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Abstract 

Objective  This investigation attempted to examine the effectiveness of CT-derived peritumoral and intratumoral 
radiomics in forecasting microsatellite instability (MSI) status preoperatively among gastric cancer (GC) patients.

Methods  A retrospective analysis was performed on GC patients from February 2019 to December 2023 across three 
healthcare institutions. 364 patients (including 41 microsatellite instability-high (MSI-H) and 323 microsatellite instabil-
ity-low/stable (MSI-L/S)) were stratified into a training set (n = 202), an internal validation set (n = 84), and an external 
validation set (n = 78). Radiomics features were obtained from both the intratumoral region (IR) and the intratumoral 
plus 3-mm peritumoral region (IPR) on preoperative contrast-enhanced CT images. After standardizing and reducing 
the dimensionality of these features, six radiomic models were constructed utilizing three machine learning tech-
niques: Support Vector Machine (SVM), Linear Support Vector Classification (LinearSVC), and Logistic Regression (LR). 
The optimal model was determined by evaluating the Receiver Operating Characteristic (ROC) curve’s Area Under 
the Curve (AUC), and the radiomics score (Radscore) was computed. A clinical model was developed using clinical 
characteristics and CT semantic features, with the Radscore integrated to create a combined model. Used ROC curves, 
calibration plots, and Decision Curve Analysis (DCA) to assess the performance of radiomics, clinical, and combined 
models.

Results  The LinearSVC model using the IPR achieved the highest AUC of 0.802 in the external validation set. The 
combined model yielded superior AUCs in internal and external validation sets (0.891 and 0.856) in comparison 
to clinical model [(0.724, P = 0.193) and (0.655, P = 0.072)] and radiomics model [(0.826, P = 0.160) and (0.802, P = 0.068)]. 
Furthermore, results from calibration and DCA underscored the model’s suitability and clinical relevance.

Conclusion  The combined model, which integrates IPR radiomics with clinical characteristics, accurately predicts MSI 
status and supports the development of personalized treatment strategies.
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Introduction
In China, statistics from 2020 reveal that the incidence 
and mortality rates of GC are the third highest within all 
solid tumors [1]. The Cancer Genome Atlas has recog-
nized microsatellite instability (MSI) as a defining marker 
for a specific molecular subtype of GC [2]. MSI not only 
serves as a predictor of disease prognosis but also pro-
vides critical information for targeted therapies [3]. MSI 
arises from defective DNA mismatch repair (dMMR), 
leading to the accumulation of mutations in short repeti-
tive DNA sequences [4]. In 2017, the monoclonal anti-
body drug pembrolizumab received approval for the 
treatment of unresectable or metastatic solid tumors 
with MSI-H/dMMR characteristics [5]. Beyond its role 
in cancer immunotherapy, MSI status in GC patients is 
closely linked to the efficacy of adjuvant chemotherapy 
[6], overall survival rates, and response to immunosup-
pressants [7]. Consequently, accurately determining MSI 
status is essential for devising personalized treatment 
plans for GC patients.

Authoritative institutions or societies recommend con-
ducting MSI status testing on all newly diagnosed GC 
patients, utilizing methods such as polymerase chain 
reaction or immunohistochemical staining [8, 9]. None-
theless, these tests necessitate samples derived from 
preoperative biopsies or postoperative pathology speci-
mens. Tumor tissue MSI status can exhibit spatial and 
temporal heterogeneity across various stages and treat-
ment courses, posing notable challenges for numerous 
histological techniques [10]. Moreover, factors such as 
contraindications to endoscopy or surgery, serious com-
plications from endoscopic procedures, poor specimen 
quality, and the need to avoid unnecessary biopsies in 
metastatic patients can hinder the effectiveness of histo-
logical examination. Additionally, MSI evaluation is not 
only intricate but may also be challenging to execute in 
certain medical facilities. Consequently, discovering a 
relatively non-invasive and practical surrogate biomarker 
to forecast MSI status in GC will greatly advance preci-
sion therapy.

Computed tomography (CT) is the preferred non-
invasive method for evaluating GC, with radiomics pro-
viding a way to extract high-throughput quantitative 
imaging features. These features have potential in quan-
tifying both intra- and inter-tumor heterogeneity [11]. 
At present, research in radiomics for GC mainly con-
centrates on predicting preoperative lymph node metas-
tasis, Lauren classification, and GC prospect [12–14], 
among other aspects. Recent studies have also elucidated 
the role of radiomics in forecasting MSI status in both 
colorectal cancer and GC [15, 16]. Prior investigations 
have largely concentrated on the intratumoral region 
(IR). The peritumoral region, emblematic of the tumor 

microenvironment, is widely recognized for its signifi-
cant role in influencing the tumor’s therapeutic response 
and other characteristics [17]. Combining intratumoral 
and peritumoral region (IPR) radiomics has proven use-
ful in predicting lung cancer recurrence rates and tumor 
dissemination through the airspaces [18, 19]. Further-
more, Chen et al. [20] indicated that CT-based IPR radi-
omics could predict MSI status in GC. However, the 
limitations of their single-center study prevented valida-
tion of its external generalizability. To address this, we 
have initiated a multicenter study with the goal of creat-
ing a clinical-radiomics model using IPR to forecast MSI 
status in GC and to validate its generalizability.

