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Abstract
The optimal strategy for improving cardiometabolic factors (CMFs) in young
obese individuals through diet and exercise remains unclear, as do the potential
mechanisms. We conducted an 8-week randomized controlled trial to com-
pare the effects of different interventions in youth with overweight/obesity. Gut
microbes and serum metabolites were examined to identify regulating mech-
anisms. A total of 129 undergraduates were randomly assigned to fiber-rich
(FR) diet, rope-skipping (RS), combined FR–RS and control groups. The results
showed that single interventions were as effective as combined interventions
in improving weight, waist circumference, body fat, and lipid profile compared
with control group. Notably, the FR group further reduced low-density lipopro-
tein (LDL-C) and uric acid (UA) (all p < 0.05). Mediation analysis revealed four
gut microbiota–metabolite–host axes in improving CMFs. Additionally, we used
machine learning algorithms to further predict individual responses based on
baseline gut microbiota composition, with specific microbial genera guiding tar-
geted intervention selection. In conclusion, FR diet and/or RS were effective in
improving CMFs, with the FR diet particular effectiveness in reducing LDL-C
and UA levels. These benefits may drive by gut microbiome–metabolite–host
interactions. Moreover, the predictability of gut microbiota composition sup-
ports making targeted decisions in selecting interventions. Trial Registration:
NCT04834687.
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1 INTRODUCTION

Currently, cardiovascular diseases (CVDs) remain the
leading cause of death globally, accounting for 32% of all
deaths in 2019.1 Notably, this proportion reaches 40% in
China, making it the nation with the highest global CVD
burden.1,2 The abnormal levels of cardiometabolic factors
(CMFs) among young individuals, such as obesity, lipid
irregularities, and high blood glucose levels, have also sig-
nificantly increased over the past two decades.3 This trend
has raised concerns about the increased risk of CVDs in
later life for this population.3–5 Thus, it is of consider-
able importance to implement effective interventions to
improve CMFs levels as early as possible.
Although both fiber-rich (FR) diet and aerobic exer-

cise (AE) have demonstrated benefits for weight control,6,7
improvement in lipid metabolism,8,9 and reduction of
fasting plasma glucose (FPG),8,10 there is still a lack of
sufficient research evidence to determine the optimal
intervention strategy for each indicator due to the com-
plexity and diversity of CMFs. Moreover, a single measure
is unlikely to improve all CMFs. For example, while
certain interventions may be highly effective in control-
ling weight, they may have minimal impact on other
indicators. Additionally, the mechanisms through which
FR and AE interventions improve CMF levels involve
multiple metabolic pathways that are not yet fully under-
stood. Therefore, further research is needed to identify
the most effective intervention strategies based on differ-
ent CMFs, providing stronger guidance for personalized
health management and clinical applications.
A series of studies have reported that both FR diet and

AE interventions alone can regulate CMF levels through
the gut microbiota and its metabolites.11–15 Dietary fiber
serves as a substrate for intestinal flora, improving gut
microbiota diversity and richness11 and leading to the pro-
duction of short-chain fatty acids (SCFAs).12,13 At the same
time, AE has been showed to increase gut microbiota
diversity14 and restore a healthy bacterial composition.15
However, the underlying mechanisms and the variations
in how FR diets and AE benefit CMFs still require further
elucidation.
Another obstacle in selecting the optimal intervention is

the variability in individual responses, which leads some
participants to benefit more from the same intervention.16
This variability also makes it nearly impossible to achieve
comprehensive improvements in all CMFs across indi-
viduals with a single intervention. Growing evidence
suggested that highly individualized nature of the gut
microbiome plays a key role in these interindividual differ-
ences in responses.17,18 Consequently, to better understand
the distinctions between responders and nonresponders or
low responders and to identify effective intervention strate-

gies, it is essential to analyze microbiome composition at
the individual level.
Therefore, a randomized controlled trial (RCT) was

conducted among youth to investigate the effects of dif-
ferent interventions and identify appropriate strategy for
improving specific CMFs at the population level. Addi-
tionally, we explored the potential roles of gut microbiota
and serum metabolites in mediating CMFs under dif-
ferent interventions. Finally, we hypothesized that the
baseline microbiota composition could predict individual
improvements in CMFs following various interventions,
enabling the identification of intervention-specific gen-
era as biomarkers to assist in selecting optimal individual
strategies.

2 RESULTS

2.1 Study overview and participant
characteristics at baseline

A total of 129 undergraduates with overweight/obesity
were enrolled in this parallel-designed RCT. Participants
were stratified by sex and weight, then randomly assigned
to one of four groups. Finally, 123 participants completed
both the intervention and the follow-up (see Figures 1 and
S1 for details). No participants reported any adverse events.
The participants were aged between 18 and 21, and 44.7%
were male. Baseline characteristics of the participants
were shown in Table 1. Participants in rope-skipping (RS)
and FR and RS (FR–RS) group improved physical activity
intensity, and those in FR and FR–RS group increased
dietary fiber intake (see Table S1 for details).

2.2 Individual and combined
interventions all significantly improved
CMFs

2.2.1 Population level effects: combined
interventions were not superior to individual

After 8 weeks intervention, significant improvements
were observed in body composition indicators, including
weight, waist circumference (WC), body fat mass (BFM),
and body fat percentage (BFP), in the FR–RS group, RS
group, and FR group compared with the control group
(all p < 0.05). However, only FR and FR–RS interven-
tions reduced body mass index (BMI) and triglyceride
(TG) compared with the control group (all p < 0.05).
Additionally, the 8-week FR diet resulted in significant
decreases in serum total cholesterol (TC), uric acid (UA),
and low-density lipoprotein cholesterol (LDL-C) levels (all
p < 0.01), as detailed in Table 2.
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F IGURE 1 Study design. ANCOVA, analysis of covariance; BFM, body fat mass; BMI, body mass index; BFP, body fat percentage; CMFs,
cardiometabolic factors; CON, control group; FR, fiber-rich diet group; FR–RS, fiber-rich diet and rope-skipping group; FINS, fasting insulin;
FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density
lipoprotein cholesterol; Log2FC, the log2 transformed fold changes of the peak intensity of individual metabolites of 8-week/baseline; RS,
rope-skipping group; TC, total cholesterol; TG, triglyceride; UA, uric acid; WC, waist circumference.
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TABLE 1 Baseline characteristics of the participants.

