activity of each cell
group separately, we used the mean trial activity per cell group to
create a decoder across sessions. We calculated the decoding
accuracy 100 times, using the ‘kfoldLoss’ function to create the
distribution for each cell group. In Fig. 5. Bottom, we added to the
decoder information about behavioral measures per session: the
percentage of trials with licks (as presented in Fig. 1D) and the
percentage of modulated cells (as presented Fig. 2F).

Statistical analysis

All statistical analyses were performed in MATLAB R2023a
(Mathworks). Data shown in all analyses is the mean activity ±
SEM unless otherwise indicated. Post hoc pairwise comparisons
were corrected for multiple comparisons using the Bonferroni
correction. Blinding was not applicable.

Data availability

The source data of this paper is collected in the following free
access database: BioStudies, accession number S-BSST1639: https://
www.ebi.ac.uk/biostudies/studies/S-BSST1639.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44319-024-00309-0.
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