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Encephalopathy (BONBID-HIE):  
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Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. 
Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance 
images (MRIs) is the first step toward identifying high-risk patients, understanding neurological 
symptoms, evaluating treatment effects, and predicting outcomes. We release the first public dataset 
containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed 
with HIE. HIE-related lesions in brain MRI are often diffuse (i.e., multi-focal), and small (over half 
the patients in our data having lesions occupying <1% of the brain volume (including ventricles)). 
Segmentation for HIE MRI data is remarkably different from, and arguably more challenging than, 
other segmentation tasks such as brain tumors with focal and relatively large lesions. We hope that this 
dataset can help fuel the development of MRI lesion segmentation methods for HIE and small diffuse 
lesions in general.

Background & Summary
Accurate identification of brain injuries in neonatal brain magnetic resonance images (MRI)1–3 is crucial to 
improve clinical care of neonates with hypoxic-ischemic encephalopathy (HIE), a brain disease that occurs in 
around 1 ~ 5/1000 term-born infants around birth4,5. HIE affects around 750,000 term-born neonates every 
year worldwide4,5, costing about $2 billion/year in the US alone, let alone family burdens. Therapeutic hypo-
thermia, the current clinical treatment of HIE, can reduce mortality and morbidity in high-income countries. 
Nevertheless, around 1/3 of patients still die or develop neurocognitive deficits by 2 years of age. MRI is used 
in over 50% of the >100 ongoing HIE-related clinical trials worldwide6, for evaluating treatment effects7–9, and 
helping discover clinical10–12, biochemical10,13–15, and serum16–18 biomarkers. Accurate identification of brain 
lesions in neonatal brain MRIs1–3 is needed for disease prognosis, a better understanding of the neural basis of 
disease progression, and more timely evaluations of novel therapeutic effects.

HIE lesions are often diffuse (i.e., multi-focal), and small; hence, algorithms that have shown great promise 
in segmenting big and focal lesions, such as brain tumors and acute strokes, often encounter challenges when 
directly applied to MRIs of HIE patients. Indeed, many (over half) patients had lesions occupying <1% of brain 
volume, as shown in Fig. 1. As a result, the segmentation accuracy measured by the Dice overlap with U-Net19 
and other state-of-the-art machine/deep learning algorithms on HIE remains at around 0.520, whereas Dice is 
over 0.8 when segmenting brain tumors21,22.

A major hurdle in developing algorithms for small diffuse lesions, such as HIE lesions, is the lack of public 
data. Public data with expert annotations of lesions have fueled the advancement of machine learning algo-
rithms to segment brain tumors23, stroke lesions24, multiple sclerosis lesions25,26, and numerous other diseases 
in the brain or other organs27,28. However, to date, there is no public MRI data with expert annotations available 
for HIE lesions.
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We present BOston Neonatal Brain Injury Dataset for Hypoxic Ischemic Encephalopathy (BONBID-HIE), 
an open-source, comprehensive, and representative MRI dataset for HIE. This paper introduces the first 
part of the BONBID-HIE data. This release contains raw and derived diffusion parameter maps, as well as 
manually-annotated lesion masks, for 133 HIE patients. Our data was from Massachusetts General Hospital. It 
includes MRIs from different scanners (Siemens 3T and GE 1.5T), different MRI protocols, and from patients 
of different races/ethnicities and ages (0-14 days postnatal age). Part I of our data release (this paper) focuses on 
lesion detection, while Part II (a follow-up paper) will focus on clinical, treatment, and neurologic outcome data 
for further developing prognostic biomarkers.

Our data contains voxel-wise annotation of HIE lesions beyond the brain region-level rough localization of 
abnormalities for two reasons. First, extractions of subsequent features, such as lesion volumes, lesion geometry, 
within-lesion signal heterogeneity, within-lesion histogram analysis, will require voxel-level identification of 
lesions. Such features are expected to offer additional information for predicting the neurological outcomes by 
2 years of age, which is the ultimate goal for the design of prognosis biomarkers. Second, it is possible to derive 
brain-regional-level injuries from the voxel-wise lesion detection

Methods
Study Approval and Data Security. This work was approved by Institutional Review Boards (IRBs): IRB-
P00025916 (PI: Y. Ou) at Boston Children’s Hospital and IRB-2015P001651 (PI: Y. Ou) at Massachusetts General 
Hospital. Consent was waived because the retrospective nature of this work: many of the patients have already com-
pleted follow-up, live at a great distance from the hospitals, or the contact information is not up to date. Data were 
kept in encrypted folders on password-protected computers within the two hospitals’ firewalls. Also, anonymization 
included removing identifiable information (medical record number, date of birth, name, physician’s name, visit dates, 
etc.) in the clinical report and imaging header. Patient names were replaced by MGHNICU_001, MGHNICU_002,… 
Brain images have undergone defacing to remove the risk of 3D rendering that may recognize the facial features.

overview. Figure 2 illustrates the overall data archiving process. MRI data for this dataset were acquired from 
MGH. Manual annotations were performed to create lesion masks for each individual patient, which served as the 
ground truth. These lesion masks were then aggregated to form a lesion atlas, representing statistical lesion maps 
across the cohort. Concurrently, the collected MRI data were processed to generate ZADC maps, which were prob-
abilistic lesion maps for each individual. In the following sections, we will discuss each step involved in creating 
the BONBID-HIE dataset in detail.