Characteristic RS FR FR–RS Control p value
n 29 32 32 30
Male 13 (44.8) 14 (43.8) 12 (40.6) 15 (50.0) 0.785
Age, y 18.1 ± 0.8 18.1 ± 0.6 18.2 ± 1.4 19.3 ± 0.9 <0.050
BMI, kg/m2 25.0 ± 2.7 25.4 ± 3.1 25.3 ± 3.6 24.8 ± 2.9 0.862
Mode of delivery 0.277
Vaginal delivery 15 (53.6) 14 (45.2) 21 (67.7) 19 (63.3)
Cesarean delivery 13 (46.4) 17 (54.8) 10 (32.3) 11 (36.7)

Paternal educational level 0.116
Junior high school and below 5 (17.9) 7 (22.6) 5 (16.1) 5 (16.7)
High school to junior college 14 (50.0) 8 (25.8) 20 (64.5) 14 (46.7)
Bachelor’s degree and above 9 (32.1) 16 (51.6) 6 (19.4) 11 (36.7)

Maternal educational level 0.126
Junior high school and below 6 (21.4) 5 (16.1) 13 (41.9) 6 (20.0)
High school to junior college 14 (50.0) 14 (45.2) 12 (38.7) 10 (33.3)
Bachelor’s degree and above 8 (28.6) 12 (38.7) 6 (19.4) 14 (46.7)

Monthly household income,
RMB/person

0.793

<5000 12 (46.2) 14 (53.9) 17 (58.6) 15 (57.7)
≥5000 14 (53.9) 12 (46.2) 12 (41.34) 11 (42.3)

Dietary intake
Energy, kcal/d 1601.5 (1293.0, 1846.0) 1704.5 (1391.0, 2160.0) 1755.0 (1536.0, 2219.0) 1648.5 (1385.0, 1801.5) 0.232
Protein, g/d 68.7 (55.6, 85.1) 67.8 (55.9, 93.4) 75.0 (56.6, 89.2) 58.8 (50.5, 79.5) 0.294
Dietary fat, g/d 57.8 (44.4, 65.6) 68.1 (45.2, 78.9) 70.3 (54.5, 87.8) 63.5 (54.3, 70.2) 0.080
Carbohydrates, g/d 205.7 (149.9, 246.6) 219.5 (189.6, 271.8) 205.0 (158.2, 269.3) 188.1 (160.5, 236.0) 0.370
Dietary fiber, g/d 8.4 (5.2, 13.6) 9.7 (6.0, 12.8) 7.6 (5.2, 10.0) 6.6 (5.3, 9.6) 0.451

Physical activity intensity,
(METs/minutes/week)

1693.0 (1035.0, 1910.0) 1639.0 (924.0, 2332.0) 1702.0 (1266.2, 2621.5) 1794.0 (1024.0, 2506.0) 0.560

Sedentary time, h/d 7.5 (6.0, 9.0) 7.0 (5.0, 9.0) 8.5 (6.5, 10.0) 8.0 (6.0, 10.0) 0.755
Outdoor time, h/d 0.959
<2 26 (92.9) 28 (90.3) 28 (90.3) 28 (93.3)
≥2 2 (7.1) 3 (9.7) 3 (9.7) 2 (6.7)

Note: Data are presented as mean ± SD, median (IQR), or n (%), p values among groups were determined by analysis of covariance, Kruskal–Wallis test, or
chi-square test.
Abbreviations: FR, fiber-rich diet group; FR–RS, fiber-rich diet and rope-skipping group; IQR, interquartile range; METs, metabolic equivalents task; RS, rope-
skipping group.

Most CMFs showed improvement with at least one of
the interventions, except for high-sensitivity C-reactive
protein (hs-CRP), FPG, and fasting insulin (FINS).
Therefore, further comparisons were conducted to
identify the most effective intervention when multiple
interventions were efficacious. Regrettably, none of the
interventions demonstrated a significant advantage in
improving any of the same CMFs (all p value > 0.05;
Table S2). Although the FR–RS intervention trended to
show better outcomes for specific CMFs, it did not achieve
statistical significance when compared with individual
interventions.

2.2.2 Individual level effects: variable
responses to the same intervention

Our results indicate that while the FR, RS, and FR–RS
interventions all led to significant improvements in the
same CMFs at the population level, there were notable dif-
ferences in individual responses to the same intervention
(Figure S2). Furthermore, under the same intervention,
some individuals showed improvement in one CMF but
not in others, suggesting that the effects of these interven-
tions on each CMF are highly personalized and exhibit
considerable variability.
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TABLE 2 Comparing the effects of RS, FR, and FR–RS interventions with control on CMFs in youth with overweight/obesity.

Variables RS (n = 29) FR (n = 32) FR–RS (n = 32) Control (n = 30) p value
Body weight, kg
Baselinea 69.12 (10.51) 71.93 (11.62) 71.92 (16.34) 71.64 (13.01) 0.811
Changea −1.5 (1.91)c −1.68 (2.40)c −1.93 (3.24)c 0.21 (1.62) 0.003
8-week adjustedb 69.56 (68.73, 70.39)** 69.56 (68.77, 70.34)** 69.31 (68.53, 70.10)** 71.43 (70.62, 72.25) 0.001

WC, cm
Baselinea 82.88 (8.75) 83.04 (10.17) 83.03 (11.36) 80.88 (9.47) 0.800
Changea −1.99 (3.99)c −1.19 (3.59) −2.59 (4.23)c 1.55 (3.05) <0.001
8-week adjustedb 80.54 (79.28, 81.81)** 81.36 (80.16, 82.57)* 79.96 (78.76, 81.17)** 83.79 (82.54, 85.04) < 0.001

BFM, kg
Baselinea 20.28 (5.23) 21.55 (5.49) 21.82 (7.16) 20.12 (6.01) 0.593
Changea −1.70 (1.26)c −1.77 (1.88)c −1.94 (2.39)c −0.23 (1.18) 0.001
8-week adjustedb 19.28 (18.63, 19.93)** 19.2 (18.58, 19.82)** 19.02 (18.4, 19.65)** 20.75 (20.11, 21.40) 0.001

BFP, %
Baselinea 29.46 (6.32) 30.11 (6.26) 30.32 (5.91) 28.35 (7.00) 0.622
Changea −1.95 (1.71)c −1.9 (1.83)c −2.14 (2.24)c −0.41 (1.10) 0.001

8-week adjustedb 27.64 (27.01, 28.28)** 27.64 (27.04, 28.25)** 27.39 (26.78, 27.99)** 29.26 (28.63, 29.88) <0.001
BMI, kg/m2

Baselinea 25.02 (2.72) 25.42 (3.07) 25.25 (3.56) 24.78 (2.93) 0.862
Changea −0.55 (0.69)c −0.71 (0.81)c −0.68 (1.16)c 0.01 (0.57) 0.003
8-week adjustedb 24.57 (24.27, 24.87) 24.44 (24.15, 24.72)** 24.45 (24.16, 24.74)** 25.12 (24.82, 25.42) 0.004