Materials and methods
Patient selection
The investigation received approval from the ethics 
review committees of three institutions: the Second Affil-
iated Hospital of Zhejiang University School of Medicine 
(I), the People’s Hospital of Pingyang (II), and the Ningbo 
Yinzhou NO.2 Hospital (III). The study followed the Dec-
laration of Helsinki principles. 747 GC patients from the 
three institutions between February 2019 and December 
2023 were considered for inclusion. Inclusion criteria: 1. 
histopathologically verified diagnosis of GC; 2. contrast-
enhanced CT scans conducted within a month before 
surgery; 3. MSI status determined by immunohistochem-
istry. Exclusion criteria: 1. any form of pre-surgery adju-
vant treatment; 2. low-resolution CT scans due to factors 
such as inadequate gastric filling, suboptimal gastric dila-
tation, and substantial motion artefacts; 3. incomplete 
clinical data; 4. gastric stump carcinoma; 5. lesions not 
clearly identifiable on the CT scans. Consequently, 364 
patients were incorporated into this investigation (Fig. 1). 
Individuals from Institutions I and II were arbitrarily 
assigned to the training (n = 202) and internal validation 
(n = 84) sets on a 7:3 basis, while those from Institution 
III were designated as an autonomous external validation 
set (n = 78).

Data collection
Preoperative patient characteristics were meticulously 
retrieved from electronic medical records, and a retro-
spective analysis was conducted on a range of variables, 
including: (1) patient demographics and clinical attrib-
utes such as age, gender, body mass index, hemoglobin 
levels, plasma albumin levels, neutrophil-to-lymphocyte 
ratio, glycosylated hemoglobin, preoperative carcinoem-
bryonic antigen levels, carbohydrate antigen levels, and 
Alpha-Fetoprotein values; (2) The original CT adhered to 
the GC TNM staging guidelines from the 8th edition of 
the American Joint Committee on Cancer [21]. The CT 
semantic features encompassed the CT-based T-stage 
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(cT stage), N-stage (cN stage), TNM stage (cTNM stage), 
tumor length, Borrmann classification, and tumor loca-
tion which was categorized into the upper, middle, and 
lower thirds. During the venous phase, the mean CT 
attenuation values of tumor parenchyma (CTAVtumor) 
and abdominal aorta (CTAVaorto) were determined, and 
the normalized tumor enhancement ratio (NTER) was 
calculated as CTAVtumor / CTAVaorto [22]. All images 
obtained were evaluated by two radiologists who were 
blinded of the histopathological findings. In cases of 
disagreement, a third chief physician was consulted for 
interpretation.

CT examination
All individuals received comprehensive abdominal 
enhanced CT scans within one month prior to surgery. 
Before scanning, individuals were instructed to con-
sume 800–1000  mL of water within 15–20  min. Indi-
viduals were placed supine and underwent scanning 
from the diaphragm to the pubic symphysis. Institution 
I utilized 64-slice CT scanner (Siemens Somatom Defi-
nition AS Sliver) and 256-slice CT scanner (Siemens 
Somatom Force). Institution II utilized 64-slice CT scan-
ner (Siemens Somatom Definition AS Sliver). Institution 

III utilized 64-slice CT scanner (GE Optima CT660). 
The scanning parameters included a tube voltage of 
120  kV, automatically adjusted tube current, an interval 
of 0.6–1.25  mm, and a slice thickness of 3–5  mm. Fol-
lowing a standard non-enhanced CT examination, indi-
viduals were administered either iohexol (320 mg/mL) or 
lopromide (350 mg/mL) via elbow vein at 3.0 mL/s and 
1.5  mL/kg. Venous CT scan was conducted with delays 
of 65–70 s.

ROI segmentation
CT scan data from GC patients were exported in the 
DICOM format. Venous phase images were imported 
into the Dr. Wise Multimodal Research Platform (https://​
keyan.​deepw​ise.​com). Two experienced radiologists, 
blinded with the clinical and pathological results, manu-
ally delineated the volume of interest (VOI) in the axial 
position. The region of interest (ROI) was consistently 
outlined on consecutive slices starting from the lesion 
site, resulting in two distinct VOIs: VOI 1 (consisting of 
IR only) and VOI 2 (including both IR and peritumoral 
region (PR)). Within the Dr. Wise Multimodal Research 
Platform, the "Lesion Expansion" function was used 
to expand VOI 1 by 3  mm. Subsequently, the intestine, 

Fig. 1  The fowchart of patient selection

https://keyan.deepwise.com
https://keyan.deepwise.com
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adjacent organs, and large blood vessels were manually 
removed from VOI 2 to finalize its depiction. Figure  2 
illustrates the VOI depiction process. Any inconsisten-
cies in tumor boundary delineation should be addressed 
through collaborative discussions. To evaluate feature 
extraction repeatability, one radiologist picked 30 indi-
viduals arbitrarily for re-segmentation one month after 
the initial process.