Retrospective Data collection. Data was retrospectively collected from MGH. Inclusion criteria were:  
(1) term-born; (2) clinical diagnosis of HIE; (3) initially treated at MGH between 2001 and 2018; (4) no comorbid-
ities such as hydrocephalus or congenital syndromes; and (5) high-quality MRI acquired in Day 0-14 after birth  

Fig. 1 Lesions associated to hypoxic ischemic encephalopathy (HIE) are typically diffuse (i.e., multi-focal) and 
small. Here we show two representative images for 3 HIE patients. For each patient, in the left panel: apparent 
diffusion coefficient (ADC) maps that are clinically used to identify HIE lesions; in the right panel: manually-
annotated lesions (shown in pink) overlaid on the ADC map. We listed the percentage of the whole brain 
volume (including ventricles) being injured at the bottom (i.e., lesion volume divided by the whole brain volume).

Fig. 2 A schematic diagram showing the steps performed on the BONBID-HIE data for release.
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(visually checked by RW, AF, YO). Exclusion criteria were: (1) excessive motion artifacts or missing images; or  
(2) primary perinatal stroke, focal artery ischemic stroke, or hemorrhage.

Clinical characteristics and demographic information were retrospectively gathered from the electronic 
health records (EHRs). The clinical variables included maternal information during pregnancy and delivery, as 
well as infant information. More detail can be found in the “Data Records” Section.

MRI data was downloaded from MGH Radiology Department clinical archives using the mi2b2 search 
engine29. MRIs were acquired on either a GE 1.5T Signa scanner (N=52, scanned during 2001-2012), or, a 
Siemens 3T TrioTim or PrismaFit scanner (N=81, scanned during 2012-2018). Diffusion tensor sequences on 
all scanners had the protocol as follows: Time of Repetition (TR) = 7500–9500 ms, Time of Echo (TE) = 80–115 
ms, and b = 1000 s/mm2. The GE 1.5T scanner had resolution 1.5 × 1.5 × (2.0–4.0) mm3 and (6–60) diffu-
sion directions, while the Siemens 3T scanner had a resolution 2 × 2 × 2 mm3 and (25–60) diffusion direc-
tions. Apparent diffusion coefficient (ADC) maps were directly generated by the scanners (with the Advantage 
Windows Workstation for GE scanners30,31 and with Syngo software for Siemens scanners32).

MRI Pre-processing. Besides the raw NIfTI image as converted from the DICOM files, we also generated several 
processed images. The pre-processing steps included: N4 bias correction33, field of view normalization34, multi-atlas 
skull stripping for the ADC maps35, and deformable registration of each patient’s ADC map to a normative 0-14 day 
neonatal brain ADC atlas36, by the Deformable Registration via Attribute Matching and Mutual-Saliency weighting 
(DRAMMS) software37, which has been extended-validated for lifespan ages in various MRI sequences38. This nor-
mative ADC atlas was constructed from ADC maps of 13 healthy individuals acquired 0-14 days after birth (Fig. 3a) 
with our extensively-validated MRI analysis pipeline34,35,37,38. All software packages used in this pre-processing pipe-
line are publicly available and have been validated in processing both research and clinical MRI scans across ages39–43.

Multi-Expert Consensus annotation of Lesions as Ground-truth. HIE lesions had been qualitatively 
described in radiology reports that were part of the clinical flow. In this clinical process, ADC maps were used as 
the primary images, in addition to structural MRIs, to identify HIE abnormalities44–46. To convert the description 
of lesions in the radiology report into voxel-by-voxel expert annotation, we used a two-step expert consensus 
approach. First, HIE lesions were manually annotated as a binary mask on the ADC maps in the patient’s raw 
image space, using the MRICroN software, according to the neuroradiology reports. This was done primarily by 
a clinical fellow (YS; >3 years of experience in general medicine and >1.5 years of neuroradiology training by 
practicing neuroradiologists at BCH specifically for HIE-related neuroimaging interpretation). The annotation 
protocol asked the primary annotator to label voxels as the expert deemed abnormal by his/her expertise, only in 
those brain regions mentioned in the clinical radiology report, and to leave uncertainties or disagreements for the 
subsequent expert consensus process. The annotations started from the axial slice and were subsequently mod-
ified in the coronal and sagittal planes for the 3D integrity of lesion regions. Second, in those 27 patients where 
uncertainties or disagreement between the primary annotator (YS) and the clinical radiology report occurred, we 
created a consensus lesion mask based on discussions among three more experienced pediatric neuroradiologists 
(CJ, SS, and PEG; >5, >5, and >20 years of experience practicing clinical pediatric neuroradiology), in a simple 
majority manner. This single set of lesion annotations on the ADC maps, the first for HIE, reflects the collective 
decision among the neuroradiologists who read the images at the time of clinical care, the primary annotator 
(YS), and 3 more experienced pediatric neuroradiologists (CJ, SS, PEG). This multi-expert consensus annotation 
process is less biased than a single-expert annotation. Our ongoing work on a 21-site HIE dataset is using more 
resource- and expertise-demanding multi-expert independent approach.