TC, mmol/L
Baselinea 4.32 (0.53) 4.34 (0.65) 4.47 (0.50) 4.41 (0.69) 0.754
Changea −0.24 (0.35)c −0.44 (0.39)c −0.24 (0.59)c 0.00 (0.34) 0.002
8-week adjustedb 4.13 (3.98, 4.28) 3.94 (3.79, 4.08)** 4.17 (4.02, 4.31) 4.39 (4.24, 4.53) 0.001

TG, mmol/L
Baselinea 0.97 (0.31) 0.98 (0.62) 1.06 (0.46) 1.02 (0.50) 0.872
Changea −0.05 (0.29) −0.19 (0.35)c −0.18 (0.41)c 0.04 (0.29) 0.023
8-week adjustedb 0.94 (0.84, 1.04) 0.8 (0.71, 0.89)** 0.85 (0.76, 0.95)* 1.06 (0.96, 1.16) 0.002

LDL-C, mmol/L
Baselinea 2.53 (0.52) 2.54 (0.55) 2.6 (0.50) 2.65 (0.57) 0.808
Changea −0.20 (0.34)c −0.35 (0.32)c −0.15 (0.49) −0.01 (0.28) 0.006
8-week adjustedb 2.37 (2.24, 2.50) 2.22 (2.10, 2.35)** 2.43 (2.31, 2.56) 2.58 (2.45, 2.71) 0.001

HDL-C, mmol/L
Baselinea 1.42 (0.25) 1.42 (0.29) 1.46 (0.34) 1.37 (0.32) 0.677
Changea −0.01 (0.12) −0.01 (0.14) 0.04 (0.23) 0 (0.13) 0.658
8-week adjustedb 1.41 (1.35, 1.47) 1.41 (1.35, 1.46) 1.46 (1.40, 1.51) 1.41 (1.35, 1.47) 0.528

FPG, mmol/L
Baselinea 4.40 (0.32) 4.36 (0.49) 4.58 (0.35) 4.37 (0.47) 0.147
Changea 0.12 (0.27)c 0.14 (0.61) −0.01 (0.42) 0.16 (0.41)c 0.431
8-week adjustedb 4.53 (4.39, 4.66) 4.53 (4.40, 4.66) 4.51 (4.38, 4.64) 4.55 (4.42, 4.68) 0.979

FINs, µU/mL
Baselinea 9.66 (6.44) 10.28 (6.38) 11.99 (6.03) 10.95 (6.55) 0.521
Changea 1.6 (5.35) 0.75 (8.27) 2.27 (18.26) 2.98 (6.81) 0.875
8-week adjustedb 11.91 (7.91, 15.90) 11.31 (7.52, 15.10) 13.51 (9.70, 17.32) 13.81 (9.89, 17.72) 0.762

(Continues)
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TABLE 2 (Continued)

Variables RS (n = 29) FR (n = 32) FR–RS (n = 32) Control (n = 30) p value
hs-CRP, mg/L
Baselinea 1.07 (1.67) 0.93 (1.16) 1.27 (1.63) 1.48 (3.32) 0.757
Changea −0.44 (1.91) 0.06 (2.18) −0.36 (1.72) −0.63 (3.3) 0.702
8-week adjustedb 0.64 (0.13, 1.14) 1.01 (0.53, 1.49) 0.91 (0.43, 1.39) 0.82 (0.33, 1.32) 0.745

UA, µmol/L
Baselinea 422.79 (100.66) 429.59 (113.03) 419.81 (134.33) 394.17 (85.88) 0.617
Changea −29.66 (59.86)c −59.88 (50.95)c −43.00 (116.69)c 5.80 (54.55) 0.008
8-week adjustedb 389.48 (366.29, 412.67) 361.91 (339.8, 384.02)** 374.98 (352.9, 397.05) 413.79 (390.88, 436.71) 0.012

Comparison of 8-week effects adjusting for baseline between intervention groups and control groups, assessed by Bonferroni corrected t-test: *p< 0.05, **p< 0.01.
Abbreviations: BFM, body fat mass; BFP, body fat percentage; BMI, body mass index; CMFs, cardiometabolic factors; FINS, fasting insulin; FPG, fasting plasma
glucose; FR, fiber-rich diet group; FR–RS, fiber-rich diet and rope-skipping group;HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive
protein; LDL-C, low-density lipoprotein cholesterol; RS, rope-skipping group; TC, total cholesterol; TG, triglyceride; UA, uric acid; WC, waist circumference.
aData are presented as mean (SD), p values among groups were obtained by analysis of variance.
bData are presented as mean (95% CI), adjusted for baseline measurements, p values among groups were obtained by analysis of covariance with baseline as a
covariate.
cp < 0.05, within-group differences (baseline vs. 8 weeks) analyzed by paired sample t-test or Wilcoxon signed rank test.

2.3 The potential role of gut microbiota
and serummetabolites on CMFs
improvement

2.3.1 Changes of diversity and structure of
gut microbiota induced by different
interventions

Following the 8-week intervention, a significant increase
in gut microbial richness was observed in both the FR
and FR–RS groups in comparison with the control group
(all p < 0.01). The Chao1 index increase in the FR–RS
group was also significantly greater than in the control
group (p < 0.05) (Figure 2A). The β-diversity analysis
indicated similar gut microbiota across the four groups
before intervention, but significant differences emerged
postintervention (p < 0.05) (Figure 2B). Specifically, FR–
RS group exhibited a significant change following the
intervention (p < 0.05) (Figure S3).
At the phylum level, we found that the relative abun-

dance of Actinobacteria significantly increased in the RS
group compared with the baseline. In contrast, the FR–RS
intervention decreased the relative abundance of Pro-
teobacteria (Figure S4). At the genus level, compared
with the control group, the RS intervention increased
the relative abundance ofMegamonas, Holdemanella, and
Catenibacterium, while the FR intervention resulted in
a higher abundance of Turicibacter. The FR–RS inter-
vention was associated with an increased abundance of
Ruminococcaceae_UCG-013 (p < 0.05) (Figure 2C).
The results of the correlation analysis revealed an

inverse association between the changes in the relative
abundance of Megamonas and changes in body weight,

WC, BFM, and BFP (all p < 0.05, q_ False Discovery Rate
(FDR) < 0.05). Similarly, a negative correlation was noted
between changes in Turicibacter and reductions in BFM
and BFP (all p < 0.05, q_FDR < 0.05) (Figure 2D).

