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Abstract

The role of cell-cell communications (CCCs) is increasingly recognized as being important to differentiation, invasion, metastasis, and
drug resistance in tumoral tissues. Developing CCC inference methods using traditional experimental methods are time-consuming,
labor-intensive, cannot handle large amounts of data. To facilitate inference of CCCs, we proposed a computational framework, called
CellMsg, which involves two primary steps: identifying ligand–receptor interactions (LRIs) and measuring the strength of LRIs-mediated
CCCs. Specifically, CellMsg first identifies high-confident LRIs based on multimodal features of ligands and receptors and graph
convolutional networks. Then, CellMsg measures the strength of intercellular communication by combining the identified LRIs and
single-cell RNA-seq data using a three-point estimation method. Performance evaluation on four benchmark LRI datasets by five-
fold cross validation demonstrated that CellMsg accurately captured the relationships between ligands and receptors, resulting in the
identification of high-confident LRIs. Compared with other methods of identifying LRIs, CellMsg has better prediction performance and
robustness. Furthermore, the LRIs identified by CellMsg were successfully validated through molecular docking. Finally, we examined
the overlap of LRIs between CellMsg and five other classical CCC databases, as well as the intercellular crosstalk among seven cell
types within a human melanoma tissue. In summary, CellMsg establishes a complete, reliable, and well-organized LRI database and an
effective CCC strength evaluation method for each single-cell RNA-seq data. It provides a computational tool allowing researchers to
decipher intercellular communications. CellMsg is freely available at https://github.com/pengsl-lab/CellMsg.
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Introduction
Cell–cell communications (CCCs) are vital for the development
and maintenance of multicellular organisms and has crucial roles
in numerous biological processes [1, 2]. For example, macrophages
have long been recognized for their role in supporting erythrob-
last growth and development within the erythroid islands of the
bone marrow [3]. Tumor-associated macrophages and cancer-
associated fibroblasts (CAFs) play important roles in disease pro-
gression of the tumor microenvironment [4]. Therefore, a thor-
ough analysis of CCCs during disease development and progres-
sion can enhance our understanding of disease mechanisms and
aid in identifying new treatment strategies [5].

CCC is often facilitated by interactions between different pro-
teins, such as receptor-receptor interactions, extracellular matrix-
receptor interactions, and ligand–receptor interactions (LRIs) [6].
These interactions enable recipient cells to activate downstream
signals through their corresponding receptors, leading to changes
in transcription factor activity and gene expression [7, 8]. Specifi-
cally, the communication between two cells can be quantified by
examining all LRIs involved in mediating this process [6].

The growing accessibility of scRNA-seq data and the valu-
able resources provided by LRI identifying studies have generated
significant interest in the inference and analysis of CCCs [8–
10]. However, experimental methods for studying CCCs are time-
consuming, labor-intensive, and costly. Consequently, computa-
tional methods have become a valuable complement, allowing for
the effective characterization of CCCs mediated by LRIs based on
scRNA-seq data [11].

The process of analyzing and inferring CCC through computa-
tional methods primarily involves two primary steps: identifying
LRIs and measuring the strength of LRIs-mediated CCCs [9, 12].
Therefore, it is of great value to establish a comprehensive, highly
reliable, and well-organized LRI database [9]. On this basis, the
classified LRI resources can be used to measure the strength
of CCCs.

Recently, significant research efforts are directed towards con-
structing high-quality LRI databases. For instance, SingleCellSig-
nalR [13] first computed the average expressions of the ligand
and receptor, and then used their regularized product to calculate
a score for each LRI. CellPhoneDB [14] employed a permutation
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method to compute LRI scores based on ligand and receptor
expression and used the resulting scores to evaluate LRI speci-
ficity. iTALK [15] detected significant LRIs by first identifying genes
with high or differential expression, and subsequently match-
ing and associating these genes using its LR database. In addi-
tion, CellDialog [5] took protein features as inputs, reduced the
dimensionality of these features using a feature selection method
based on tree-boosting and mixed effects models, and finally,
LRIs were classified using KTBoost. Following the development
of these LRI databases, numerous CCC inference methods have
been developed using LRI databases. These methods can gener-
ally be categorized into four types: based on statistics, based on
networks, based on spatial information, and based on tensors [5].
For example, CellPhoneDB [14] identified CCCs by detecting LRIs
that are highly enriched between cell types. Network-based meth-
ods, such as Connectome [16], NATMI [17], and CellEnBoost [6],
constructed complex network models to evaluate LRI-mediated
CCCs. Connectome [16] provided two different edge weights, the
first is the product of the normalized expression levels of the
ligand and receptor in their respective cell types, the second is
the average of the z-scores of their expression levels in these cell
types. NATMI [17] used specific expression, expression product,
and total expression to construct three distinct cell connectivity
networks. CellEnBoost [6] utilized cell expression, specific expres-
sion, and expression product to infer CCCs. The methods based
on spatial information, including stLearn [18], SpaOTsc [19], and
Giotto [20], employed spatial data to elucidate the mechanisms
of CCCs. The methods based on tensors, like scTensor [21] and
Tensor-cell2cell [22], employed tensor decomposition techniques
to analyze CCCs. LIANA [8] evaluated 7 methods and 16 CCC infer-
ence resources, along with the agreement between the predictions
of these methods. Moreover, scHyper [23] predicted CCCs in single-
cell RNA sequencing (scRNA-seq) data based on a hypergraph
neural network. It learned static and dynamic embeddings to
capture higher-order interaction patterns by constructing ligand–
receptor pairs, sending cell types, and receiving cell types as
hypergraph nodes. CPPLS-MLP [24] combined constrained partial
least squares regression and multilayer perceptron to predict
intercellular communication in single-cell and spatial transcrip-
tomic data. By integrating gene expression, spatial coordinates
and cell type label, the model calculated the strength and direc-
tion of intercellular communication.