Fig. 3 The generation and concept of ZADC maps. (a) Examples of ADC maps from normative subjects,  
which were warped into the same space using unbiased group-wise DRAMMS registration to generate  
(b) the mean and standard deviation ADC atlases. (c) One (yellow dashed box) or two (green solid box)  
standard deviations above and below the mean ADC atlas define the normal ranges of voxel-wise ADC 
variations. (d) Our novel ZADC map quantifies voxel-wise deviations from the mean ADC map in (b). The cool/
warm colors in (d) represent voxels with ADC values lower/higher than the mean ADC at the same anatomic 
location, according to the scale bar on the right.
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Generation of ZADC Maps for Each Patient– Derived to Aid Automated Lesion Segmen-
tation. Neuroradiologists identify acute brain injury from HIE as regions with low ADC values. Low ADC 
values represent a reduced water diffusion, which occurs in the first week after birth due to ischemic necro-
sis resulting from the hypoxic ischemic insult6. However, a dilemma is, what ADC value is considered abnor-
mally low versus just low within the normal variation? The normal variations of ADC values differ across brain 
regions36,47, making this question difficult even for experienced neuroradiologists. For example, a voxel with an 
ADC value of 800 ( × 10−6mm2/s) may be considered normal at one brain region, whereas another voxel with an 
ADC value of 900 ( × 10−6mm2/s) may be considered lesioned at another brain region, if the normal ranges of 
ADC variations in the two brain regions are 700–900 and 950–1100 (same unit), respectively.

To address this dilemma, we have developed ZADC maps to normalize and make ADC values comparable 
across brain voxel locations39. First, a normative ADC atlas was generated from scans of 13 normative neonates 
(Fig. 3a). This atlas quantifies the mean ADC values and standard deviation at every voxel36 (Fig. 3b), and hence 
the normal range of variations at each voxel (Fig. 3c). Then, we converted each patient’s ADC map (first row, 
Fig. 3d) into a ZADC map (second row, Fig. 3d). The ZADC maps compared the patient’s ADC value at each voxel to 
the normal variations at the corresponding voxel in the atlas. In a nutshell, ZADC maps quantify how many stand-
ard deviations away a patient’s ADC value at a voxel is from the normal mean at the same anatomical location.

Specifically, a deformation (D) was computed, which mapped every voxel x in the patient’s ADC map to its 
anatomically-corresponding location D(x) in the atlas space. The normal range of ADC variation per voxel was 
defined by the mean μ(D(x)) and standard deviation σ(D(x)) denoted for that voxel across all healthy neonates. 
Finally, the patient’s ADC value Ix at voxel x was converted to a Z value: Zx = (Ix − μ(D(x)))/σ(D(x)). We calcu-
lated the ZADC map, which resides in the patient’s raw ADC image space, for each patient. This offers an option 
for developing anatomy-aware lesion segmentation algorithms48.

It is important to note that ZADC maps were not part of the scanner-generated images, nor stored in scan-
ner or PACS. ZADC maps were not used in expert consensus annotation of lesions, which serve as ground 
truth for computer-assisted lesion detection. ZADC maps were generated in post-processing steps, to aid the 
computer-assisted lesion detection. Results from ZADC maps were validated against expert consensus of lesion 
annotation for the accuracy of computer-assisted lesion detection algorithms. Algorithm developers have 
options to use or not use ZADC maps in their lesion segmentation algorithms.

Construction of Statistical Lesion atlases for the Cohort. The same deformation field that was com-
puted by the non-rigid registration from the patient’s skull-stripped ADC map to the normal ADC atlas was used 
to transform the binary brain lesion maps of each patient into the normal neonatal ADC atlas space37. The trans-
formed binary lesion masks were then summed and divided by the total number of patients at each voxel. This 
led to a statistical lesion atlas that quantifies voxel-wise frequency, or probability, of HIE lesions in our cohort, as 
illustrated in Fig. 4.

The normal neonatal ADC atlas is part of the release, to offer an option to algorithm developers. An algo-
rithm for HIE lesion detection can opt to use the normal ADC atlas to contrast HIE-related abnormality, or 
choose not to use this atlas. We would clarify that the HIE cohort, on which the lesion detection algorithms are 
to be developed, only contains data from patients with clinically confirmed HIE diagnosis.

Fig. 4 Statistical lesion atlas quantifying the voxel-wise lesion frequency in our cohort of N = 133 patients in 
the normal 0-14 days ADC atlas space.

https://doi.org/10.1038/s41597-024-03986-7


5Scientific Data |           (2025) 12:53  | https://doi.org/10.1038/s41597-024-03986-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
The dataset is available on Zenodo (https://zenodo.org/records/10602767)49. All data has been made publicly 
available under the CC BY license (https://creativecommons.org/licenses/by/4.0/legalcode).

Dataset Characteristics. Table 1A lists the demographics and clinical characteristics of mothers and neo-
nates. Maternal information includes demographics (age at delivery, race), birth mode (C-section or vaginal), and 
complications during pregnancy and delivery. Neonatal information includes demographics (age at MRI scan, 
gestational age at birth, birth weight, head circumference, sex), birth conditions (1/5/10-minute Apgar scores, low-
est pH value in umbilical cord), treatment (hypothermia or not), and complications in the neonatal intensive care 
unit (NICU), including seizure (yes/no), the length of stay (in days), the use of endotracheal tube (ETT, yes/no),  
and the administration of total parenteral nutrition (TPN, yes/no). In each row, we also listed the number of 
patients who had such information available. 