Radiomics feature extraction and selection
Radiomics features were extracted from each VOI. 
After automatic resampling of CT images, the platform 
(it is deployed on the Alibaba Cloud platform, where 
the machine learning modules utilize various pack-
ages within Python, primarily the scikit-learn library; 
data anonymization is carried out using a dedicated tool 
called Washfile, which effectively de-identifies sensi-
tive patient information) generated 2,153 quantitative 
features, including 414 first-order features, 14 shape 
features, 552  Gy-level co-occurrence matrix features, 
368 Gy-level size zone matrix (GLSZM) features, 368 Gy-
level run length matrix (GLRLM) features, 322 Gy-level 
dependence matrix (GLDM) features, and 115 neigh-
borhood gray-tone difference matrix features. These 
features were initially standardized and then scaled to 
unit variance by z = x−mean

std
 . The robustness of feature 

extraction for Reader 1 at different time points and the 
consistency between the two radiologists were evaluated 
by intra-class correlation coefficient (ICC1) and inter-
rater correlation coefficient (ICC2). Features with ICC1 
and ICC2 values exceeding 0.75 were considered to be of 
good quality and thus included in the subsequent analysis 
stage.

An inaugural feature correlation analysis was executed, 
purging any features with a correlation coefficient higher 
than 0.9. Pairs of independent variables in the training set 

with a linear correlation coefficient above a predefined 
threshold had one feature systematically eliminated to 
reduce redundancy. After completing the feature correla-
tion analysis, feature selection was performed using the 
L1 method, which involved applying L1 norm penalties 
to the linear model. A linear model was established using 
training dataset, resulting in a sparse coefficient matrix. 
The parameter C was used to adjust the strictness of fea-
ture curation; decreasing the C value results in the reten-
tion of a smaller number of features.

Model construction and evaluation
Three machine learning algorithms (Support Vec-
tor Machine (SVM), Linear Support Vector Classifica-
tion (LinearSVC), and Logistic Regression (LR)) were 
employed to build IR and IPR radiomics models. The 
model that displayed the highest AUC was carefully cho-
sen as the preeminent model, and the ensuing Radscore 
was meticulously computed. The computational formula 
was delineated as Radscore =  n

i=1
βi × xi − 0.3835 , 

where xi denotes the selected feature value, and βi 
denotes the regression coefcient of the feature. A univari-
ate analysis was conducted on variables correlated with 
MSI status, with p-value thresholds for clinical and CT 
semantic attributes set to less than 0.1. In the next stage, 
the Akaike Information Criterion (AIC) was employed 
for selecting best features, with priority given to develop-
ing clinical models. The combined model was then care-
fully engineered through multivariate logistic regression 
analysis, adroitly amalgamating the Radscore with the 
clinical model.

All models underwent rigorous evaluations utilizing 
both internal and external validation sets. Forecasting 
proficiency of different models was evaluated by AUC. 
Predictive advantages of these models were compared 
by Delong test, integrated discrimination improvement 

Fig. 2  Examples of manually sketching the region of interest at a certain venous phase CT slice. The intratumoral region (IR) was delineated 
as the red region (VOI 1) and the intratumoural plus 3-mm peritumoural region (IPR) tissue was delineated as the yellow region (VOI 2)
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index (IDI), and net reclassification improvement index 
(NRI). The calibration curve assesses the discrepancy 
between the probabilities predicted by the model and 
those observed in practice, DCA was employed to evalu-
ate models’ net benefit and practical utility.

MSI status detection
In this study, the expression levels of MMR proteins 
(MLH1, MSH2, MSH6 and PMS2) were quantified using 
immunohistochemical staining to determine MSI status, 
routinely performed by a standard streptavidin biotin–
peroxidase procedure. Patients were then classified into 
the MSI-L/S group, which was positive for all MMR pro-
teins, and the MSI-H group, which was negative for at 
least one MMR protein.

Statistical analysis
The Kolmogorov–Smirnov test assessed the normality 
of continuous data. Normally distributed data were pre-
sented as mean ± standard deviation and compared using 
Student’s t-test, while non-normally distributed data 
were presented as median and interquartile range (IQR) 
and compared with the Mann–Whitney U test. Cat-
egorical data were analyzed with chi-square or Fisher’s 
exact test. Significant variables from univariate analyses 
were included in a stepwise multivariate binary logistic 
regression model. ROC curve was utilized to examine the 
model’s discriminative capacity, calibration curve evalu-
ates the deviation between the model’s predictive prob-
ability and observed probability, and DCA determined 
the clinical utility of the nomogram model. Data analysis 
was performed with R software, with P < 0.05 considered 
statistically notable.

Results
Clinical characteristics
Table  1 elucidates that this investigation included 364 
patients from three distinct institutions: 159 from Insti-
tution 1, 127 from Institution 2, and 78 from Institution 
3. The mean age was 69.42 ± 10.42 years, with 272 males 
and 92 females. The prevalence of MSI-H did not display 
notable differences among the three institutions (9.43%, 
11.81%, and 14.10%, p = 0.549). Patients from Institu-
tion 1 and Institution 2 were randomly assigned 7:3 into 
a training set (n = 202; MSI-H: 22, MSI-L/S: 180) and an 
internal validation set (n = 84; MSI-H: 8, MSI-L/S: 76). 
Institution 3 was designated as the external validation set 
(n = 78; MSI-H: 11, MSI-L/S: 67).