2.3.2 Changes of serum metabolites induced
by different interventions

Following the 8-week intervention, notable changes were
detected in the composition of serum metabolites in the
RS, FR, and FR–RS groups under the positive ion mode
(p < 0.05). This was in stark contrast to the control group,
which exhibited minimal changes (p = 0.15) (Figure 3A).
However, no notable changes were observed in negative
ion mode across any of the groups (Figure S5).
When comparing individual metabolites to baseline, the

RS group showed an upregulation of 65 metabolites and a
downregulation of 38. The FR diet resulted in the upreg-
ulation of 49 metabolites and downregulation of 38. The
most significant changes were observed in the FR–RS
group, with 67 metabolites upregulated and a notable 90
downregulated. (Figures 3B and S6).
Compared with the control group, the RS intervention

led to a significant upregulation of 11 metabolites, while
four metabolites, such as [4-Hydroxybenzoyl]choline,
were significantly downregulated. Similarly, the FR diet
resulted in the upregulation of five metabolites, while four
metabolites, were downregulated (Figures 3B and S6).
For the FR–RS intervention, participants exhibited a

significant upregulation of 16 metabolites, primarily cat-
egorized under the super classes of organic oxygen com-
pounds, lipids and lipid-like molecules, and organic acids
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F IGURE 2 Effects of fiber-rich diet and rope-skipping interventions on gut microbiota. (A) Fecal microbial α-diversity at OTU level
before and after 8-week intervention. (B) Fecal microbial β-diversity at OTU level before and after 8-week intervention. (C) Changes of relative
abundance of gut microbiota at genus level. a indicates a significantly statistic difference compared with control group, p ≤ 0.05. (D)
Association between changes of microbial relative abundance at genus level and CMFs. * Indicates a significant association evaluated by
spearman correcting for FDR: *q_FDR ≤ 0.05. RS, rope-kipping group; FR, fiber-rich group; FR–RS, fiber-rich diet and rope-kipping group;
CMFs, cardiometabolic factors; FDR, false discovery rate; WC, waist circumference; BFM, body fat mass; BFP, body fat percentage; BMI, body
mass index; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; UA, uric acid.

and derivatives. A substantial downregulation was also
observed in the FR–RS group, with 34metabolites showing
a decrease compared with the control group. The majority
of these downregulated metabolites belonged to the super
classes of lipids and lipid-like molecules, as well as organic

acids and derivatives and organo heterocyclic compounds
(Figures 3B,C and S6).
To gain a deeper understanding of the metabolic effects

of different interventions, we performed pathway and
enrichment analyses using theKEGGdatabase (Figure S7).
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F IGURE 3 Effects of FR diet and AE interventions on serum metabolites. (A) OPLS-DA score plot at positive ion mode of each group
before and after 8-week intervention. (B) Significantly changed serum metabolites at positive ion mode of each intervention group after
8-week intervention. Colored dots indicate significance referring to baseline. Larger dots with labeled id indicate significance referring to
control group. (C) Taxonomy information of labeled metabolites. AE, aerobic exercise; RS, rope-skipping group; FR, fiber-rich diet group;
FR–RS, fiber-rich diet and rope-skipping group.
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TheKEGGpathway analysis of serummetabolites revealed
distinct metabolic pathways enriched in the FR, RS, and
FR–RS groups. In the FR group, the primary enriched
pathways were “unsaturated fatty acid biosynthesis” and
“arachidonic acid metabolism.” These findings suggest
that the FR intervention may improve lipid metabolism by
influencing fatty acid metabolic pathways.
In the RS group, the enriched metabolic pathways

included “pantothenate and CoA biosynthesis” and
“beta-alanine metabolism.” These pathways are related
to energy metabolism and coenzyme A synthesis. In the
FR–RS group, pathway enrichment analysis revealed
broader metabolic changes, covering pathways such as
“taurine and hypotaurine metabolism,” “primary bile
acid biosynthesis,” and “phenylalanine, tyrosine, and
tryptophan biosynthesis”. Given the sufficient number
of differential metabolites in the FR–RS group for fur-
ther analysis, pathway enrichment revealed that the
“phenylalanine, tyrosine, and tryptophan biosynthesis”
pathway had the highest impact, highlighting its critical
role under the combined intervention. Additionally,
the enrichment of the “primary bile acid biosynthe-
sis” pathway points to potential regulation of bile acid
metabolism, contributing to improved lipid metabolism
(Figure S8). Overall, these enriched pathways provide new
insights into how the combined intervention synergisti-
cally regulates multiple metabolic pathways to improve
CMFs.

2.3.3 Sequential mediation analyses of gut
microbiota, serum metabolites, and CMFs

The sequential mediation analyses illuminate compelling
insights into the impacts of RS, FR, and FR–RS inter-
ventions on CMFs through the microbiome–metabolite–
host axis. The effect of RS intervention on improving
body weight is partially mediated by the genus Holde-
manella (proportion-mediated: 14.40%, p value for aver-
age causal mediation effects [ACME]: 0.022). Concur-
rently, the downstream effect of the Holdemanella genus
on body weight is further mediated by the metabo-
lite LysoPE(20:3(11Z,14Z,17Z)/0:0) (proportion-mediated:
43.21%; suggestive trend, p values for ACME: 0.082,
respectively) (Figure 4A). This indicated that part of the
intervention’s effect occurs through modulation of Holde-
manella, with further downstream effects on body weight
potentially mediated by metabolite LysoPE(20:3).
Regarding the FR intervention, it has been noted

that the amelioration of LDL-C is partially medi-
ated by the genus Turicibacter (proportion-mediated:
15.01%; suggestive trend, p value for ACME: 0.086).
Subsequently, the effect of the genus Turicibacter on

LDL-C is also partially mediated by the metabolite
l-asparagine (proportion-mediated: 45.45%; suggestive
trend, p value for ACME: 0.092) (Figure 4B). Finally,
the FR–RS intervention exerts the effect on UA through
the partial mediation of Ruminococcaceae_UCG_013
(proportion-mediated: 43.76%, p value for ACME: 0.022).
Simultaneously, the effect of Ruminococcaceae_UCG_013
on UA is mediated through the metabolites glucosyl
(2E, 6E, 10×)-10,11-dihydroxy-2,6-farnesadienoate and PC
(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0) (proportion-mediated:
32.66 and 27.73%; p values for ACME: 0.018 and 0.094 with
suggestive trend, respectively) (Figure 4C).