Graph neural network (GNN) [25] is a deep learning model
which can process the graph-structured data. Different from tra-
ditional models, GNNs can not only capture information of imme-
diate neighbors for nodes but also perform deeper reasoning
with multi-layers where each layer aggregates and refines hidden
representations from previous layers as the learning proceeds.
In this study, we designed a computational framework named
CellMsg. CellMsg involves two primary steps: identifying LRIs
and measuring the strength of LRIs-mediated CCCs. Specifically,
CellMsg begins by extracting multimodal features of ligands and
receptors to construct an initial feature matrix and constructing
an adjacency matrix based on known associations of ligands
and receptors. These matrices serve as inputs for a deep learn-
ing model, where features are extracted through two layers of
GCNConv [26]. These features extracted by GCNs are then used
as inputs for linear networks, leading to classification. To pre-
vent over-smoothing and gradient vanishing issues during feature
extraction in the GCN networks, we introduce skip connections.
After LRI classification, CellMsg filters the identified LRIs (i.e. if
the expression level of either the ligand or receptor in a pair is
below a certain threshold or not expressed in a particular cell,
the pair is considered not to mediate the corresponding CCC). The

filtered LRIs are then used to calculate threshold result, product
result, and cell result for each scRNA-seq data, and ultimately,
CellMsg utilizes the three-point estimation method to measure
CCC strength based on these three results. The flowchart of this
framework is illustrated in Fig. 1. In summary, the contributions
of this work are as follows: (i) a computational method called
CellMsg proposed to analyze CCCs by identifying high-confident
LRIs and using scRNA-seq data to measure the strength of CCCs
that mediated by these LRIs. (ii) Compared with other methods
of identifying LRIs, CellMsg uses graph convolutional networks
(GCNs) for the first time and utilizes multimodal features of
ligands and receptors as initial embeddings to obtain a more
complete, reliable and well-organize LRI database for each scRNA
seq data. (iii) CellMsg calculates the CCC strength using the three-
point evaluation method through filtered LRIs, which obtains
relatively accurate CCC analysis results in comparison with other
popular tools and provides multiple visualizations. (iv) As a com-
putational tool to facilitate researchers to analyze LRI-mediated
CCCs, CellMsg provides public code examples, tutorials and doc-
umentation at github: https://github.com/pengsl-lab/CellMsg.

Materials and methods
Evaluation method
We evaluated the performance of CellMsg on LRI identification
tasks using standard multiple categorization metrics, including
accuracy (ACC.), precision (Prec.), recall (Rec.), F1 score (F1.),
Matthews correlation coefficient (MCC), area under the precision-
recall curve (AUPR), and area under the roc curve (AUC). The AUC
is calculated by the area under the ROC curve, and the ROC curve
is plotted by false positive rate (FPR) and true positive rate (TPR),
while the AUPR is calculated by the area under the PR curve,
and the PR curve can be plotted using the recall and precision.
Given false positive (FP), true positive (TP), false negative (FN),
true negative (TN), their formulas are as follows:

accuracy = TP + TN
TP + FP + TN + FN

(1)

precision = TP
TP + FP

(2)

TPR = recall = TP
TP + FN

(3)

F1_score = 2 × precision × recall
precision + recall

(4)

FPR = FP
FP + TN

(5)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)

Additionally, we assessed the overlap of LRIs identified by
CellMsg with the LRI databases of other CCC tools through
the Jaccard index and LRI sensitivity. These two metrics were
used to evaluate the reliability of LRIs identified by CellMsg and
the definitions of the Jaccard index and LRI sensitivity are as
follows:

Jaccard(seti, setj) = ||(seti ∩ setj)||
||(seti ∪ setj)|| (7)

LRIsentivity(seti, setj) = ||(seti ∩ setj)|| (8)

Where seti and setj represent sets of LRIs identified by two distinct
CCC analysis method. || · || represents the number of elements in
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Figure 1. Workflow of the CellMsg method. (a) LRI prediction, including data preprocessing and LRI classification. The data preprocessing section extracts
multimodal features of ligands and receptors to construct an initial feature matrix and constructs an adjacency matrix based on known associations
of ligands and receptors. The LRI classification section uses these matrices as inputs to the GCNs to classify LRIs. (b) CCC inference, including LRI
identification and CCC strength measurement. The LRI identification section filters high-confidence LRIs and then calculates the threshold result,
product result, and cell result for each scRNA-seq data. On this basis, the CCC strength measurement section uses a three-point estimation method to
calculate the CCC strength between different cell types. (c) CCC visualization, including the communication heatmap between different cell types, the
communication network between different cell types, and the communication heatmap of the most active LR pairs between different cell types.

the set. seti ∩ setj represents the intersection of them and seti ∪ setj

represents the union of them.