Radiomics model development
As delineated in Table 2, among the six radiomics mod-
els evaluated, the IPR LinearSVC model performed 
exceptionally well, achieving the highest AUC values in 

internal validation set (0.826, 95% CI: 0.665–0.987) and 
external validation set (0.802, 95% CI: 0.648–0.955). Con-
sequently, it was chosen as the best radiomics model. 
Figure 3 illustrates that the Radscore for each patient was 
automatically calculated based on 11 radiomics features 
(four first-order attributes and seven texture features 
(one from the GLDM, five from GLSZM, and one from 
GLRLM)). The IR models contains 20 radiomics fea-
tures. Notably, the IPR models, which were constructed 
employing LinearSVC, SVM, and Logistic Regression 
machine learning methods, demonstrated superior per-
formance in the external validation set. Compared to 
their respective IR models, the AUC values of these 
methods were improved as follows: LinearSVC (0.802 vs. 
0.708), SVM (0.734 vs. 0.620), and Logistic Regression 
(0.750 vs. 0.668).

Clinical model and combined model construction
Based on the findings of univariate and multivari-
ate logistic regression analyses, we developed a clinical 
model incorporating age, NTER, tumor length, and cN 
stage as independent predictor variables. The Radscore, 
derived from radiomics analysis, was combined with 
these clinical variables for multivariate logistic regres-
sion analyses. As detailed in Table  3, these comprehen-
sive analyses demonstrated that age (OR 1.08, 95% CI: 
1.01–1.16, P = 0.046), NTER (OR 3.54e-4, 95% CI: 1e-6–
0.05, P = 0.003), cN stage (OR 0.19, 95% CI: 0.05–0.67, 
P = 0.010), and Radscore (OR 28.03, 95% CI: 6.22–126.32, 
P < 0.001) were statistically notable predictors of MSI sta-
tus. This rigorous analysis process resulted in the crea-
tion of a combined model integrating these variables and 
their respective derived coefficients.

Evaluation of model performance
The ROC curves depicted in Fig.  4 and the confusion 
matrix in Supplementary Table  1, showing that the 
combined model gained a superior AUC of 0.932 (95% 
CI: 0.878–0.985) in discerning MSI status in the train-
ing set. This performance was markedly better than that 
of clinical model (AUC 0.813, 95% CI: 0.718–0.908) and 
radiomics model (AUC 0.866, 95% CI: 0.790–0.943), 
with statistically significant differences between mod-
els (Delong test, both p < 0.05). In the internal valida-
tion set, combined model’s AUC was 0.891 (95% CI: 
0.772–0.999), demonstrating preeminent performance 
compared to clinical model (AUC 0.724, 95% CI: 
0.525–0.923) and radiomics model (AUC 0.826, 95% CI: 
0.665–0.987). In the external validation set, combined 
model gained an AUC of 0.856 (95% CI: 0.738–0.974), 
again surpassing both clinical model (AUC 0.655, 95% 
CI: 0.488–0.823) and radiomics model (AUC 0.802, 
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Table 1  Demographic and clinical characteristics of study subjects at three institutions

Variables Total (n = 364) Institution 1
(n = 159)

Institution 2
(n = 127)

Institution 3
(n = 78)

Age, Mean ± SD 69.42 ± 10.42 67.04 ± 11.09 72.13 ± 9.39 69.88 ± 9.54

NTER, Mean ± SD 0.63 ± 0.14 0.66 ± 0.15 0.62 ± 0.13 0.57 ± 0.14

BMI, Mean ± SD 22.60 ± 3.30 22.76 ± 3.24 22.57 ± 3.33 22.33 ± 3.39

NLR, M (Q₁, Q₃) 2.68 (2.00, 3.53) 2.41 (1.77,3.25) 2.87 (2.13,3.87) 2.94 (2.38,3.75)

Gender, n (%)

  Female 92 (25.27) 40 (25.16) 33 (25.98) 19 (24.36)

  Male 272 (74.73) 119 (74.84) 94 (74.02) 59 (75.64)

Location, n (%)

  Upper-third 44 (12.09) 32 (20.13) 8 (6.30) 7 (8.97)

  Middle-third 88 (24.18) 34 (21.38) 24 (18.90) 30 (38.46)

  Lower-third 232 (63.74) 93 (58.49) 95(74.80) 41 (52.56)

Borrmann, n (%)

  I 27 (7.42) 17 (10.69) 9 (7.09) 1 (1.28)

  II 70 (19.23) 20 (12.58) 36 (28.35) 14 (17.95)

  III 245 (67.31) 110 (69.18) 75 (59.06) 60 (76.92)

  IV 22 (6.04) 12 (7.55) 7 (5.51) 3 (3.85)

cT stage, n (%)

  1–2 87 (23.90) 41 (25.79) 29 (22.83) 17 (21.79)

  3–4 277 (76.10) 118 (74.21) 98 (77.17) 61 (78.21)

cN stage, n (%)

  0 109 (29.95) 46 (28.93) 39 (30.71) 24 (30.77)

  1–3 255 (70.05) 113 (71.07) 88 (69.29) 54 (69.23)

cTNM stage, n (%)