2.4 Gut microbiota predicts individual
responsiveness to different intervention

The above results demonstrated that the gut microbiota
plays a mediating role in improving CMFs through dif-
ferent interventions. To further explore the association
between individual different responses to interventions
and baseline gut microbiota composition, we classified
participants into responders and nonresponders based on
whether their improvement exceeded the mean change in
the control group. Responders showed significantly greater
improvements compared with nonresponders following
the intervention. Additionally, we plotted receiver oper-
ating characteristic (ROC) curves based on baseline gut
microbiota composition and found that the area under
the curve (AUC) effectively predicted individual respon-
siveness to different interventions using random forest
models (Figure 5). Finally, we identified predictive genera
by selecting those that differed between responders and
nonresponders among the top 10 genera contributingmost
to the model (Tables S3 and S4) for different CMFs and
validated by Spearman correlation.
For weight loss, the AUC were 0.74 (0.40–1.00), 0.90

(0.75–1.00), and 0.82 (0.62–1.00) for RS, FR, and FR–RS
group, respectively (Table S5). Additionally, we observed
that the baseline relative abundance of four different gen-
era among the top 10 genera ranked by their contribution to
the model. Specifically, Escherichia-Shigella had a higher
relative abundance in responders, while Prevotella_9, Alis-
tipes, and Romboutsia had lower relative abundances at
baseline (Figure 5A). Similarly, for WC reduction, Alis-
tipes, and Romboutsia showed lower relative abundances
in responders after the FR–RS intervention (Figure 5B).
However, Romboutsia showed higher relative abundances
in responders in the FR intervention. For BMI reduction,
a total of four genera showed differences between respon-
ders and nonresponders in the FR and RS groups, with
all of them having higher baseline relative abundance in
responders. In FR–RS group, responders exhibited a lower
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F IGURE 4 Sequential analyses of multiomics data along the microbiome–metabolite–host axis. (A) RS group; (B) FR group; (C) FR–RS
group. Colored node represents intervention methods (light gray), a gut bacterium (light blue), a serum metabolite (light green) or a CMFs
indicator (light pink). The pathways of mediation analysis are indicated with red arrows. The proportions (%) of mediation effects are
indicated in red numbers. (D) Log2FC of individual metabolites. *: significance between baseline versus 8 week. (E) Queries of labeled
metabolites. RS, rope-skipping group; FR, fiber-rich diet group; FR–RS, fiber-rich diet and rope-kipping group; CMFs, cardiometabolic
factors; LDL-C, low-density lipoprotein cholesterol; UA, uric acid; Log2FC, the log2 transformed fold changes of the peak intensity of
individual metabolites of 8-week/baseline.

baseline relative abundance in Alistipes and Romboutsia
(Figure 5E).
The baseline microbiota composition exhibited strong

predictive capability in reducing body fat. For BFM reduc-
tion, theAUCs for the FR,RS, andFR–RS groupswere 0.74,
0.71, and 0.81, respectively. In the FR group, Bacteroides,
Prevotella_9, Coprococcus_1, and Subdoligranulum exhib-
ited lower abundance in responders. In the RS group,

Klebsiella showed higher abundance in responders.Within
the FR–RS group, Alistipes exhibited a lower abundance
in responders (Figure 5C). For BFP reduction, responders
in the FR group showed lower relative abundances of
Bacteroides and Subdoligranulum, and higher abundance
of Romboutsia. In RS group, lower relative abundances
were observed for Lachnospiraceae_ND3007_group and
Faecalibacterium, as well as in FR–RS group for Dialister
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F IGURE 5 Baseline gut microbiota predicting the improvement of body composition, UA, and TG upon different interventions. On the
left are the ROC curves of predicting CMFs responders upon interventions based on the baseline genus abundance by random forest models.
On the right are the numbers (%) of the responders, the differential genera (red, higher in responders; blue, lower in responders) among top
10 general contributing the modelling and their mean abundance difference between responders and nonresponders. RS, rope-kipping group;
FR, fiber-rich group; FR–RS, fiber-rich diet and rope-kipping group; CMFs, cardiometabolic factors; WC, waist circumference; BFM, body fat
mass; BFP, body fat percentage; BMI, body mass index; TG, triglyceride; UA, uric acid.

in responders (Figure 5D). Similarly, the ROC curves
showed reasonable predictive ability for reducing UA
levels (Figure 5K). Only Roseburia had a higher baseline
relative abundance in responders of FR group for UA
reduction (Figure 5F), as well as lower Parabacteroides in
FR–RS group concerning TG improvement (Figure 5G).
In addition to the random forest model, we explored

the logistic regression to assess the predictive ability of
baseline gut microbiota. The results showed that the
logistic regression models consistently underperformed
across all metrics compared with the random forest model
(Figure S9). This discrepancymay be due to logistic regres-
sion’s limitation in handling only linear relationships,
while random forests can capture both nonlinear and
complex interactions. As a result, we focused our sub-
sequent analyses primarily on the random forest model
outcomes.
Meanwhile, the sensitivity analysis revealed no signifi-

cant changes in theAUCvalues of the random forestmodel

for different CMFs following the perturbation (Table S6).
The feature importance rankings remained consistent,
indicating that the model’s predictions are robust to minor
variations in the data.
To further validate the association between the dif-

ferential predictive genera and the corresponding CMFs,
we conducted a correlation analysis (Figure 6A). The
results showed that only a subset of these genera exhib-
ited significant correlations with CMFs (Figure 6B).
Specially, we deduce that individuals with higher base-
line Escherichia-Shigella abundance experienced better
weight improvement with FR intervention, while those
with lower baseline Romboutsia abundance had greater
weight reduction with FR–RS intervention. For inter-
ventions targeting WC reduction, individuals with lower
baseline Alistipes and Romboutsia abundance responded
more favorable to FR–RS intervention. In terms of BMI
reduction, individuals with higher baseline Butyricicoc-
cus and Escherichia-Shigella abundance showed enhanced
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F IGURE 6 The correlation analysis for predicting CMFs improvement through baseline gut microbiota. (A) Heatmap of the Spearman’s
correlation coefficients between CMF changes and the relative abundance of baseline gut microbiota. Statistically significant coefficients are
marked by * which means p < 0.05. (B) Microbial genera associated with changes in specific CMFs and demonstrating excellent predictive
capacity for improvement. RS, rope-kipping group; FR, fiber-rich group; FR–RS, fiber-rich diet and rope-kipping group; CMFs,
cardiometabolic factors; WC, waist circumference; BFM, body fat mass; BFP, body fat percentage; BMI, body mass index; TG, triglyceride; UA,
uric acid.

beneficial responsiveness to FR intervention. Whereas
those with higher Klebsiella abundance experienced bet-
ter improvement in RS intervention and lower Alistipes
and Romboutsia indicated favorable responses to FR–RS
intervention.
When focusing on BFM reduction, lower Prevotella_9

abundance was associated with improved effectiveness of
the FR intervention. The RS intervention was more effec-
tive for individuals with lower baseline Klebsiella abun-
dance. Finally, individuals with lower baseline Parabac-
teroides abundance experienced improved outcomes with
the FR–RS intervention targeting TG levels (all p < 0.05)
(Figure 6A). Regrettably, although differences in predic-
tive genera between responders and nonresponders for
BFP and UA observed (Figure 5D,F), the associations
between these genera and changes in BFP or UA were
not statistically significant in the correlation analyses
(Figure 6A).