Data preprocessing
To evaluate the performance of CellMsg on LRI identification
task, We utilized four distinct LRI datasets arranged by Peng
et al. [5]. Datasets 1 and 2 were sourced from CellTalkDB [27],

which contain 3398 LRIs in humans and 2033 LRIs in mice from
the STRING database [28], respectively. Dataset 3 includes 2009
mouse LRIs that were organized by Skelly et al. [29]. Dataset 4
includes 6638 human LRIs that were compiled by Ximerakis et al.
[30]. Finally, duplicate LRIs from the UniProt database [31] and
LRIs without sequence information were removed. This process
resulted in four LRI datasets, as shown in Table 1.
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Table 1. The information of four LRI datasets

Dataset Ligands Receptors LRIs number

Dataset 1 (human) 812 780 3390
Dataset 2 (mouse) 650 588 2031
Dataset 3 (mouse) 574 559 2006
Dataset 4 (human) 1129 1335 6585

To characterize each LRI, first, we used UniProt database [31] to
download the ligands and receptors sequences. Next, the numer-
ical features corresponding to the ligand and receptor sequences
were extracted by iFeature [32]. These features include 2400 com-
positions of k-spaced amino acid pairs, 343 Conjoint Triad, 20
amino acid compositions, and 50 Pseudo-amino acid composi-
tion. As a result, a ligand or receptor is represented by a 2813-
dimensional feature vector. Finally, we concatenated the feature
matrices of ligands and receptors vertically.

In addition, we expanded the initial LRI matrix into a square
matrix. Specifically, for dataset 1, we transformed the interac-
tion matrix from dimensions 812×780 into a square matrix of
dimensions 1592×1592. In this new matrix, the first 812 elements
represent ligands, and the next 780 elements represent receptors.
The values of the initial interaction matrix are placed in the upper
right corner of the expanded matrix. Datasets 2, 3, and 4 are
processed using the same steps.

LRIs prediction based on GCN
The GCN [26] is a deep learning model used for processing graph
data. In GCN, the input consists of the adjacency matrix and
the node feature matrix, which represent the graph structure. It
has achieved success in numerous fields like bioinformatics, rec-
ommendation systems, and social network analysis. In CellMsg,
we utilized GCNConv [26], a type of convolutional layer in GCNs.
GCNConv determines the feature representation of each node
based on its own features and the features of its neighboring
nodes. Specifically, for each node, GCNConv aggregates the fea-
tures of its neighbors and combines these aggregated features
with the node’s own features to generate an updated node feature
representation. The computation process of each GCNConv layer
can be represented as follows:

X′ = D− 1
2 ÂD− 1

2 Xθ + b (9)

Here, D is a diagonal matrix, where Dii represents the degree of
the ith node in the adjacency matrix Â. Both θ and b are learnable
parameters. X is the matrix obtained by concatenating the feature
matrices of ligands and receptors. Â represents the expanded LRI
matrix with added self-loops, it can be represented as follows:

Â = A + E (10)

where A is the expanded LRI matrix, and E is the identity matrix.
Additionally, we incorporated skip connections into each layer

of GCNConv. This process involves applying a linear transforma-
tion to the input feature matrix, ensuring that the output feature
matrix processed by GCNConv has the same dimensions as the
original feature matrix. This allows the original and processed
matrices to be added together, its formula is given as follows:

Xl_out = XW + b′ (11)

where X is the feature matrix that is input to GCNConv. W and
b′ are both learnable parameters. Let m represent the feature
dimension of the input feature matrix and n represent the feature
dimension of the output feature matrix after a GCNConv layer,
then the shape of W is m × n, this transformation allows it to be
added to the output feature matrix from GCNConv, addressing
issues like over-smoothing or vanishing gradients when adding
multiple layers of GCNConv to learn more comprehensive neigh-
borhood information. Consequently, the formula for a GCNConv
layer with skip connections is as follows:

Xout = ReLU((D− 1
2 ÂD− 1

2 Xθ + b) + (XW + b′)) (12)

ReLU [33] is a widely used activation function in deep learning that
introduces nonlinearity, enabling neural networks to learn and
simulate complex function mappings. Its expression is expressed
as follows:

f (x) = max(0, x) (13)

Here, applying ReLU to a matrix means computing the maximum
of 0 and each element in the matrix.

Finally, we employed three linear layers for the binary classifi-
cation task of predicting LRIs. The first two linear layers, similar
to the skip-connected layers, include a ReLU activation function
after each layer. In the final linear layer, we set the output dimen-
sion to 1 and used a sigmoid [34] activation function to predict
the probability of an interaction between ligands and receptors. By
adjusting the threshold, we determined that 0.55 was the optimal
value among 0.5, 0.55, and 0.6. Thus, if the predicted probability
exceeds 0.55, we consider that there is an interaction between the
ligand and receptor pair. The expression for the sigmoid function
is as follows:

σ(x) = 1
1 + e−x

(14)

Here, x is the output of the final linear layer.
Notably, we input the entire expanded LRI matrix and the

protein feature matrix into GCNConv. Since the proportion of
interacting ligands and receptors (positive samples with a value
of 1 in the matrix) is very small compared to the entire matrix, we
randomly selected an equal number of negative samples during
model training after the final GCNConv layer. The feature vectors
of the corresponding ligand and receptor in each sample were
then concatenated to form the input to the linear layers.

Identifying high-confidence LRIs in scRNA-seq
data
To measure the strength of CCC, we first used the trained model
to predict all negative samples (i.e. where the value was 0 in the
LRI matrix). If the interaction probability of a ligand–receptor (LR)
pair exceeded a threshold β, it was considered a high-confidence
LRI. In CellMsg, β was set to 0.999.