  I 52 (14.29) 28 (17.61) 14 (11.02) 10 (12.82)

  II 109 (29.95) 47 (29.56) 41 (32.28) 21 (26.92)

  III 180 (49.45) 81 (50.94) 57 (44.88) 42 (53.85)

  IV 23 (6.32) 3 (1.89) 15 (11.81) 5 (6.41)

CEA (mg/ml), n (%)

  < 5 297 (81.59) 128 (80.50) 103 (81.10) 66 (84.62)

  ≧5 67 (18.41) 31 (19.50) 24 (18.90) 12 (15.38)

CA199 (U/ml), n (%)

  < 37 300 (82.42) 135 (84.91) 100 (78.74) 65 (83.33)

  ≧37 64 (17.58) 24 (15.09) 27 (21.26) 13 (16.67)

AFP (ug/L), n (%)

  < 20 348 (95.60) 153 (96.23) 123 (96.85) 72 (92.31)

  ≧20 16 (4.40) 6 (3.77) 4 (3.15) 6 (7.69)

CA125 (U/ml), n (%)

  < 35 344 (94.51) 152 (95.60) 119 (93.70) 73 (93.59)

  ≧35 20 (5.49) 7 (4.40) 8 (6.30) 5 (6.41)

Hypoproteinemia, n (%)

  No 272 (74.73) 132 (83.02) 82 (64.57) 58 (74.36)

  Yes 92 (25.27) 27 (16.98) 45 (35.43) 20 (25.64)

Glycosylated hemoglobin (%), n (%)

  ≦6 293 (80.49) 133 (83.65) 95 (74.80) 65 (83.33)

≦> 6 71 (19.51) 26 (16.35) 32 (25.20) 13 (16.67)

Anaemia, n (%)

  No 154 (42.31) 82 (51.57) 38 (29.92) 34 (43.59)

  Yes 210 (57.69) 77 (48.43) 89 (70.08) 44 (56.41)
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95% CI: 0.648–0.955). However, the differences in these 
comparisons were not statistically significant (Delong 
test, both p > 0.05).

As presented in Table 4, in all three cohorts of train-
ing set, internal validation set, and external validation 
set, radiomics model and combined model showed 
positive IDI and NRI relative to the clinical model. 
This signifies that these two models exhibited greater 
predictive capacities than the clinical model. Notably, 
the combined model revealed dramatically improved 
predictive performance in the external validation set 
(p < 0.05). Additionally, the consistency of AUC for the 
combined model between external validation set and 
training set (Delong test, p = 0.256) provided further 

evidence of the model’s effectiveness in preventing 
overfitting and maintaining strong performance.

Variables included in the combined model were 
depicted in a nomogram (Fig. 5), which enabled individu-
alized probability estimations and illustrated the rela-
tive significance of each feature. The calibration curves 
depicted in Supplementary Fig.  1 validated the align-
ment between the predicted and actual MSI probabilities 
across all models and cohorts, with Brier scores under 
0.25, demonstrating excellent performance. Furthermore, 
DCA presented in Supplementary Fig. 2 underscores that 
combined model yielded a superior net benefit within 
designated threshold probability range, surpassing both 
clinical and radiomics models in terms of performance.

Table 1  (continued)

Variables Total (n = 364) Institution 1
(n = 159)

Institution 2
(n = 127)

Institution 3
(n = 78)

Tumor-lenth (cm), n (%)

  < 5 204 (56.04) 89 (55.97) 71 (55.91) 44 (56.41)

  ≧5 160 (43.96) 70 (44.03) 56 (44.09) 34 (43.59)

MSI, n (%)

  MSI-L/S 323 (88.74) 144 (90.57) 112 (88.19) 67 (85.90)

  MSI-H 41 (11.26) 15 (9.43) 15 (11.81) 11 (14.10)

SD Standard Deviation, M Median, Q₁ 1st Quartile, Q₃ 3st Quartile, TNM Tumor Node Metastasis, CEA Carcino Embryonic Antigen, CA199 Cancer Antigen 199, 
CA125 Cancer Antigen 125, AFP Alpha Fetoprotein, NTER Normalized Tumor Enhancement Ratio, NLR Neutrophil-to-Lymphocyte Ratio, BMI Body Mass Index, 
MSI Microsatellite Instability

Table 2  Predictive performance comparison of the three types of machine learning algorithms in the datasets

SVM Support Vector Machine, LinearSVC Linear Support Vector Classification, IR Intratumoral Region, IPR Intratumoural 3-mm Peritumoural Region, AUC​ Area Under 
the Curve