3 DISCUSSION

In this RCT among undergraduates with over-
weight/obesity, single interventions were as effective
as combined interventions in improving weight, WC,
body fat and lipid profile compared with control group
at population level. Meanwhile, the FR group further
improved LDL-C and UA. Notably, the responsiveness to
FR, RS, or FR–RS interventions on multiple CMFs was
person-specific. Sequential mediation analysis suggested
that the effects of different interventions were uniquely
mediated by the gut microbiome–metabolite–host axis
in improving CMFs. Finally, through random forest
analysis of baseline gut microbial features, we found
that intervention-specific baseline microbial profiles
could reliably predict individual responsiveness to CMF
improvements, aiding in the selection of personalized
intervention strategies.



LIN et al. 13 of 18

Our findings were consistent with previous studies,
demonstrating the FR diet and exercise interventions ben-
efit CMFs improving. For example. a multicenter RCT
involving 772 elder participants found a positive correla-
tion between higher fiber intake and reductions in weight
andWC.19 Similarly, the RS intervention also lead to signif-
icant reduction in weight and body fat in obese adults.20
At the population level, the results of the three interven-
tions showed that the combined intervention group did not
outperform the single intervention groups, which seems
to contradict traditional beliefs. This may attribute to the
health status of young participants. Younger individuals
exhibit a more robust metabolism and greater compen-
satory capacities compared with the elderly.21 Therefore,
a single effective intervention may have already reached
the maximum limit of improvement in CMFs. Addition-
ally, various lifestyles and environmental factors among
young individuals, such as sleep duration and stress lev-
els, could have influence their overall health. In this study,
we did not adjust for these confounding factors, and future
research is required to elucidate the underlying causes. At
the individual level, not all participants responded simi-
larly to the same intervention. This inconsistency may be
attributed to individual variations in gut microbiota and
their differential responses to the interventions.
The gut microbiota is known to plays a key role

in improving CMFs through FR diet and AE.22 After
the intervention, α and β diversity of participants sig-
nificantly increased, consistent with previous studies
that link higher gut microbiota diversity to improved
CMFs.23 Beyond the overall structure, we also examined
the effects of each intervention on individual bacterial
genera. Follow the FR intervention, the relative abun-
dance of Turicibacter increased. As a bacterial genus
associated with obesity, Turicibacter has been linked to
reductions in BFP and BFM by lowering TG levels and
regulating lipid composition.24–26 When focusing on body
composition improvement, interesting results were noted
postintervention. There was a noted increase in Cateni-
bacterium relative abundance in the RS group, which
is typically found in higher proportions in young obese
individuals.27 Another RCT involving 106 obese patients
concluded that individuals engaging in exercise exhib-
ited a higher proportion of Catenibacterium.28 However,
these findings are not in conflict. The increased pres-
ence of Catenibacterium in both the exercise and obese
groups may indicate different metabolic demands, includ-
ing its role in regulating the production of SCFAs,
polysaccharide breakdown, and other complex metabolic
pathways.29 The FR–RS intervention effectively increased
the abundance of Ruminococcaceae_UCG-013, a butyric
acid-producing bacterium.30 Previous research on diet and
exercise interventions in obese children indicated that

Ruminococcaceae_UCG-013 plays a significant role in pro-
motingweight loss.31 Thismay be due to its positive impact
on improving lipid metabolism.32,33 However, there are
currently no studies exploring the association between
Ruminococcaceae_UCG-013 and UA levels, and further
evidence is required to validate our findings.
In the sequential mediation analysis, we identified

four “interventions–gut microbiota–metabolites–host”
axes. First, in the RS group, the relative abundance of
Holdemanella increased after the intervention. Research
indicates that Holdemanella is negatively correlated
with lipid metabolism, implying that it may reduce lipid
accumulation by modulating fatty acid-related metabolic
pathways, leading to a decrease in LysoPE levels. As an
important molecule in lipid metabolism, LysoPE has been
shown in animal studies to reduce body weight by promot-
ing fat metabolism.34 Second, in the FR group, the relative
abundance of Turicibacter increased. Although no studies
have yet identified a direct association between Turicibac-
ter and l-asparagine, several studies have confirmed that
Turcibacter is beneficial for improving hyperlipidemia,
with its relative abundance being negatively correlated
with LDL-C levels.35,36 At the same time, a study on
dietary amino acid patterns found that a diet rich in amino
acids such as aspartic acid, arginine, and glycine are
associated with lower LDL-C levels. Aspartic acid it may
indirectly contribute to LDL-C reduction by enhancing
overall metabolic health and lipid metabolism as part of
comprehensive dietary pattern.37
Finally, although current research on Ruminococcaceae-

UCG-013 and its relationship with UA and related
metabolic intermediates is limited, we can reasonably
speculate based on the mediation analysis results. Fol-
lowing the FR–RS intervention, the relative abundance of
Ruminococcaceae-UCG-013 increased. Metabolites known
for their antioxidant and anti-inflammatory properties,
may help reduce systemic inflammation. Since inflam-
mation is a key factor in elevated UA production,
Ruminococcaceae-UCG-013 may indirectly influence UA
levels through the anti-inflammatory actions of itsmetabo-
lites. While the mediation analysis reveals statistical asso-
ciations between gut microbiota, metabolites, and CMFs,
further research is necessary to confirm these mecha-
nisms.
Given that individuals possess a distinct gut micro-

biome, it is not unexpected that this microbiome con-
tributes to the diversity of disease manifestations and
responses to interventions.38 The stronger predictive per-
formance for body weight, body fat, and WC is likely
due to their close relationship with energy metabolism
and fat storage,39 processes that are directly influenced by
the gut microbiota through the regulating energy absorp-
tion, fat breakdown, and SCFA production. As a result,
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the model is more effectively distinguish individuals with
better or worse outcomes following interventions. In con-
trast, the weaker predictive performance for TG andUA be
attributed to the fact that these outcomes are influenced by
more complex factors, including liver and kidney function,
as well as genetic predispositions. TG levels are primar-
ily affected by lipid metabolism and dietary fat intake,
while UA is regulated by purine metabolism, where the
role of gut microbiota is more indirect.40 Therefore, the
model’s predictions for these outcomes are less accurate
compared with fat- and weight-related measures. Addi-
tionally, individual differences, such as genetics and prior
dietary habits, may also contribute to these variations in
predictive performance.
Numerous RCT studies also has shown that changes