Next, we downloaded scRNA-seq data from the GEO database
[35] for the queried tissue and further filtered the LRIs that were
predicted high-confidenct and known by integrating them with
scRNA-seq data. Specifically, if the ligand or receptor of an LRI
was not expressed in the cells, we did not consider that the LRI
mediated the corresponding CCC. This process yielded the LRIs
that mediated CCCs in the queried tissue.



CellMsg | 5

Computing threshold result, product result, and
cell result through filtered LRIs
The expression threshold, cell expression, and expression product
methods are three commonly used approaches for measuring the
strength of CCC. The expression threshold method considers an
LR pair ‘active’ only when the expression of the ligand in cell type
C1 and the expression of the receptor in cell type C2 are both above
a certain threshold. Specifically, for ligand la in cell type C1 and
receptor rb in cell type C2, we first calculated the mean expression
levels Ma and Mb and standard deviations σa and σb of laand rb

across all cells. Then, we computed the mean expression level Ma,1

of la in cell type C1 and the mean expression level Mb,2 of rb in cell
type C2. If the mean expression level of la in C1 is greater than Ma

+ σa, we considered la to be highly expressed in C1. Similarly, if
the mean expression level of rb in C2 is greater than Mb + σb, we
considered rb to be highly expressed in C2. We then considered the
LR pair to potentially mediate communication between the two
cell types if both the ligand and the receptor are highly expressed
in their respective cell types, as shown in the following formula:

LRIthr
a,1,b,2 = (Ma,1 > Ma + σa)and(Mb,2 > Mb + σb) (15)

The expression product method infers CCC by directly multi-
plying the average expression value of ligand la in cell type C1

with the average expression value of receptor rb in cell type C2.
It calculates LRI-mediated CCC using the following formula:

LRIpro
a,1,b,2 = Ma,1 × Mb,2 (16)

The cell expression method infers CCC by multiplying the
proportion of cells in cell type C1, where the expression value of
ligand la is greater than 0 by the proportion of cells in cell type C2,
where the expression value of receptor rb is greater than 0. It is
calculated for LRI-mediated CCC using the following formula:

LRIcell
a,1,b,2 = Na,1

N1
× Nb,2

N2
(17)

Here, Na,1 represents the number of cells in cell type C1, where the
expression value of ligand la is greater than 0, and N1 represents
the total number of cells in cell type C1. Similarly, Nb,2 represents
the number of cells in cell type C2, where the expression value of
receptor rb is greater than 0, and N2 represents the total number
of cells in cell type C2.

Measuring CCC strength based on three-point
estimation method
In the previous step, we obtained the CCC scores mediated by
all filtered LRIs across different cell types using the expression
threshold, cell expression and expression product methods. The
final score of communication from cell type C1 to cell type C2

based on the expression threshold method was calculated by
summing up the scores of all LRIs that mediate between cell type
C1 and cell type C2, the expression is as follows:

scorethr(C1, C2) =
n∑

i=1

LRIthr
a,1,b,2 (18)

where n represents the number of LRIs involved in mediating
based on the expression threshold method, and a and b denote
the ligand and receptor of an LRI, respectively.

For the cell expression and expression product methods, the
final communication score from cell type C1 to cell type C2 was
obtained similarly to the expression threshold method. We denote
these scores as scorecell(C1, C2) and scorepro(C1, C2), respectively.
In the scRNA-seq data we used, there are seven different cell
types, which make up 49 possible cell type pairs. We calculated
the final communication scores for these 49 pairs, denoted by
scorethr, scorecell, and scorepro, representing the scores calculated by
the expression threshold, cell expression and expression prod-
uct methods, respectively. Next, we applied the min-max scaling
method to normalize scorethr, scorecell and scorepro, resulting in
normalized CCC scores G1, G2, and G3. We denoted the maximum,
minimum, and median values in G1, G2, and G3 as Gmax, Gmin,
and Gmed respectively. Finally, we computed the strength of CCC
between any two cell types using the three-point estimation
method [5]. Notably, the strength of CCC between two identical
cell types was defined as 0. The expression for the three-point
estimation method is as follows:

score = Gmax + 4 × Gmed + Gmin

6
(19)

Here, score included the CCC strength between any two cell types
obtained using the three-point estimation method.

CellMsg comprehensively considers threshold result, product
result, and cell result. The threshold result filters out ligands or
receptors whose average expression values in a cell type are lower
than the average expression values in all cells, thus screening out
important LRIs. The product result directly multiplies the average
expression of ligands and receptors in the corresponding cell
type, and since ligands and receptors tend to act synergistically
in biology, the product method naturally mimics the synergistic
effect. The cell result deeply consider the cellular specificity of
the ligand or receptor by calculating the proportion of ligand
or receptor that is non-negative expression in the corresponding
cell type. Combining these three methods allows the strength of
cellular communication to be quantified from a more integrated
perspective.