A. Demographics and Clinical Characteristics

Maternal Information

Maternal age at delivery (years) 29.5 ± 6.7 N=133

Race White (43), Black or African American (7), Hispanic or 
Latino (15), Multi Race (5), Unknown (57), Other (6) N=133

Delivery C-section (78), Vaginal (55) N=133

Antepartum hemorrhage Yes (29), No (104) N=133

Thyroid dysfunction Yes (5), No (128) N=133

Pre-eclampsia Yes (9), No (124) N=133

Fetal decels Yes (72), No (61) N=133

Shoulder dystocia Yes (8), No (125) N=133

Chorioamnionitis Yes (20), No (108) N=133

Emergency c-section Yes (69), No (58) N=133

Neonatal Information

Age at scan (days) 3.9 ± 2.7 N=133

Gestational age at birth (weeks) 39.1 ± 1.9 N=133

Birth weight (g) 3321.9 ± 615.9 N=133

Infant head circumference (cm) 34.2 ± 1.4 N=85

Sex Male (74), Female (59) N=133

1-minute APGAR scores 1.9 ± 1.7 N=133

5-minute APGAR scores 4.2 ± 2.3 N=132

10-minute APGAR scores 5.3 ± 2.1 N=118

Lowest pH value in umbilical cord 7.00 ± 0.20 N=129

Therapeutic hypothermia before MRI? Yes (86), No (47) N=133

Endotracheal tube (ETT) in NICU Yes (78), No (47) N=125

Total parenteral nutrition (TPN) in NICU Yes (111), No (21) N=133

Seizures NICU Yes (64), No (69) N=133

Length of stay in NICU (days) 12.10 ± 9.92 N=133

B. Lesion Characteristics (N=133)

Whole-brain lesion volume – minimum 0 mm3 (0% of the brain injured)

Whole-brain lesion volume - 25th percentile 441.96 mm3 (0.10% of the brain injured)

Whole-brain lesion volume - median 2765.63 mm3 (0.63% of the brain injured)

Whole-brain lesion volume - 75th percentile 24264.27 mm3 (4.86% of the brain injured)

Whole-brain lesion volume - maximum 412120.00 mm3 (82.59% of the brain injured)

C. Number of Patients by Percentage of Lesions in the Brain (N=133)

[0%, 1%) of the brain being injured 55.64% (N=74)

[1, 5%) of the brain was injured 19.55% (N=26)

[5, 10%) of the brain was injured 5.26% (N=7)

[10, 20%) of the brain was injured 4.51% (N=6)

[20, 50%) of the brain was injured 8.27% (N=11)

[50, 100]% of the brain was injured 6.77% (N=9)

D. Scanner (N=133)

GE 1.5T 39% (N=52)

Siemens 3T 61% (N=81)

Table 1. Cohort characteristics (N=133).
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Table 1B quantifies the distribution of the absolute lesion volumes (in mm3) and relative lesion volume 
(percentage of the brain being injured). Here, the relative lesion volume was calculated by the volume of the 
expert-annotated lesion regions divided by the algorithm-extracted whole brain volumes (including ventri-
cles) 34,35. The median lesion volume accounted for 0.63% of the whole brain volume. This confirms that over 
half of the patients had less than 1% of the brain being injured. Table 1C further calculates the distribution of the 
relative lesion volumes (by the percentage of the brain volume being lesioned). The absolute and relative volumes 
were both computed in the patient’s raw ADC image space. The minimum lesion was 0 mm3, which is a common 
issue in HIE – mild HIE cases may not show explicit lesions in neonatal MRIs50–52.

Figure 5 shows the ADC map, ZADC map, and expert annotations of example patients with different HIE 
lesion percentages. Two patients are shown in each of the four groups: those with lesions occupying  < 1% 
(upper left panel), 1–5% (upper right panel), 5–50% (lower left panel), and 50–100% (lower right panel) of the 
whole brain volume. Overall, around 1 in 2 (55.64%) patients had HIE lesions occupying less than 1% of their 
brain volume, and 3 in 4 patients (75.19%) patients had lesions occupying less than 5% of their brain. This con-
firms that HIE lesions detectable in the diffusion MRI in our cohort are often small.

Data structure and file formats. All medical imaging files were exported from the Picture Archiving and 
Communication System (PACS) and converted into the NIfTI format. Segmentation masks created by expert 

Fig. 5 Visualization of patients with different lesion percentages. In every patient, the left image is the ADC map 
(skull stripped) with range of ADC values designated by the gray scale bar, the middle is the computed ZADC map 
with range of Z-scores designated by the rainbow scale bar, and the right image is the expert-annotated lesion 
regions (pink) overlaid on the ADC map. Percentages of injury were calculated by the volume of the expert-
annotated lesion regions divided by algorithm-extracted whole brain volumes (including ventricles).

https://doi.org/10.1038/s41597-024-03986-7


7Scientific Data |           (2025) 12:53  | https://doi.org/10.1038/s41597-024-03986-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

annotations were also saved in NIfTI format. Corresponding scanner metadata from the Digital Imaging and 
Communications in Medicine (DICOM) header in the .json file format is provided with the released dataset. All 
data in the BONBID-HIE dataset was separated into a training dataset (N=89) and a test dataset (N=44). Both 
the training and testing contain data from both scanners (GE 1.5T Signa and Siemens 3T Trio). The split between 
the training and testing dataset has been performed (RB, YO) so that both sets include a similar variance of HIE 
lesion patterns as shown in Table 1C.