in disease outcomes can be predicted by the gut
microbiome.41,42 Our results showed that participantswith
a higher relative abundance of Escherichia-Shigella expe-
rienced greater reductions in both weight and BMI after
the FR intervention. This could be attributed to the asso-
ciation between higher abundance of Escherichia-Shigella
and abnormalities in lipid metabolism.43 Furthermore,
among individuals with lower baseline levels of Alistipes.
As a producer of acetic acid and propionic acid, a decrease
in Alistipes abundance may lead to lower levels of SCFAs,
which in turn could exacerbate inflammation, atheroscle-
rosis, and adverse metabolic responses.44 Therefore,
Alistipes may serve as a biomarker for guiding interven-
tion strategies in populations with abdominal obesity and
overweight. Last, our research revealed that individuals
with high Parabacteroides abundance showed better TG
reduction effects after the FR–RS intervention. Evidence
from animal experiments suggests that Parabacteroides
has a significant positive impact on obesity in obese
mice, which may be attributed to its extensive bile acid
conversion functions.45 Our study has several limitations.
Only a subset of participants was included in omics
analysis. However, this is consistent with the sample sizes
commonly used in similar studies,46,47 and the sample
sizes were reasonable. Additionally, as the trial was not
originally designed to predict response efficiency based on
personalizedmicrobiota composition, our findings require
future validation through independent intervention trials.
Finally, the relatively small sample size, especially in the
serum metabolite analysis, resulted in some mediation
effects with p values between 0.05 and 0.1 as suggestive
trends, which warrant cautious interpretation and require
further validation in larger cohort studies.
In conclusion, while FR, RS, and FR–RS interventions

were all effective in improving body composition among
overweight/obese youth, the FR intervention alone proved
to be more suitable for individuals with high LDL-C and
UA levels. This may be attributed to the unique interac-

tions between gut microbiota, metabolites, and the host.
Additionally, the variability in individual responses to
CMF improvement could be predicted by participants’
baseline gut microbiota profiles. In cases where multiple
interventions are effective, specific microbes can serve as
biomarkers to guide the selection of the most appropriate
intervention strategy for each individual.

4 METHODS

4.1 Inclusion and ethics

This study was registered with the identifier NCT04834687
on clinicaltrials.gov, and received review and approval
from the Ethics Committee of the School of Pub-
lic Health, Sun Yat-sen University (Batch No.
SYSUSPHEC[2021]044). Ensuring the principles of
informed consent, all participants were personally noti-
fied about the study details and provided their or their
parents’ written consent.

4.2 Study design and participants

This RCT was conducted between October 2021 and Jan-
uary 2022 at a university in Guangzhou City, China.
Recruitment began in September 2021, and 142 under-
graduates were initially enrolled. After screening, 129
undergraduates with overweight/obesity were deemed eli-
gible and randomly assigned to one of four groups: the FR
diet group (n= 32), the RS group (n= 33), the FR–RS group
(n = 33), and the control group (n = 31).
Randomization for the four groups was conducted

using a random allocation sequence generated from a
random-numbers table, stratified by weight status (nor-
mal/overweight/obesity) and sex (male/female). The ran-
dom allocation sequence was generated by third-party
staff, who concealed the sequence numbers on pieces
of paper inside sequentially numbered, sealed, opaque
envelopes to ensure allocation concealment. Participants,
in their registration order, opened an envelope and were
assigned to a group according to the random number
inside, under the supervision of third-party staff.
As for blinding, participants were to four groups with-

out knowing the specific intervention. After assignation,
participants remained in their original groups, ensur-
ing no cross-contamination. Blinding of researchers was
maintained during participants enrolment, randomiza-
tion, on-site implementation of measurements, and data
analysis by having the relevant researchers blinded to
group assignments.
All participants were recruited through online adver-

tisements and screened based on specific inclusion and
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exclusion criteria. The inclusion criteria were: (1) first-
or second-year undergraduates with a BMI ≥ 22 kg/m2;
(2) no weight fluctuation of more than 5 kg in the 3
months prior to the study; (3) signed the informed consent
form. Exclusion criteria included: (1) participation in other
weight control programs; (2) suffered from secondary obe-
sity resulting from medication or disease; (3) presence of
CVDs such as hypertension or diabetes; (4) severe organ
disease or physical disabilities.
A sample size of 28 participants per group was required

to detect a 1.5 kg reduction in body weight, with a standard
deviation (SD) of 2.0 kg, using 80% power and a two-sided
α of 0.05, based on data from a comparable population in
an 8-week RCT.48 To account for a potential 10% dropout
rate, the final sample size was adjusted to 31 participants,
resulting in a total of 124 participants across all four groups.

4.3 Intervention

The intervention implemented in this study was a dual-
faceted approach, integrating FR dietary and AE compo-
nents.

4.3.1 Campus Nutrition Window and FR
diet intervention

The Campus Nutrition Window, developed in accordance
with the Guide for Nutrition and Health School Construc-
tion issued by the Chinese government, played a pivotal
role in the dietary intervention (refer to Method 1, Sup-
porting Information and Figure S10 for details). The FR
diet intervention involved the provision of FR meal pack-
ages, carefully crafted by nutrition experts and chefs based
on The Dietary Guidelines for Chinese Residents (2016)
and other relevant dietary standards. These meals were
customized tomeet two energy levels according to individ-
ual participant needs and were designed to provide no less
than 25 g/day of dietary fiber (Method 2, Supporting Infor-
mation and Figure S11). The meal packages were served to
participants in FR and FR–RS groups three times on week-
day, with the menu alternating twice per week to maintain
variety and encourage adherence.
To ensure rigorous dietary compliance and effective

monitoring, an innovative internet-based dietary intake
recording system was employed (Method 2, Supporting
Information and Figure S12). Participants were required to
meticulously document their meal consumption, includ-
ing photographic evidence of meal packages before and
after eating, along with records of any food waste or addi-
tional food intake. On weekends, participants had the
freedom to choose their meals but were encouraged to
maintain healthy eating habits and continue recording
their intake.

4.3.2 AE intervention

TheAE componentwas an internet- and on-site-integrated
RS intervention. Characterized by easy-accessible, low-
cost, time-efficient, and minimal space and equipment
requirements, RS is a practical and suitable intervention
for implementation on Chinese campuses. Participants in
the RS and FR–RS groups engaged in a structured RS reg-
imen, consisting of four weekly sessions of 1000 jumps,
divided into setswith brief rest periods (Method 3, Support-
ing Information). The initial phase involved professional
supervision, focusing on proper techniques and safety,
supported by online instructional materials. This was fol-
lowed by a peer-supervised phase, which was designed to
optimize exercise efficiency, ensure safety, and enhance
compliancewith the physical activity regimen (Figure S13).