Results and discussion
Evaluation of the LRI identification performance
In this section, we used five-fold cross-validation to divide the
training set into five parts. Four parts were used for training, and
the remaining part was used to validate the model. This process
was repeated five times, with performance evaluated using the
aforementioned metrics during each validation. Ultimately, we
obtained five models. We calculated the average MCC m and
the standard deviation b of the MCC for these five models. We
then selected the models whose MCC fell within the range of
m ± b. Since the final goal is to use the trained model to predict
potential LRIs, and some potential LRIs might exist in the initial
LRI interaction matrix that have not yet been discovered, we
selected the model with the highest recall from the chosen models
for the final prediction task. As shown in the results in Table 2,
we observed that the average values of all metrics under five-fold
cross-validation across four datasets were robust. The average
AUC across the four datasets reached 90%, and the average AUPR
also approached 90%, demonstrating the robustness of CellMsg
in predicting LRIs. Additionally, we plotted the ROC curves (Fig. 2)
and PR curves (Fig. 3) for five-fold cross-validation on the four
datasets to visually demonstrate the performance of CellMsg in
the LRI identification task. The stability of the ROC and PR curves
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Table 2. The average performance obtained by CellMsg on four datasets with five-fold cross-validation

Dataset Acc.(%) Prec.(%) Rec.(%) F1.(%) MCC(%) AUPR(%) AUC(%)

dataset1 85.56 86.80 84.07 85.32 71.29 91.43 92.55
dataset2 83.56 83.60 83.51 83.48 67.22 89.33 91.09
dataset3 82.83 83.37 82.11 82.67 65.76 89.32 90.70
dataset4 83.31 83.60 82.96 83.22 66.71 90.24 91.42

Figure 2. The ROC curves under five-fold cross validation obtained from CellMsg for LRIs prediction on Four LRI datasets. Datasets 1 and 4 provide
human LRIs, Datasets 2 and 3 provide mouse LRIs.

in each validation further indicates the reliability of CellMsg in
predicting LRIs.

Ablation study
Comparison between directed and undirected graphs
In the previously mentioned adjacency matrix A, the initial inter-
action matrix is located in the upper right corner of the expanded
matrix, namely, we organized the adjacency matrix in the form
of a directed graph. In this section, we reorganized it into an
undirected adjacency matrix. Specifically, the initial interaction
matrix resides in the upper right corner of the expanded matrix,
and its transpose is located in the lower left corner.

We compared the LRI identification models under these two
formats, and the results are shown in Table 3. It can be observed
that the model based on the undirected adjacency matrix
outperformed the directed one in terms of average performance
across all datasets. Moreover, on datasets 2, 3, and 4, the model
based on the undirected adjacency matrix exhibited lower
standard deviations for the evaluation metrics, indicating greater
stability. This superior performance is likely due to the undirected
adjacency matrix’s ability to facilitate more effective information
aggregation in GCNs. By enabling symmetric information sharing,
the undirected matrix captures reciprocal relationships between
nodes (ligand-receptor pairs), leading to more robust feature
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Figure 3. The PR curves under five-fold cross validation obtained from CellMsg for LRIs prediction on Four LRI datasets. Datasets 1 and 4 provide human
LRIs, Datasets 2 and 3 provide mouse LRIs.

representations. Additionally, it allows for balanced and complete
feature aggregation from neighboring nodes without directional
constraints, improving the quality of learned features. Notably,
our subsequent tasks were conducted using the model based on
the directed adjacency matrix.

Comparison of the skip connections strategy
To further illustrate that the addition of skip connections to GCN
can effectively improve the accuracy of the LRI prediction task,
we introduced ablation experiments to verify the performance
enhancement brought by skip connections. The results are shown
in Table 4. From the results, it can be seen that for different
datasets, CellMsg accompanied by the skip connection strategy
shows better identification performance under different evalua-
tion metrics.

Comparison with previous LRI Identification
methods
We compared CellMsg with other leading LRI identification
methods to further evaluate its performance, namely XGBoost
[36], LightGBM [37], DNNXGB [38], CellEnBoost [6], and CellDialog

[5]. XGBoost is a gradient boosting algorithm, while LightGBM
implements a gradient boosting decision tree. DNNXGB [38]
processes the features of ligands and receptors through two
separate channels, and then concatenates the processed features,
and inputs them into a fully connected layer for LRI identification.
After training, the features output by the concatenation layer
are further trained using XGBoost. CellEnboost [6] employs CNN
and LightGBM for LRI identification and CellDialog [5] first uses
GPBoost for feature selection and then uses KTBoost to identify
LRI. We compared these methods on the same datasets, all
using five-fold cross-validation. The average AUCs and AUPRs
obtained by all methods are shown in Fig. 4. It is evident that
our proposed CellMsg exhibits the best performance in the LRI
identification task.

Validation of identified LRIs through molecular
docking
In this part, we randomly selected a subset of LRIs identified
by CellMsg in dataset 1 and performed rigid molecular docking
of the ligands and receptors to validate whether these LR pairs
are potential LRIs. We first obtained the 3D structure files of
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Table 3. The LRI identification results under five-fold
cross-validation on four datasets with CellMsg based on
directed and undirected adjacency matrices