Model Dataset AUC (95%CI) Accuracy Sensitivity Specificity

LinearSVC (IPR) Training set 0.866(0.790–0.943) 75.74% 77.27% 75.56%

Internal validation set 0.826(0.665–0.987) 71.43% 75.00% 71.05%

External validationset 0.802(0.648–0.955) 74.36% 72.73% 74.63%

SVM (IPR) Training set 0.830(0.723–0.937) 77.23% 77.27% 77.22%

Internal validation set 0.701(0.490–0.911) 75.00% 62.50% 76.32%

External validation set 0.734(0.597–0.872) 74.36% 63.64% 76.12%

LogisticRegression (IPR) Training set 0.807(0.710–0.904) 68.32% 81.82% 66.67%

Internal validation set 0.712(0.535–0.890) 61.90% 62.50% 61.84%

External validation set 0.750(0.634–0.867) 67.95% 72.73% 67.16%

LinearSVC (IR) Training set 0.864(0.798–0.930) 76.73% 86.36% 75.56%

Internal validation set 0.758(0.652–0.865) 69.05% 62.50% 69.74%

External validation set 0.708(0.495–0.921) 75.64% 63.64% 77.61%

SVM (IR) Training set 0.848(0.763–0.933) 65.84% 90.91% 62.78%

Internal validation set 0.739(0.598–0.879) 59.52% 75.00% 57.89%

External validation set 0.620(0.408–0.832) 62.82% 63.64% 62.69%

LogisticRegression (IR) Training set 0.921(0.880–0.963) 80.20% 90.91% 78.89%

Internal validation set 0.776(0.654–0.899) 71.43% 62.50% 72.37%

External validation set 0.668(0.449–0.886) 74.36% 54.55% 77.61%
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Discussion
This study discerned that the combined model, con-
structed employing the LinearSVC machine learning 
algorithm to extract radiomics features from IPR and 
integrate them with clinical variables (age, NTER, and 
cN stage), demonstrated notable effectiveness in predict-
ing the MSI status of GC patients before surgery. The 
combined model showcased superior predictive power 
and a better goodness-of-fit in comparison to standalone 
radiomics model and clinical model. Moreover, DCA 
confirmed that combined model provides a greater net 
clinical benefit.

Increasing evidence underscores the importance of 
accurately determining MSI status, preoperatively, as it 
significantly influences treatment strategies and patient 
prognosis. In our cohort, the prevalence of MSI-H was 
11.26% (41/364), aligning with the diminished prevalence 
reported in previous studies [23]. MSI-H arises from 
defects in mismatch repair mechanisms. Compared to 
MSI-L/S GC, MSI-H tumors exhibit higher expression of 
programmed death ligand 1 (PD-L1), greater infiltration 
of cytotoxic T-lymphocytes, and a greater tumor muta-
tion rate. Consequently, immunotherapy is particularly 
effective for MSI-H tumors. Research [7] indicates that 
76% of patients with advanced GC and MSI-H experi-
ence remission following anti-PD-L1 treatment. The 
positive predictive value (PPV) of the combined model in 
the external validation set reached 0.962, indicating that 
in clinical application, for patients predicted to be MSI-
H, the accuracy is 96.2%, and these patients will benefit 
from routine anti-PD-L1 drug (Nivolumab) treatment 

[24]. Only 3.8% of patients will face the risk of overtreat-
ment due to the use of Nivolumab, a proportion that 
should be acceptable in clinical application. Moreover, 
the side effects occasionally caused by Nivolumab are 
usually mild, including fatigue, itching, and rash, which 
can be effectively prevented with immunosuppressants 
such as corticosteroids. Regrettably, the negative predic-
tive value (NPV) of the combined model in the exter-
nal validation set is only 0.346. In clinical application, 
patients predicted to be MSI-L/S will face a 65.4% risk 
of undertreatment, and in such cases, further verifica-
tion through other diagnostic means may be necessary, 
prompting patients to follow up accordingly. Despite the 
low NPV, the model may still have some value in moni-
toring changes in MSI status.

Machine learning-driven radiomics is increasingly 
used in diagnosis and personalized therapy. Our research 
found that the LinearSVC model outperforms both SVM 
and Logistic Regression models in binary classifica-
tion tasks, consistent with findings by Qorib et  al. [25]. 
LinearSVC is particularly effective with both dense and 
sparse inputs and can rapidly converge with larger data-
sets [26]. Additionally, the performance of IPR radiomics 
model exceeded that of standalone IR model, highlight-
ing value of features from the 3 mm peritumoral region 
in forecasting MSI-H status in GC. Owing to the thinness 
of the gastric wall, distinguishing between tumors and 
normal tissues can be challenging; thus, a 3 mm margin 
is considered a practical approximation. The IPR model 
contains a total of 11 radiomics features, comprising four 
first-order attributes and seven texture features (one from 

Fig. 3  Radiomics features and coefcients of intratumoral and peritumoral regions. The abscissa represents the coefcients, and the ordinate 
represents the feature
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the GLDM, five from GLSZM, and one from GLRLM). 
The two features with the highest weights are "log-sigma-
2–0-mm-3D_firstorder_90Percentile" and "log-sigma-
1–0-mm-3D_gldm_DependenceVariance". The radiomics 
feature "log-sigma-2–0-mm-3D_firstorder_90Percentile" 
represents the 90th percentile of pixel intensity values 
in an image processed by logarithmic scale transforma-
tion (log-sigma). Since MSI-H gastric cancers typically 

contain more mucus components [24],which may exhibit 
lower density on CT images, this explains why a lower 
value of NTER in our nomogram corresponds to a higher 
probability of predicting MSI-H. Therefore, we specu-
late that the radiomics feature "log-sigma-2–0-mm-3D_
firstorder_90Percentile", by reflecting the distribution of 
higher pixel intensity values in the image, may be related 
to the density region of the tumour, and thus indirectly 

