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Abstract

Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the
aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a
residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and
growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with
silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these
mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling. Herein, we
report a case of a basilar-tip aneurysm treated with coil embolization, where sequential silent MRA and CFD
analysis were employed to investigate hemodynamic factors driving rapid RC growth. Initial RC formation
was attributed to coil compaction driven by flow impingement at the aneurysm neck onto the neo-
endothelial surface, contributing to vertical growth. In contrast, secondary flows detached from the main
inflow jet were observed in distal regions of the RC, leading to flow stagnation, wall vulnerability, and
subsequent horizontal expansion of the aneurysmal wall. This case highlights the role of secondary
detached flows in RC enlargement, emphasizing their potential to weaken the aneurysm wall and drive sac
expansion. CFD analysis using silent MRA is a valuable tool for understanding RC hemodynamics and post-
coiling management for cerebral aneurysms.

Categories: Neurosurgery
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Introduction

In the coil embolization of cerebral aneurysms, occlusion is primarily achieved through blood flow
stagnation and subsequent thrombus formation within the coiled aneurysm sac [1-3]. However, due to the
complex geometry of aneurysms, achieving complete filling of the sac is often challenging. When a residual
cavity (RC) at the aneurysm neck enlarges post-coiling, retreatment may become necessary. Hemodynamic
factors, such as repetitive flow impingement causing coil compaction at the aneurysm neck, are considered
potential contributors to RC enlargement [2-4]. Additionally, factors intrinsic to the aneurysm sac, including
degradation of unstable thrombus tissue within the coil mass and increased wall vulnerability, have been
reported though the underlying mechanisms remain unresolved [5,6]. RCs formed after coil embolization are
not well visualized on time-of-flight magnetic resonance angiography (MRA) due to metal artifacts. In
contrast, silent MRA, which does not require contrast materials, minimizes these artifacts, enabling
relatively clear visualization of RCs [7,8].

In this study, we conducted a time-course analysis of RC morphology in a basilar-tip aneurysm treated with
coils, using silent MRA. To investigate the mechanisms underlying RC formation and growth, computational
fluid dynamics (CFD) was applied to analyze the hemodynamic environment within the RC. Our findings
demonstrated that RC formation and central growth were primarily driven by flow impingement, which led
to coil compaction at the neo-endothelial surface. In contrast, peripheral RC enlargement was associated
with increased aneurysm wall vulnerability induced by secondary flows detached from the main inflow jet at
the aneurysm neck. To the best of our knowledge, this is the first report to hemodynamically suggest the role
of secondary flow detached from the primary jet flow in RC growth following coil embolization of cerebral
aneurysms. These findings highlight the potential of CFD analysis to elucidate the hemodynamic
mechanisms of RC formation and growth, offering valuable insights to enhance post-coiling management
for cerebral aneurysms.

Case Presentation

A woman in her 70s, with an unruptured basilar-tip cerebral aneurysm, was treated by coil embolization.
The procedure employed a Target XL-360 coil (16 mm x 50 cm; Stryker Corporation, Kalamazoo, MI, US) to
frame the aneurysm, which had expanded to 14.4 x 15.2 x 15.0 mm with a neck measuring 11.4 x 6.47 mm.
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Thirteen coils were deployed, achieving a volume embolic rate of 23.4%.

Post-procedure, only a minimal residual cavity (RC) was observed, with no significant blood flow stagnation
within the aneurysm, indicating a favorable initial outcome (Figures /A, 1B). Fourteen days after the
procedure, silent MRA revealed RC formation, which continued to enlarge over six months and one year of
follow-up (Figures 1C-IE). Although retreatment was considered, observation with silent MRA was chosen
due to the patient's decreased renal function. The patient remained asymptomatic, with no aneurysm
rupture, and passed away from an unrelated condition two years after the procedure. Serial 3D silent MRA
images documented RC progression.

FIGURE 1: Residual cavity in an unruptured basilar-tip cerebral
aneurysm post-coiling

A, B) Post-procedural angiograms showing a minimal residual cavity (RC) with no evidence of blood flow
stagnation within the aneurysm. The empty white arrowhead marks the coiled dome, and the white arrow
highlights the RC. C, D, E) Maximum intensity projection images from sequential silent MRAs demonstrate the
progressive formation and growth of the RC at 14 days, 6 months, and 1 year post-treatment, respectively. The
white arrow indicates the RC.