Metric Dataset Directed
Adjacency
Matrix

Undirected
Adjacency
Matrix

Acc.(%) Dataset1
Dataset2
Dataset3
Dataset4

85.56 ± 1.10
83.56 ± 2.40
82.83 ± 1.53
83.31 ± 1.12

87.54 ± 1.27
88.01 ± 0.38
87.01 ± 1.33
84.48 ± 0.90

AUC(%) Dataset1
Dataset2
Dataset3
Dataset4

92.55 ± 0.45
91.09 ± 1.40
90.70 ± 1.36
91.42 ± 0.52

94.83 ± 0.94
94.98 ± 0.71
94.20 ± 0.39
93.48 ± 0.50

AUPR(%) Dataset1
Dataset2
Dataset3
Dataset4

91.43 ± 1.05
89.33 ± 1.85
89.32 ± 1.90
90.25 ± 0.91

94.23 ± 1.00
93.99 ± 1.04
93.41 ± 0.58
92.92 ± 0.55

MCC(%) Dataset1
Dataset2
Dataset3
Dataset4

71.29 ± 2.16
67.22 ± 4.71
65.77 ± 3.07
66.71 ± 2.19

75.21 ± 2.48
76.11 ± 0.77
74.06 ± 2.66
69.33 ± 1.57

Table 4. Results of whether or not to introduce skip connections
in GCNs

Metric Dataset With Skip
Connections

Without Skip
Connections

Acc.(%) Dataset1
Dataset2
Dataset3
Dataset4

85.56
83.56
82.83
83.31

84.23
82.37
81.68
81.73

AUC(%) Dataset1
Dataset2
Dataset3
Dataset4

92.55
91.09
90.70
91.42

91.18
90.01
89.12
90.05

AUPR(%) Dataset1
Dataset2
Dataset3
Dataset4

91.43
89.33
89.32
90.25

89.17
87.65
87.15
88.83

MCC(%) Dataset1
Dataset2
Dataset3
Dataset4

71.29
67.22
65.77
66.71

68.67
65.13
63.78
63.62

ligands and receptors from RCSB PDB [39], then converted the
CIF files to PDB files through PDBj [40]. Next, we performed
molecular docking using Gramm [41], and subsequently analyzed
the generated PDB files of complexes using PDBePISA [42]. Lastly,
we can obtain the interface area (IA) and binding energy (BE) of
each LR pair. If the binding energy is less than -4 kcal/mol, it could
be a potential LRI [5]. Table 5 presents the results of 10 randomly
selected ligand-receptor pairs from our identified interactions.
The binding energies of these 10 pairs are all less than -4 kcal/mol,
indicating that they are likely potential LRIs.

Comparison of CellMsg with five CCC databases
In this part, we analyzed the overlap of LRIs between CellMsg
and SingleCellSignalR [13], NATMI [17], CytoTalk [43], Connectome
[16], and CellTalkDB [27] separately. We considered LR pairs iden-
tified by CellMsg with a probability greater than 0.999 as high-
confidence LRIs (i.e. potentially existing LRIs) and merged these

Table 5. The molecular docking results of the LRIs we randomly
selected

Ligand Receptor BE(kcal/mol) IA(Å2)

COL1A2 CD47 −23.7 1551.4
NTN1 ITGB1 −29.9 1750.9
ADAM10 ITGB1 −30.1 1755.4
TNC ITGA1 −11 45.9
NLGN2 ITGB1 −29.4 1726.1
FBN1 ITGB8 −23.5 1832.8
FN1 ABCA1 −6.2 3105.6
COL4A2 ADGRB2 −31.3 2327.5
COL4A4 TNFRSF10A −15.3 1035.1
CP LRP2 −4.5 1900.0

with the known LRIs. As a result, CellMsg identified 4491, 3088,
2372, and 7837 LRIs on the four datasets, respectively. Table 6
presents the number of overlapping LRIs and the Jaccard index
between CellMsg and the aforementioned CCC databases. It can
be observed that the Jaccard indices between CellMsg and the
other databases on Dataset 1 and Dataset 3 are almost all greater
than or close to 50%, while the Jaccard index on Dataset 4 is less
than 10%, indicating relatively fewer overlapping LRIs on Dataset
4. Additionally, since SingleCellSignalR and NATMI did not provide
LRIs for mice, no comparison was made with these two tools on
Dataset 2 and Dataset 3.

Comparison of CellMsg with existing CCC
analysis methods
In this section, we conducted a comprehensive comparison
between CellMsg and existing state-of-the-art CCC analysis
methods, including CellPhoneDB [14], SingleCellSignalR [13],
NATMI [17], Connectome [16], CellChat [44], and scHyper [23].

First, we performed the comparison based on a single-cell
transcriptome data from human melanoma tissues derived from
the GEO database [35] (accession code: GSE72056). Melanoma
is a malignant tumor developed from the melanocytes of the
epithelium of the skin and its appendages. Constructing CCC
network at tumors initial stages is quite crucial for its diagno-
sis, prognosis and treatment. We investigated communications
among seven cell types within the tissue: melanoma cancer cells,
macrophages, CAFs, T cells, NK cells, endothelial cells, and B
cells. Specifically, the human LRI database inferred by CellMsg
was used for further filtering based on the single-cell expression
profile. A LR pair is considered to mediate CCCs if the ligand
and receptor are both expressed in the corresponding cell types.
Based on the filtered LRIs, we calculated and visualized the CCC
results inferred by CellMsg in melanoma tissues, as shown in
Fig. 5. After that, we ranked the six cell types based on their
communication results with melanoma cells as calculated from
CellMsg and existing state-of-the-art CCC analysis methods, as
shown in Table 7. We found that CellMsg inferred that CAFs have
the strongest communication result with melanoma cancer cells
in the microenvironment, which is the same as the results from
CellPhoneDB [14], SingleCellSignalR [13], NATMI [17], Connectome
[16], and scHyper [23]. In the tumor microenvironment, CAFs
are one of the important cell types. They participate in tumor
progression, metastasis, angiogenesis, reprogramming of immune
cells, and resistance to therapy by providing extracellular matrix
molecules, growth factors, cytokines, chemokines, and other reg-
ulatory molecules [45].
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Figure 4. The ROC curves and PR curves obtained from CellMsg and the other five LRI identification models (XGBoost, LightGBM, DNN-XGBoost,
CellEnBoost, and CellDialog) on four LRI datasets. Datasets 1 and 4 Provide Human LRIs, Datasets 2 and 3 Provide Mouse LRIs