The data is organized in the format shown in Fig. 6. BONBID-HIE provides, per patient: (i) 1ADC_ss: skull 
stripped ADC map; (ii) 2Z_ADC: ZADC map; (iii) 3LABEL: expert lesion annotations; and (iv) clinical data: 
clinical variables as written in Table 1A. There is also (v) Atlases: a folder for the normal and lesion atlases; 
(vi) a readme.txt file: a text file to provide information on this data organization; and (vii) the license file of the 
BONBID-HIE dataset.

technical Validation
Representativeness of patient cohort. Our data is representative of HIE cohorts in the developed coun-
tries. At least three characteristics of our data agree with documented clinical knowledge about HIE.

Lesion distribution in space agrees with clinical knowledge. Our statistical lesion atlas in Fig. 4 shows that HIE 
lesions can occur anywhere in the brain. The regions most frequently injured included the basal ganglia, internal 
capsules, thalamus, perirolandic cortex/subcortical white matter, temporal lobes, cerebral white matter, brain-
stem, and vermis (red, orange, and yellow regions in Fig. 4). This lesion atlas map coincides with clinical knowl-
edge of brain regions often vulnerable to HIE injuries2,6,13. Indeed, HIE-related injuries in these regions have 
been key criteria in expert MRI scoring systems, which are used to assess the severity of HIE. Examples include 
the NICHD Neonatal Research Network (NRN)2, the Barkovich53, the Weeke-deVeries3, and the Trivedi54 scor-
ing systems. In addition, lesions appeared in less than 35% of the patients at any given voxel, according to the 
color bar in this figure. This confirms the clinical knowledge that HIE lesions are diffuse, spatially distributed, 
and almost half to two-thirds of the HIE patients have no or minimal injuries on diffusion imaging, at least in 
patients in the USA51,52.

Lesion distribution in time agrees with clinical knowledge. Figure 7(a) shows the percentage of the whole brain 
volume being lesioned at different postnatal ages. The lesion percentage in the ADC maps came down to almost 
0 in the 9 patients who underwent MRI scans after postnatal day 7. This agrees with the clinical knowledge that 
HIE-related lesions are more detectable in ADC maps during 0-7 postnatal days or in T1/T2-weighted images 
than in relatively later scans (after postnatal day 7)2,46,52.

ADC evolvement with age agrees with clinical knowledge. Figure 7(b) shows the whole-brain average ADC 
values of all patients (each dot is one patient). In normal cohorts, ADC values drop rapidly in the early postna-
tal life (see Figures 4 and 5 in36, and Figures 3 and 4 in47). However, the presence of HIE-related abnormalities 
disrupted this trend – HIE patients undergoing earlier MRIs (0-7 postnatal days) had decreased ADC values in 
a larger precentage of the brain (Fig. 7(a)), so the ADC values in 0-7 postnatal days were at similar or even lower 
levels than ADC values in 7-14 postnatal days among HIE patients (Fig. 7(b)). This has also been documented 
in HIE literature55,56.

Utility of aDC maps and ZADC maps in automated Lesion Segmentation. The only ground truth 
for lesion segmentation in our released data is the expert consensus of lesion annotations. Our data release 
includes ZADC maps as an option to algorithm developers. To demonstrate the utility of the computed ZADC 

Fig. 6 Folder structure of the BONBID-HIE dataset (Part I. Lesion Segmentation).
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Fig. 7 Representativeness of our cohort for (a) lesion distribution across ages; and (b) whole-brain ADC values 
across ages. In both panels, each dot denotes a patient in our cohort.

Fig. 8 Accuracy of thresholding-based lesion segmentation on ADC and ZADC maps with different threshold 
values, measured by Dice, sensitivity, sepecificity, Sen Spe

2

2 2. + . , AUC, MASD and NSD. Bold texts in the tables 
beneath the figure panels highlight the two scenarios with the lowest MASD scores (lower is more accurate 
lesion detection), or the two scenarios with the highest Dice, AUC and NSD metrics (higher is more accurate 
lesion detection).
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maps, we compared the accuracies of using ADC or ZADC maps for lesion segmentation. We attempted simple 
thresholding of ADC and ZADC maps, at several threshold values, for segmenting HIE lesions. Although simple, 
thresholding-based segmentation accuracy is a strong indicator for segmentation accuracies in more sophisti-
cated machine/deep learning algorithms57. For ADC maps, we used different thresholds ranging from 800-1100 
μm2/s, as suggested in the literature46,58–61. For ZADC maps, we used thresholds -1.5, -2, and -2.5. Voxels in patient 
MRIs with ADC values 1.5 to 2.5 standard deviations below the average ADC values from healthy controls were 
considered abnormally low and hence, lesioned. The choice of thresholds around -2 in ZADC maps was also based 
on the hypothesis of a normal distribution of ADC values at each voxel across subjects36,39.

We evaluated the accuracy of these maps compared to expert-annotated ground-truth masks using the Dice 
coefficient, sensitivity, specificity, Mean Average Surface Distance (MASD)62,63, and Normalized Surface 
Distance (NSD)63. These evaluation metrics were selected based on64. Results for Dice, sensitivity, specificity and 
area under the receiver-operating characteristic curve (AUC) are shown in Fig. 8. Here, the gray boxplots are the 
accuracy measurements when ADC maps were thresholded between 800 and 1100 μm2/s (50 μm2/s intervals). 
The blue boxplots are the accuracy measurements when the ZADC maps were thresholded at -1.5, -2, and -2.5. 
Figure 8 demonstrates: (i) both ADC and ZADC have values in helping segment the HIE-related lesions, since the 
specificity from simple naive thresholding-based segmentations was comparable to those from machine 
learning-based algorithms20, although the Dice and sensitivity were lower; (ii) ZADC maps thresholded at -2, the 
most intuitive and straightforward threshold value, yielded the highest Dice (0.54 ± 0.28), followed by ZADC 
maps thresholded at -2.5 (Dice 0.39 ± 0.25); (iii) ZADC maps thresholded at -1.5 yielded the highest 