Table 3  Univariate and Multivariate logistic regression analyses of factors influencing MSI status in gastric cancer

OR Odds Ratio, CI Confidence Interval, TNM Tumor Node Metastasis, CEA Carcino Embryonic Antigen, CA199 Cancer Antigen 199, CA125 Cancer Antigen 125, 
AFP Alpha-Fetal Protein, NTER Normalized Tumor Enhancement Ratio, NLR Neutrophil-to-Lymphocyte Ratio, BMI Body Mass Index, Radscore Radiomics score

*p < 0.05, **p < 0.01

Variables Univariate analysis Multivariate analysis

β P OR (95%CI) β P OR (95%CI)

Gender

  Female 1.00 (Reference)

  Male 0.05 0.917 1.05 (0.39 ~ 2.84)

Location

  Upper-third 1.00 (Reference)

  Middle-third −1.49 0.208 0.23 (0.02 ~ 2.29)

  Lower-third 0.24 0.717 1.27 (0.35 ~ 4.65)

Borrmann

  I 1.00 (Reference)

  II −0.32 0.692 0.72 (0.15 ~ 3.58)

  III −0.18 0.788 0.83 (0.22 ~ 3.16)

  IV −15.72 0.989 0.00 (0.00 ~ Inf )

cT stage

  1–2 1.00 (Reference)

  3–4 −0.63 0.187 0.53 (0.21 ~ 1.36)

cN stage

  0 1.00 (Reference) 1.00 (Reference)

  1–3 −1.17 0.011* 0.31 (0.13 ~ 0.77) −1.68 0.010* 0.19 (0.05 ~ 0.67)

cTNM stage

  I 1.00 (Reference)

  II −0.08 0.898 0.93 (0.29 ~ 2.99)

  III −0.92 0.142 0.40 (0.12 ~ 1.36)

  IV −15.96 0.988 0.00 (0.00 ~ Inf )

CEA≧5(mg/ml) −0.92 0.231 0.40 (0.09 ~ 1.79)

CA199≧37 (U/ml) −0.31 0.629 0.73 (0.20 ~ 2.62)

AFP≧20 (ug/L) −14.50 0.988 0.00 (0.00 ~ Inf )

CA125≧35 (U/ml) 0.77 0.354 2.15 (0.43 ~ 10.83)

Hypoproteinemia 0.60 0.209 1.82 (0.72 ~ 4.63)

Glycosylated hemoglobin > 6 (%) 0.48 0.355 1.61 (0.59 ~ 4.42)

Anaemia 0.69 0.169 1.99 (0.75 ~ 5.33)

Tumor-length≧5 (cm) 0.80 0.083 2.22 (0.90 ~ 5.46)

Age 0.10  < 0.001** 1.11 (1.04 ~ 1.18) 0.07 0.046* 1.08 (1.01 ~ 1.16)

NTER −4.63 0.010* 0.01 (2.31e-4 ~ 0.29) −7.95 0.003** 3.54e-4 (1e-6 ~ 0.05)

BMI −0.04 0.493 0.96 (0.87 ~ 1.07)

NLR −0.02 0.785 0.98 (0.82 ~ 1.16)

Radscore 2.84  < 0.001** 17.03 (5.60 ~ 51.78) 3.33  < 0.001** 28.03 (6.22 ~ 126.32)
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to the status of MSI-H. The radiomics feature "log-
sigma-1–0-mm-3D_gldm_DependenceVariance" meas-
ures the variance of the magnitude of the relationship 
in the image, which may reflect the roughness and com-
plexity of the image texture. MSI-H tumours are often 
accompanied by a large number of tumour-infiltrating 
lymphocytes [24], and thus exhibit an active immune 
microenvironment, which may influence the CT image 
features of the tumour. We hypothesize that "log-sigma-
1–0-mm-3D_gldm_DependenceVariance" may cap-
ture changes in these microenvironments and thus have 
some correlation with MSI status. Furthermore, we refer 
to the latest research, which finds that there is crosstalk 
between MSI status and the tumor microenvironment 
[27]. MSI-H tumors have more immune cell infiltration, 

higher expression of immune-related genes, and higher 
immunogenicity [27]. These findings further support 
our hypothesis that radiomic features may be related to 
the tumor’s immune microenvironment and MSI status. 
This biological foundation helps explain why peritumoral 
radiomics are effective for MSI status prediction. Recent 
explorations have demonstrated that the IPR model out-
performs the IR model in predicting various aspects, 
including lung adenocarcinoma differentiation [28], GC 
lymph node metastasis [29], and MSI status in GC [20].