Additionally, we analyzed the three most active ligand-receptor
pairs in the communication between melanoma cancer cells
and each of the six other cell types, as shown in Fig. 5(d). We
organized these pairs into Table 8. It can be observed that the

ligand-receptor pair B2M and HLA-F shows particularly active
involvement in communication across multiple cell types, which
aligns with fundamental immunological knowledge. B2M forms
complexes with HLA molecules like HLA-F, playing crucial roles
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Table 6. Comparison of LRIs identified by CellMsg with ones provided by five other CCC databases (the overlap number of LRIs/ the
Jaccard index)

Dataset SingleCellSig-
nalR

NATMI CytoTalk Connectome CellTalkDB Total

Dataset1 2965/62.1% 1867/38.0% 1788/38.5% 2323/49.2% 3390/75.4% 3391/65.2%
Dataset2 / / 1158/30.6% 1301/29.9% 2005/64.3% 2054/45.2%
Dataset3 / / 1528/56.6% 1951/65.5% 1194/37.2% 1992/51.2%
Dataset4 483/4.8% 447/4.9% 440/5.0% 470/5.0% 501/4.9% 518/4.8%

Figure 5. Visualization of the CCC results inferred by CellMsg in melanoma tissues. In (a) and (b), darker colors indicate stronger communication between
the corresponding cell types; in (c), thicker edges represent stronger communication between cell types; in (d), the most active ligand-receptor pairs in
the communication between melanoma cancer cells and six other cell types are shown, with darker colors indicating higher activity

in the immune system, particularly in antigen presentation pro-
cesses [46].

For a more comprehensive comparison with other methods,
we conducted a similar analysis based on a spatial transcriptome
data from mouse kidney tissues derived from the STOmicsDB
database [47] (Dataset ID: STDS0000121). We investigated
communications among five cell types within the tissue:

collecting duct principal cells (CDP), medullary cells, mesangial
cells, progenitor cells and tubule cells (Fig. 6(a)). The medullary
cells are distributed in the middle of the tissue. We calculated the
communication results from medullary cells to other cell types by
using CellMsg and existing state-of-the-art CCC analysis methods.
From the spatial distribution of these cell types, we can easily find
the spatial relationship of medullary cells with other cell types.
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Table 7. Comparison of CellMsg with existing state-of-the-art CCC analysis methods in melanoma

Ranking CellMsg SingleCellSig-
nalR

NATMI CellPhoneDB Connectome CellChat scHyper

1 CAFs CAFS CAFs CAFs CAFs Macrophages CAFs
2 Macrophages Endothelial

cells
Macrophages Macrophages Macrophages CAFs Endothelial

cells
3 Endothelial

cells
Macrophages Endothelial

cells
Endothelial
cells

Endothelial
cells

Endothelial
cells

Macrophages

4 NK cells T cells NK cells NK cells NK cells T cells B cells
5 T cells NK cells T cells T cells T cells NK cells T cells
6 B cells B cells B cells B cells B cells B cells NK cells

Table 8. Top three active LRIs inferred by CellMsg (‘in’ denotes
communication from other cell types to melanoma cancer cells,
and ‘out’ denotes communication from melanoma cancer cells
to other cell types, the content before and after the underscore
represents the ligand and receptor of this LRI, respectively)

Cell type ‘out’ LRIs ‘in’ LRIs

T cells LGALS1_PTPRC
B2M_HLA-F
B2M_CD3G

B2M_HLA-F
HLA-A_APLP2
PRND_RPSA

B cells LGALS1_PTPRC
HMGB1_CXCR4
CALM2_SELL

B2M_HLA-F
HLA-A_APLP2
PRND_RPSA

Macrophages LGALS1_PTPRC
HLA-A_APLP2
B2M_HLA-F

B2M_HLA-F
HLA-A_APLP2
PSAP_SORT1

Endothelial cells B2M_HLA-F
HLA-A_APLP2
GRN_TNFRSF1A

APP_RPSA
B2M_HLA-F
HLA-A_APLP2

CAFs SERPINE2_LRP1
PSAP_LRP1
HLA-A_APLP2

B2M_HLA-F
APP_RPSA
COL1A2_CD47

NK cells LGALS1_PTPRC
B2M_CD247
B2M_HLA-F

B2M_HLA-F
HLA-A_APLP2
PSAP_SORT1

The mesangial, CDP, tubule and progenitor cells are sequentially
distributed in the periphery of the medullary cells. Based on
the assumption that spatially adjacent cell types should have
stronger communication than spatially distant cells, we analyzed
the results of different methods on the communication between
other cell types and medullary cells (Fig. 6(b)–(h)). We found a
clear association between the predicted communications and the
spatial adjacency of their corresponding cell types for CellMsg,
while the other methods showed inconsistent trends. Moreover,
although both mesangial and CDP cells were distributed around
medullary cells, CellMsg predicted stronger communication
results for mesangial cells than for CDP cells, which was due
to the higher number of mesangial cells captured by CellMsg. For
tubule and progenitor cells, which have much higher cell numbers
than mesangial and CDP cells, their communication strength
with medullary cells is lower than that of mesangial and CDP
cells due to their distance from medullary cells in their spatial
location. Together, our analyses show that CellMsg performs well
at predicting biologically meaningful communication in spatially
adjacent cells than in distant cells from spatial transcriptomics
datasets.