+sensitivity specificity
2

2 2
 (0.82 ± 0.02), quantifying the balance between sensitivity and specificity compared with any 

ADC thresholds, followed by ZADC maps thresholded at -2 (0.76 ± 0.03); and (iv) overall, across all thresholds, 
ZADC maps showed a higher area under the curve (AUC: 0.936). Meanwhile, accuracies measured by MASD 
(lower MASD for a higher accuracy) and NSD (higher NSD for a higher accuracy), confirmed that ZADC map’s 
superior accuracy than ADC maps. This shows that ZADC maps – anatomy-normalized ADC images – carry the 
potential to improve lesion detection accuracy compared to ADC maps.

code availability
No custom code was generated for this work.

Received: 31 January 2024; Accepted: 2 September 2024;
Published: xx xx xxxx

References
 1. Rutherford, M. et al. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Human Development 86, 351–360 

(2010).
 2. Shankaran, S. et al. Brain injury following trial of hypothermia for neonatal hypoxic–ischaemic encephalopathy. Archives of Disease 

in Childhood-Fetal and Neonatal Edition 97, F398–F404 (2012).
 3. Weeke, L. C. et al. A novel magnetic resonance imaging score predicts neurodevelopmental outcome after perinatal asphyxia and 

therapeutic hypothermia. The Journal of Pediatrics 192, 33–40 (2018).
 4. Graham, E. M., Ruis, K. A., Hartman, A. L., Northington, F. J. & Fox, H. E. A systematic review of the role of intrapartum hypoxia-

ischemia in the causation of neonatal encephalopathy. American Journal of Obstetrics and Gynecology 199, 587–595 (2008).
 5. Lee, A. C. et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with 

trends from 1990. Pediatric Research 74, 50–72 (2013).
 6. Weiss, R. J. et al. Mining multi-site clinical data to develop machine learning mri biomarkers: application to neonatal hypoxic 

ischemic encephalopathy. Journal of Translational Medicine 17, 1–16 (2019).
 7. Herrera, T. I. et al. Outcomes of preterm infants treated with hypothermia for hypoxic-ischemic encephalopathy. Early Human 

Development 125, 1–7 (2018).
 8. Inder, T. E. et al. Randomized trial of systemic hypothermia selectively protects the cortex on mri in term hypoxic-ischemic 

encephalopathy. The Journal of Pediatrics 145, 835–837 (2004).
 9. Rogers, E. E. et al. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatric Neurology 51, 657–662 (2014).
 10. Natarajan, G., Pappas, A. & Shankaran, S. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic 

encephalopathy (HIE). In Seminars in Perinatology, vol. 40, 549–555 (Elsevier, 2016).
 11. Ramaswamy, V. et al. Systematic review of biomarkers of brain injury in term neonatal encephalopathy. Pediatric Neurology 40, 

215–226 (2009).
 12. van Laerhoven, H., de Haan, T. R., Offringa, M., Post, B. & van der Lee, J. H. Prognostic tests in term neonates with hypoxic-ischemic 

encephalopathy: a systematic review. Pediatrics 131, 88–98 (2013).
 13. Laptook, A. R. et al. Effect of therapeutic hypothermia initiated after 6 hours of age on death or disability among newborns with 

hypoxic-ischemic encephalopathy: a randomized clinical trial. JAMA 318, 1550–1560 (2017).
 14. Shankaran, S. et al. Effect of depth and duration of cooling on death or disability at age 18 months among neonates with hypoxic-

ischemic encephalopathy: a randomized clinical trial. JAMA 318, 57–67 (2017).
 15. O’Mara, K. & Weiss, M. D. Dexmedetomidine for sedation of neonates with HIE undergoing therapeutic hypothermia: a single-

center experience. American Journal of Perinatology Reports 8, e168–e173 (2018).
 16. Massaro, A. N. et al. Serum biomarkers of mri brain injury in neonatal hypoxic ischemic encephalopathy treated with whole-body 

hypothermia: a pilot study. Pediatric Critical Care Medicine 14, 310–317 (2013).
 17. Massaro, A. N. et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy. The Journal of Pediatrics 194, 

67–75 (2018).
 18. Douglas-Escobar, M. & Weiss, M. D. Biomarkers of hypoxic-ischemic encephalopathy in newborns. Frontiers in Neurology 3, 144 

(2012).
 19. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International 

Conference on Medical Image Computing and Computer-Assisted Intervention, 234–241 (Springer, 2015).
 20. Murphy, K. et al. Automatic quantification of ischemic injury on diffusion-weighted mri of neonatal hypoxic ischemic 

encephalopathy. NeuroImage: Clinical 14, 222–232 (2017).
 21. Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging 34, 

1993–2024 (2014).

https://doi.org/10.1038/s41597-024-03986-7


1 0Scientific Data |           (2025) 12:53  | https://doi.org/10.1038/s41597-024-03986-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

 22. Bakas, S. et al. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. 
Scientific Data 4, 1–13 (2017).

 23. Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall 
survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018).