4.4 Outcomes measurements

The primary outcomes of the studywere changes in CMFs,
categorized into anthropometric indicators: weight, WC,
BFM, BFP, BMI; and blood indicators: lipid profiles includ-
ing TC, LDL-C, HDL-C, TG, inflammatory markers such
as hs-CRP, UA, and blood glucose indicators like FPG
and FINS. The secondary outcomes involved examining
changes in gut microbiota and serum metabolites.

4.4.1 Anthropometric measurements

Weight, body composition, height, andWCweremeasured
by trained nurses both at baseline and after the 8-week
intervention. Weight, BFM, and BFP were assessed using
a Body Composition Tester (Inbody, model: 230). Height
was measured with a stadiometer (Shkodak, model: TZG).
WCwas measured following the standard procedure using
a flexible tape. BMI was calculated by dividing the weight
in kilograms by the square of the height in meters.

4.4.2 Stool sampling and 16S rRNA gene
sequencing

A total of 80 participants, 20 from each group, provided
stool samples for gene sequencing. Participants were
instructed to use the provided kits to collect approximately
3 g of fecal samples within 72 h following their clinical
evaluations at both baseline and postintervention. The
samples were then stored at −80◦C to preserve genomic
integrity. The 16S rRNA gene sequencing process included
DNA extraction, PCR amplification, library construction,
and high-throughput sequencing (refer to Method 4,
Supporting Information for details).
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4.4.3 Blood specimen collection,
biochemical measurements, and serum
metabolomics profiling

A 5 mL venous blood sample was collected from each
participant, immediately refrigerated at −20◦C, and
subsequently centrifuged. The serum was stored at −80◦C
until further analysis. Biochemical assessments (refer to
Method 5, Supporting Information for details), including
FPG, FINS, TG, TC, HDL-C, LDL-C, UA, and hs-CRP,
were performed at KingMed Diagnostics Group Co.,
Ltd.
Metabolomics profiling was conducted on a total of

40 participants, with 10 individuals per group. The pro-
filing process involved converting raw data to mzXML
format using ProteoWizard, followed by peak detection
and metabolite annotation through an R-based program
utilizing XCMS (see Method 5, Supporting Information
for details). This comprehensive analysis, leveraging the
BiotreeDBMS2 database, enabled the identification of sig-
nificant metabolites and provided insights into metabolic
pathways influenced by the intervention.

4.5 Statistical analyses

The normality of datawas assessed using the Shapiro–Wilk
test. Based on the data distribution, results were expressed
as means ± SD for normally distributed data or as medi-
ans (25th, 75th percentiles) for non-normally distributed
data. Baseline group differences were evaluated using
Pearson’s chi-squared test for categorical variables and
either ANOVAor theKruskal–WallisH-test for continuous
variables.
Intergroup variations in CMF indicators postinter-

vention were analyzed using analysis of covariance
(ANCOVA), with baseline values included as covari-
ates. Significant ANCOVA results were followed by
SDIAK posthoc tests for pairwise comparisons. Log-
transformations were applied where necessary. Intragroup
pre- and postintervention differences were evaluated using
paired t-tests or Wilcoxon signed-rank tests. For pairwise
comparisons, the Bonferroni test was used for weight,
while FDR corrections were applied for other CMFs due
to limited statistical power. A two-sided p value< 0.05 was
considered statistically significant.
For gut microbiota analysis, alpha diversity indices

(Richness, Chao1) were calculated using USEARCH. Beta
diversity was evaluated through principal coordinates
analysis based on Bray Curtis distance, following by per-
mutational multivariate analysis of variance. Intragroup
bacterial differences pre- and postinterventions were iden-
tified using paired t-tests or Wilcoxon tests, with FDR

adjustment (threshold ≤ 0.05). Intergroup bacterial dif-
ferences were assessed by comparing changes in each
bacterium at both the phylum and genus levels, with
significance determined using Bonferroni correction.
Metabolite profiles pre- and postintervention were ana-

lyzed using OPLS-DA to determine VIP values, withmodel
significance tested via CV-ANCOVA (SIMCA 14.1). Intra-
group differentialmetaboliteswere identified based onVIP
values (≥1.00) and p values (≤0.05) using paired t-tests or
Wilcoxon tests. Intergroup differences in metabolites were
assessed by comparing log2 fold changes (log2FC) of peak
intensities, with significance determined using Bonferroni
correction.
Sequential mediation analyses were conducted using

the “mediation” package in R, specifically to exam the
roles of gut microbiota and serum metabolites in medi-
ating improvements in CMFs. The intestinal microbiota
with significant differences between each intervention
group and the control group within each group, as well
as the serummetabolites with significant differences com-
pared with the baseline were included. p Values of the
mediating path “intervention–bacteria–CMFs” less than
0.05 were considered significant to identify precise and
robust results, meanwhile p values for the mediating
path “microbiota–metabolites–CMFs” less than 0.1 were
considered a trend toward significance to uncover more
insightful findings.
Random forest models and logistic regression models

were developed using the microbial genus-level profiles
and the responsiveness data of different CMFs in sub-
jects with FR, RS, or FR–RS interventions. To mitigate
overfitting in the random forest models, we employed 100
decision trees and implemented sixfold cross-validation,
repeated four times. In each iteration, the dataset was
divided into six subsets, with five subsets used for training
and one subset for validation. To minimize noise, we first
ranked all features according to their importance. Since
our ultimate goal is to select the top 10 genera with signif-
icant differences as predictive targets, we included the top
20 features in the random forest model to ensure accurate
identification of these key genera.
To further assess the model’s generalizability, 30% of the

data was reserved as an independent validation set, which
was not included in the training process. After completing
cross-validation and hyperparameter tuning, we evaluated
the model’s performance on the independent validation
set to ensure robustness on unseen data. For the logis-
tic regression models, stepwise regression based on the
Akaike Information Criterion (AIC) was used for variable
selection.
We performed a sensitivity analysis to assess the robust-

ness of the random forest models’ predictions to variations
in input features. 1% random perturbation was introduced
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according to the data distribution to simulate small varia-
tions. The sensitivity of the random forest models to these
changes was assessed by comparing the AUC values before
and after the perturbation.
Finally, we evaluated the performance of models across

intervention groups by plotting ROC curves and calcu-
lating AUC values. For each group, we calculated the
AUC and its 95% confidence interval. All analyses were
conducted using R 4.2.1.
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