Conclusion
In this study, we present CellMsg method, which is an LRI-
mediated CCC analysis method by incorporating LRI identification
and filtering, CCC inference and visualization. Conceptually,
CellMsg differs from these existing tools in terms of LRI identifica-
tion and CCC inference, such as CellPhoneDB, SingleCellSignalR,
NATMI, Connectome, CellChat, and so on. In terms of LRI
identification, these existing tools make inference directly
based on existing known LRI database, while CellMsg utilizes
multimodal features of ligands and receptors and GCN to obtain
a more complete, reliable, and well-organized LRI database. We
demonstrate the accuracy of CellMsg in the identification of LRIs,
demonstrate that CellMsg adopts the different GCN method with
better performance in the identification of LRIs compared to these
existing methods, and validate the accuracy of LRI identification
by CellMsg using molecular docking method. In terms of CCC
inference, we demonstrate that CellMsg obtains more accurate
CCC analysis results than these existing tools based on single-cell
transcriptome and spatial transcriptome data of different species
and tissues. Our analyses show that CellMsg performs well at
predicting biologically meaningful communication in spatially
adjacent cells than in distant cells from spatial transcriptomics
datasets. Practically, CellMsg is easy to implement and does not
require complex operations and high computation resources.
CellMsg needs no specific hardware resources, it can be used
on a GPU but also in a CPU-only mode, which allows it to run
on a broad range of hardware from desktop PCs to embedded
systems. Once CellMsg has completed the inference of ligand-
receptor pairs for a species, the scRNA-seq data of different tissues
under the species does not need to be fine-tuned again. In the
CCC analysis, we provide the completed ligand-receptor pairs for
human and mouse inferred by CellMsg and the tutorial code on
Github (https://github.com/pengsl-lab/CellMsg).

Furthermore, GCNs outperform other techniques in identi-
fying LRIs, which may be attributed to the following features:
(i) we calculate multimodal features of ligands and receptors
as initial features of nodes in the GCN network, allowing the
GCN to identify LRIs from multiple modalities. (ii) GCN captures
direct and indirect relationships between ligands and receptors
by combining graph topology information and attribute feature
information through convolutional operations, thus being able to
mine complex patterns of relationships from sparse interactions
and effectively characterize and predict these interactions. (iii)
The skip connection in the residual strategy is added to the GCN
training process, which makes it possible to reduce the loss of
information after each layer of convolution. It helps to improve

https://github.com/pengsl-lab/CellMsg
https://github.com/pengsl-lab/CellMsg
https://github.com/pengsl-lab/CellMsg
https://github.com/pengsl-lab/CellMsg
https://github.com/pengsl-lab/CellMsg
https://github.com/pengsl-lab/CellMsg
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Figure 6. Comparison of the performance of CellMsg with existing state-of-the-art CCC analysis methods in mouse kidney tissue. (a) The UMAP of mouse
kidney tissue shows the distribution of all cells. (b)–(h) Comparison of communication results between spatially adjacent and distant cells in the mouse
kidney dataset.

the generalization ability of GCN and propagates the gradient
more efficiently, making it easier to train and faster to converge.

As mentioned earlier, CellMsg can be efficiently run on
both CPU and GPU, making it versatile for a wide range of
hardware. While CellMsg works on standard hardware, GPU
acceleration significantly enhances its performance, especially
when dealing with large-scale single-cell datasets. In the future,
CellMsg can be extended to common large scRNA-seq datasets
with proper scaling techniques, such as data preprocessing
(e.g. dimensionality reduction), subsampling and sparsifying,
parallelization, memory-efficient operations, and cloud-based
resources. These optimizations will ensure CellMsg can handle
larger datasets efficiently, making it highly scalable for common
scRNA-seq analyses.

In another area, CellMsg is theoretically applicable to scRNA-
seq data from any species and its various tissues. While the tool
relies on literature-supported ligand-receptor pairs for cellular
communication, current ligand-receptor databases are primarily
focused on human and mouse, such as the OminPath database.
Therefore, our experiments were conducted using human and
mouse datasets, but CellMsg can be extended to other species
once comprehensive ligand-receptor data for those species
become available. Importantly, once ligand-receptor pairs are
inferred for a species, no further fine-tuning is required for
different tissues within that species. However, CellMsg requires
re-fine-tuning for different species and tissues during the CCC
analysis phase. Detailed code and tutorials for both ligand-
receptor inference and communication analysis are available on
our GitHub.

Key Points

• The CellMsg method is a framework that analyze
CCCs based on scRNA-seq data by identifying high-
confident LRIs and measuring the strength of these LRIs-
mediated CCCs.

• The CellMsg method introduces the graph convolu-
tional network for the first time and uses multimodal
features of ligands and receptors as initial embeddings
to obtain a more complete, reliable, and well-organized
LRI database for each single-cell RNA-seq data com-
pared to other LRI identification methods.

• The CellMsg method calculates CCC strength by a three-
point estimation method based on the filtered LRIs,
which obtains relatively accurate CCC analysis results
compared to popular CCC analysis tools and provides
multiple visualizations.

• The CellMsg method serves as a computational tool
to assist researchers in ligand-receptor-mediated CCC
analysis. It provides public code examples, tutorials, and
documentation available on github: https://github.com/
pengsl-lab/CellMsg.
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