 24. Maier, O. et al. Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri. Medical 
Image Analysis 35, 250–269 (2017).

 25. Carass, A. et al. Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148, 77–102 (2017).
 26. Commowick, O. et al. Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing 

infrastructure. Scientific Reports 8, 13650 (2018).
 27. Antonelli, M. et al. The medical segmentation decathlon. Nature Communications 13, 4128 (2022).
 28. Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J. & Maier-Hein, K. H. nnu-net: a self-configuring method for deep learning-based 

biomedical image segmentation. Nature Methods 18, 203–211 (2021).
 29. Murphy, S. N. et al. High throughput tools to access images from clinical archives for research. Journal of Digital Imaging 28, 

194–204 (2015).
 30. Provenzale, J. M., Liang, L., DeLong, D. & White, L. E. Diffusion tensor imaging assessment of brain white matter maturation during 

the first postnatal year. American Journal of Roentgenology 189, 476–486 (2007).
 31. Dudink, J. et al. Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatric Radiology 37, 1216–1223 

(2007).
 32. Forman, C., Wetzl, J., Hayes, C. & Schmidt, M. Compressed sensing: a paradigm shift in mri. MAGNETOM Flash 66, 9–13 (2016).
 33. Tustison, N. J. et al. N4ITK: improved n3 bias correction. IEEE Transactions on Medical Imaging 29, 1310–1320 (2010).
 34. Ou, Y. et al. Field of view normalization in multi-site brain mri. Neuroinformatics 16, 431–444 (2018).
 35. Ou, Y. et al. Brain extraction in pediatric adc maps, toward characterizing neuro-development in multi-platform and multi-

institution clinical images. NeuroImage 122, 246–261 (2015).
 36. Ou, Y. et al. Using clinically acquired mri to construct age-specific adc atlases: Quantifying spatiotemporal adc changes from birth 

to 6-year old. Human Brain Mapping 38, 3052–3068 (2017).
 37. Ou, Y., Sotiras, A., Paragios, N. & Davatzikos, C. Dramms: Deformable registration via attribute matching and mutual-saliency 

weighting. Medical Image Analysis 15, 622–639 (2011).
 38. Ou, Y., Akbari, H., Bilello, M., Da, X. & Davatzikos, C. Comparative evaluation of registration algorithms in different brain databases 

with varying difficulty: results and insights. IEEE Transactions on Medical Imaging 33, 2039–2065 (2014).
 39. Pinto, A. L., Ou, Y., Sahin, M. & Grant, P. E. Quantitative apparent diffusion coefficient mapping may predict seizure onset in 

children with sturge-weber syndrome. Pediatric Neurology 84, 32–38 (2018).
 40. He, S. et al. Multi-channel attention-fusion neural network for brain age estimation: accuracy, generality, and interpretation with 

16,705 healthy mris across lifespan. Medical Image Analysis 72, 102091 (2021).
 41. He, S., Grant, P. E. & Ou, Y. Global-local transformer for brain age estimation. IEEE Transactions on Medical Imaging 41, 213–224 

(2021).
 42. He, S., Feng, Y., Grant, P. E. & Ou, Y. Deep relation learning for regression and its application to brain age estimation. IEEE 

Transactions on Medical Imaging 41, 2304–2317 (2022).
 43. Khoury, J. E. et al. Maternal childhood maltreatment is associated with lower infant gray matter volume and amygdala volume 

during the first two years of life. Biological psychiatry global open science 2, 440–449 (2022).
 44. Douglas-Escobar, M. & Weiss, M. D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatrics 169, 397–403 

(2015).
 45. Wei, R. et al. Prediction of poor outcome after hypoxic-ischemic brain injury by diffusion-weighted imaging: A systematic review 

and meta-analysis. Plos One 14, e0226295 (2019).
 46. Liauw, L., van Wezel-Meijler, G., Veen, S., Van Buchem, M. & van der Grond, J. Do apparent diffusion coefficient measurements 

predict outcome in children with neonatal hypoxic-ischemic encephalopathy? American Journal of Neuroradiology 30, 264–270 
(2009).

 47. Sotardi, S. et al. Voxelwise and regional brain apparent diffusion coefficient changes on mri from birth to 6 years of age. Radiology 
298, 415 (2021).

 48. Liu, L., Wolterink, J. M., Brune, C. & Veldhuis, R. N. Anatomy-aided deep learning for medical image segmentation: a review. Physics 
in Medicine & Biology 66, 11TR01 (2021).

 49. Bao, R., Ou, Y. & Grant, E. BOston Neonatal Brain Injury Data for Hypoxic Ischemic Encephalopathy (BONBID-HIE): I. MRI and 
Manual Lesion Annotation Version V3. Zenodo, https://zenodo.org/records/10602767 (2024).

 50. Imanishi, T. et al. Brain injury following mild hypoxic-ischemic encephalopathy in neonates–ten-year experience in a tertiary 
perinatal center. Journal of Perinatology 1–7 (2022).