Fourteen days post-treatment, the RC was observed extending from the anterior neck region toward the
superoposterior direction (Figures 2A, 2F). By six months, the RC had expanded horizontally in the postero-
lateral direction (Figures 2B, 2F). After one year, further horizontal growth occurred, with minor vertical
extension in the central RC (Figures 2C, 2G). Time-series 3D silent MRA fused images effectively visualized
RC enlargement over time (Figures 2D, 2H). Hemodynamic analysis of the RC was performed using the CFD
package Hemoscope v1.4 (EBM & AMIN Corp., Tokyo, Japan), following the established methodology [9].
Parameters such as RC volume (mm?®), surface area (mm?®), neck size (mm), depth (mm), and aspect ratio
were evaluated. RC volumes increased from 42.15 mm? at 14 days to 155.75 mm? at six months and 293.45
mm? at one year. Hemodynamic parameters included streamlines, pressure drop (mmHg), flow rate (m/s),
wall shear stress magnitude (WSSm, Pa), and wall shear stress vector direction (WSSv, degrees).
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FIGURE 2: Serial 3D silent MRA images capturing the progression of RC
enlargement

A, E) Fourteen days post-treatment: The RC formed and extended superoposteriorly, as shown in anterior-
posterior (A) and superior-inferior (E) projections. B, F) Six months post-treatment: The RC expanded postero-
laterally (horizontally), as depicted in anterior-posterior (B) and superior-inferior (F) projections. C, G) One year
post-treatment: The RC exhibited continued postero-lateral (horizontal) growth, along with an additional minor
superior (vertical) extension at its central region, as observed in anterior-posterior (C) and superior-inferior (G)
projections. D, H) Fused images overlaying time-series 3D silent MRA data provide a comprehensive visualization
of the progressive RC enlargement, shown in anterior-posterior (D) and superior-inferior (H) projections.

MRA: magnetic resonance angiography; RC: residual cavity

Temporal changes in RC dynamics were assessed over 14 days, 6 months, and 1 year. Fourteen days post-
procedure, streamlines viewed from the superior-inferior direction revealed inflow from the neck into the
RC, accompanied by primary outflow (Figure 5A). At six months, a high-velocity jet flow entered the RC at
the neck center in a fountain-like pattern, while the RC expanded horizontally into a relatively flat shape
(Figure 3B). After one year, these patterns persisted, with high-velocity streamlines at the neck center and
low-velocity flow within the bilaterally and posteriorly extended RC (Figure 5C). Temporal variations in
WSSm and WSSv mirrored streamline findings. The central RC near the neck exhibited relatively high WSSm
and low WSSv, while the distal RC showed low WSSm and high WSSv.
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FIGURE 3: Hemodynamic assessment of the RC, demonstrating
temporal changes in the streamline, WSSm, and WSSv parameters

A-C) Sequential images of streamlines viewed from the superior-inferior direction at 14 days, 6 months, and 1-
year post-treatment, respectively. The color bar on the right indicates velocity (m/s), ranging from 0.150 (red,
representing higher velocity) to 0.000 (blue, representing lower velocity). A high-velocity streamline (red) is
observed centrally in the remnant, streaming in and out like a fountain. In contrast, reduced streamline

velocity (blue) is seen in the left postero-lateral region (white arrowhead) and the right lateral region (empty white
arrowhead) of the enlarged RC. D-F) Sequential images of WSSm at 14 days, 6 months, and 1 year post-
treatment, respectively. WSSm (Pa) is represented by a color bar ranging from 1.400 (red) to 0.050 (blue). A
decrease in WSSm is evident in the left postero-lateral region (white arrowhead) and the right lateral region
(empty white arrowhead) of the enlarged RC. G-l) Sequential images of WSSv at 14 days, 6 months, and 1-year
post-treatment, respectively. WSSv (degree) is displayed with a range of 100.000 (red) to 0.540 (blue). An
increase in WSSy is shown in the left postero-lateral region (white arrowhead) and the right lateral region (empty
white arrowhead) of the enlarged RC.

RC: residual cavity; WSSm: wall shear stress magnitude; WSSv: wall shear stress vector

The hemodynamic mechanism of RC enlargement due to detached secondary flow is schematically depicted
in Figure 4.
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FIGURE 4: Figure 4: lllustration of the hemodynamic mechanism of RC
enlargement

The basilar artery blood flow (long red arrows) enters the RC, with the main blood flow (red arrow) within the RC
impacting the newly formed intimal surface at the center of the RC. Note the detached blood flow (curved blue
arrows) on both sides of the RC.