The clinical model based on clinical and CT features 
identifies age, NTER, tumor length, and cN stage as inde-
pendent predictors of GC MSI-H, aligning with previous 
studies [22, 30]. Nonetheless, AUC for this model within 
external validation set was constrained to 0.655 (95% CI: 

Fig. 4  ROC curves of each model to predict MSI status in the training set (A), internal validation set (B) and external validation set (C)

Table 4  Predictive performance using radiomics model, clinical model, and combined model in the training, internal validation and 
external validation sets

AUC​ Area Under the Curve, CI Conffdence Interval, IDI Integrated Discrimination Index, NRI Net Reclassification Index

*p < 0.05, ** p < 0.01

Dataset Model type AUC​
(95%CI)

ΔAUC​ P-value IDI (95%CI) P-value NRI (95%CI) P-value

Training set Clinic 0.813
(0.718–0.908)

- - - - - -

Radiomics 0.866
(0.790–0.943)

0.053 0.370 0.109
(−0.021–0.239)

0.101 0.068
(−0.202–0.338)

0.623

Combined 0.932
(0.878–0.985)

0.119 0.002 ** 0.264
(0.156–0.371)

 < 0.001** 0.335
(0.136–0.533)

0.001**

Internal validation set Clinic 0.724
(0.525–0.923)

- - - - - -

Radiomics 0.826
(0.665–0.987)

0.102 0.510 0.179
(−0.117–0.474)

0.236 0.276
(−0.189–0.742)

0.245

Combined 0.891
(0.772–0.999)

0.167 0.193 0.305
(0.061–0.550)

0.014* 0.599
(0.254–0.944)

0.001**

External validation set Clinic 0.655
(0.488–0.823)

- - - - - -

Radiomics 0.802
(0.648–0.955)

0.147 0.265 0.174
(−0.012–0.355)

0.067 0.106
(−0.299–0.510)

0.608

Combined 0.856
(0.738–0.974)

0.201 0.072 0.300
(0.099–0.501)

0.003** 0.410
(0.111–0.708)

0.007**
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0.488–0.823). Notably, Radscore from the IPR model has 
been validated as a dependable biomarker for predicting 
MSI status. While the difference in AUC did not achieve 
statistical significance, the significant increase in ΔAUC 
suggests a notable improvement in predictive perfor-
mance [31, 32]. An earlier investigation [33] crafted and 
validated a radiomics model that synthesized clinical 
and radiological attributes for the preoperative predic-
tion of MSI in GC. Nevertheless, this study was limited 
to patients with stage III or IV gastric adenocarcinoma 
confirmed by postoperative pathology. In contrast, our 
study encompasses all stages and integrates tumor-sur-
rounding features to enhance predictive accuracy. Chen 
et al. [20] illuminated that a combined model using intra-
tumoral and peritumoral CECT radiomics features along 
with clinical factors could moderately forecast preop-
erative MSI status, but it lacked external validation with 
independent data cohorts. The rise of radiomics has 
renewed attention on improving model generalization, 
with multicenter data and autonomous external test-
ing cohorts offering a promising solution to historically 
poor generalization [34]. Our combined model exhibited 
excellent generalization with an AUC of 0.856 (95% CI: 
0.738–0.974) in external validation across three institu-
tions. Additionally, the Delong test confirmed that the 
model did not overfit. In summary, our combined model 
demonstrates superior efficacy in forecasting preopera-
tive MSI status in GC.

This investigation has several inherent limitations. 
Firstly, our relatively small sample size and retrospec-
tive design means validation through prospective 

investigations with larger cohorts to improve generali-
zation and accuracy. Secondly, the labor-intensive ROI 
drawing process lacks standardization, potentially caus-
ing variability. For further clinical applicability, auto-
mated tools will be necessary to improve scalability and 
accuracy. Current automated segmentation methods 
such as deep learning techniques may help to address this 
issue. Thirdly, as this was a multi-centre study, different 
CT scanners were used in three institutions, this study 
lacks image pre-processing techniques that should be 
made to maintain the image consistency acquired from 
different devices and settings, and potential bias occurs. 
Furthermore, only venous phase images were used, and 
incorporating multi-phase images could further improve 
the model. Fourthly, CT provides limited information on 
tumour metabolic or functional characteristics, whereas 
PET/CT can provide additional metabolic data that 
could complement radiomics for better MSI prediction. 
Lastly, while the combined model is effective in predict-
ing MSI status in GC, it cannot fully replace pathologi-
cal analysis. Future research should explore the biological 
basis of quantitative features to uncover mechanisms and 
enhance model applicability.

Conclusion
In conclusion, the combined model using CT radiom-
ics features from both the IR and the 3-mm peritumoral 
area, along with clinical characteristics, demonstrates 
commendable accuracy in predicting MSI status in GC. 
This integrated approach holds significant promise for 
devising personalized treatment strategies, aiming to 

Fig. 5  The visualized nomogram of the MSI diagnosing model. MSI diagnosing model for the prediction of MSI-H gastric cancer. From each 
predictor, draw a vertical line up through the “Points” scale (top row) to get the point and then sum all points from each predictor. Next, find 
the sum value in the “Total points” scale and draw a vertical line through the probability to get the final predicted probability for MSI status
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achieve more effective interventions. As we gain a deeper 
understanding of the complexities of GC, the develop-
ment and validation of predictive models like this one 
become increasingly crucial, as they can equip clinical 
practitioners with more informed decision-making tools 
and enhance patient outcomes and well-being. Subse-
quent investigations should prioritize validating these 
models across diverse populations and delving into the 
biological underpinnings of radiomics features to deepen 
our clinical context understanding.
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