 51. Li, Y. et al. Mild hypoxic-ischemic encephalopathy (HIE): Timing and pattern of mri brain injury. Pediatric Research 1–6 (2022).
 52. Chalak, L., Latremouille, S., Mir, I., Sánchez, P. J. & Sant’Anna, G. A review of the conundrum of mild hypoxic-ischemic 

encephalopathy: Current challenges and moving forward. Early Human Development 120, 88–94 (2018).
 53. Barkovich, A. J. et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of mr scoring systems. American Journal 

of Neuroradiology 19, 143–149 (1998).
 54. Trivedi, S. B. et al. A validated clinical mri injury scoring system in neonatal hypoxic-ischemic encephalopathy. Pediatric Radiology 

47, 1491–1499 (2017).
 55. Hunt, R. W., Neil, J. J., Coleman, L. T., Kean, M. J. & Inder, T. E. Apparent diffusion coefficient in the posterior limb of the internal 

capsule predicts outcome after perinatal asphyxia. Pediatrics 114, 999–1003 (2004).
 56. van der Aa, N. E., Benders, M. J., Vincken, K. L., Groenendaal, F. & de Vries, L. S. The course of apparent diffusion coefficient values 

following perinatal arterial ischemic stroke. PLoS One 8, e56784 (2013).
 57. He, S., Feng, Y., Grant, P. E. & Ou, Y. Segmentation ability map: Interpret deep features for medical image segmentation. Medical 

Image Analysis 84, 102726 (2023).
 58. Kushwah, S., Kumar, A., Verma, A., Basu, S. & Kumar, A. Comparison of fractional anisotropy and apparent diffusion coefficient 

among hypoxic ischemic encephalopathy stages 1, 2, and 3 and with nonasphyxiated newborns in 18 areas of brain. Indian Journal 
of Radiology and Imaging 27, 447–456 (2017).

 59. Shibasaki, J. et al. Comparison of predictive values of magnetic resonance biomarkers based on scan timing in neonatal 
encephalopathy following therapeutic hypothermia. The Journal of Pediatrics 239, 101–109 (2021).

 60. Al Amrani, F. et al. Early imaging and adverse neurodevelopmental outcome in asphyxiated newborns treated with hypothermia. 
Pediatric Neurology 73, 20–27 (2017).

 61. Heursen, E.-M. et al. Prognostic value of the apparent diffusion coefficient in newborns with hypoxic-ischaemic encephalopathy 
treated with therapeutic hypothermia. Neonatology 112, 67–72 (2017).

 62. Beneš, M. & Zitová, B. Performance evaluation of image segmentation algorithms on microscopic image data. Journal of Microscopy 
257, 65–85 (2015).

 63. Reinke, A. et al. Common limitations of image processing metrics: A picture story. arXiv preprint arXiv:2104.05642 (2021).
 64. Maier-Hein, L. et al. Metrics reloaded: recommendations for image analysis validation. Nature Methods 1–18 (2024).

https://doi.org/10.1038/s41597-024-03986-7
https://zenodo.org/records/10602767


1 1Scientific Data |           (2025) 12:53  | https://doi.org/10.1038/s41597-024-03986-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Acknowledgements
This work was funded, in part, by the Harvard Medical School and Boston Children’s Hospital through 
Early Career Development Fellowship, Thrasher Research Fund Early Career Awards, NIH R21NS121735, 
R61NS126792, and R03HD104891.

author contributions
Study Design: R.B., S.V.B., A.N.F., R.L.H., P.E.G., Y.O.; Data Collection: S.V.B., R.J.W., A.N.F., R.L.H., P.E.G., Y.O.; 
Data Analysis: R.B., Y.S., S.B.V., R.J.W., A.N.F., C.J.C., S.S., Y.Z., R.L.H., P.E.G., Y.O.; Manuscript Writing: R.B., 
S.V.B., A.N.F., R.L.H., P.E.G., Y.O.

Competing interests
The authors declare no competing interests.

additional information
Correspondence and requests for materials should be addressed to R.B. or Y.O.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, 
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative  
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted  
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2025

https://doi.org/10.1038/s41597-024-03986-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

	BOston Neonatal Brain Injury Data for Hypoxic Ischemic Encephalopathy (BONBID-HIE): I. MRI and Lesion Labeling
	Background & Summary
	Methods
	Study Approval and Data Security. 
	Overview. 
	Retrospective Data Collection. 
	MRI Pre-processing. 
	Multi-Expert Consensus Annotation of Lesions As Ground-Truth. 
	Generation of ZADC Maps for Each Patient– Derived to Aid Automated Lesion Segmentation. 
	Construction of Statistical Lesion Atlases for the Cohort. 

	Data Records
	Dataset Characteristics. 
	Data structure and file formats. 

	Technical Validation
	Representativeness of patient cohort. 
	Lesion distribution in space agrees with clinical knowledge. 
	Lesion distribution in time agrees with clinical knowledge. 
	ADC evolvement with age agrees with clinical knowledge. 

	Utility of ADC maps and ZADC maps in Automated Lesion Segmentation. 

	Acknowledgements
	Fig. 1 Lesions associated to hypoxic ischemic encephalopathy (HIE) are typically diffuse (i.
	Fig. 2 A schematic diagram showing the steps performed on the BONBID-HIE data for release.
	Fig. 3 The generation and concept of ZADC maps.
	Fig. 4 Statistical lesion atlas quantifying the voxel-wise lesion frequency in our cohort of N = 133 patients in the normal 0-14 days ADC atlas space.
	Fig. 5 Visualization of patients with different lesion percentages.
	Fig. 6 Folder structure of the BONBID-HIE dataset (Part I.
	Fig. 7 Representativeness of our cohort for (a) lesion distribution across ages and (b) whole-brain ADC values across ages.
	Fig. 8 Accuracy of thresholding-based lesion segmentation on ADC and ZADC maps with different threshold values, measured by Dice, sensitivity, sepecificity, , AUC, MASD and NSD.
	Table 1 Cohort characteristics (N=133).