RC: residual cavity

Image Credits: Toru Satoh

Discussion

In coil embolization of cerebral aneurysms, a neo-endothelial surface at the aneurysm neck, blockage of
blood flow, and complete thrombus formation within the coiled aneurysm are considered critical for
achieving durable occlusion [3,10]. However, due to the complex morphology of aneurysms, complete filling
of the aneurysm sac is often challenging, leading to the formation of RCs at the neck after coiling [1]. Even
when initial occlusion appears successful, recurrence rates of 21% [11] to 33% [12] have been reported
during long-term follow-up, with recurrence typically attributed to either coil compaction or aneurysm sac
growth.

Coil compaction has been widely studied as a contributor to recurrence. Asai et al. reported that coils
generally occupy about 30% of the aneurysm cavity, with the remaining 70% filled by thrombus, forming a
stable coil-thrombus complex [4]. While experiments in silicone aneurysms suggested that coil shape
remained stable under constant pressure, pressure fluctuations from blood pressure and pulsatile flow were
shown to induce compaction. In contrast, Hoppe et al. emphasized that factors such as the degradation of
unstable thrombus, persistent blood flow through the coil-thrombus complex, and incomplete neo-intima
formation at the aneurysm neck may play a more significant role in aneurysm sac growth than coil
compaction [5]. Clinical studies have reported mixed findings. Abdihalim et al. observed coil compaction in
11 out of 29 cases and sac growth in 18 cases [13]. Similarly, Wang et al. found coil compaction in four cases
and sac growth in five cases based on a histopathological examination of nine recurrent aneurysms [6].
These findings suggest that sac growth may often dominate in cases of recurrence.
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The formation and enlargement of RCs post-coiling are closely linked to the aneurysm’s morphology and
hemodynamics, both pre and post-embolization [14]. Sugiyama et al. identified high inflow rates from the
basilar artery and coil packing densities below 30% as significant factors for recurrence in basilar-tip
aneurysms [15]. Luo et al. showed that high WSS and flow velocity at the aneurysm neck disrupted the
internal elastic membrane and thinned the media, contributing to wall damage and preventing effective
thrombus formation [16]. In such cases, persistent high-pressure and high-velocity flows cause coil
compaction, resulting in RC formation. Ishii et al. further demonstrated that RC enlargement is often
associated with high-pressure flow impingement on the coil core, particularly in aneurysms with large neck
areas [17]. Suzuki et al., using silent MRA, reported that pressure distribution varied depending on RC
location, with wall pressure localized on the aneurysm sac in sac growth cases and on the coil surface in RC
enlargement cases [18].

In this case, the hemodynamic mechanisms contributing to RC formation and enlargement are likely
multifactorial. Initially, coil compaction due to repeated flow impingement at the neck led to RC formation
within 14 days post-procedure. Pulsatile flow and kinetic energy conversion to static pressure at the neo-
endothelial surface induced vertical RC enlargement. From six months to one year post-treatment, RC
enlargement shifted horizontally. Flow impinging at the center of the neck detached at the distal edge,
creating secondary low-velocity flows, as illustrated in Figure 4. These secondary flows formed vortices that
promoted erythrocyte stagnation and inflammatory cell infiltration, weakening the aneurysm wall and
contributing to distal sac expansion [2,8]. To the best of our knowledge, no case has been reported
suggesting, from a hemodynamic perspective, the involvement of secondary flow detached from the primary
jet flow in the growth of RCs following coil embolization of cerebral aneurysms. In this case, rapid remnant
enlargement was observed following coil-only treatment. Hemodynamic analysis suggested that in addition
to coil compaction at the inflow area caused by the primary blood flow, the growth was likely influenced by a
secondary flow. Since remnant growth does not follow a consistent pattern, retreatment strategies should
consider both morphological and hemodynamic evaluations.

Conclusions

In this study, we performed a time-course analysis of RC morphology in a basilar-tip aneurysm treated with
coils, utilizing silent MRA and CFD to explore the mechanisms underlying RC formation and enlargement.
This case highlights that the vertical expansion of the RC was likely driven by coil compaction due to
repetitive flow impingement while its horizontal expansion appeared to result from flow detachment,
leading to wall weakening and subsequent bilateral aneurysm sac expansion. These hemodynamic factors
may explain the RC formation and enlargement observed post-coiling in this study. Incorporating

CFD analysis with silent MRA offers significant insights into the hemodynamic factors influencing cerebral
aneurysms after coil embolization.
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