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Microenvironmental contributions to soft tissue sarcoma progression are relatively undefined, particularly during sarcoma onset.
Use of animal models to reveal these contributions is impeded by difficulties in discriminating between microenvironmental,
precancerous, and cancer cells, and challenges in defining a precancerous microenvironment. We developed a zebrafish model that
allows segregation of microenvironmental, precancerous, and cancerous cell populations by fluorescence-activated cell sorting.
This model has high predilection for malignant peripheral nerve sheath tumor (MPNST), a type of soft tissue sarcoma that exhibits
rapid, aggressive growth. Using RNA-seq, we profiled the transcriptomes of microenvironmental, precancerous, and cancer cells
from our zebrafish MPNST model. We show broad activation of inflammation/immune-associated signaling networks, describe
gene expression patterns that uniquely characterize the transition from precancerous to cancer ME, and identify macrophages as
potential contributors to microenvironmental phenotypes. We identify conserved gene expression changes and candidate genes of
interest by comparative genomics analysis of MPNST versus benign lesions in both humans and zebrafish. Finally, we functionally
validate a candidate extracellular matrix protein, periostin (POSTN), in human MPNST. This work provides insight into how the
microenvironment may regulate MPNST initiation and progression.
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INTRODUCTION
The tumor microenvironment directly impacts cancer cell survival,
growth, invasion, and metastasis. The precancerous microenviron-
ment is proposed to be equally important during cancer initiation
[1, 2]. However, specific interactions between microenvironmental
cells and incipient cancer cells during cancer onset are challen-
ging to characterize. Furthermore, genetic and molecular events
that occur during the transition from precancerous to cancer
microenvironment are not defined.
Animal models for heritable cancer syndromes are uniquely

suited for identifying microenvironmental factors that support
carcinogenesis. In these models, cancers are caused by known
genetic mutations and occur in a predictable temporal and tissue-
specific manner. However, use of animal models to profile the
microenvironment for cancer-associated gene expression patterns
necessitates a method for distinguishing microenvironmental cells
from precancerous or cancer cells.
To overcome this requisite, we developed a zebrafish model

that enabled us to partition microenvironmental, precancerous,
and cancer cell populations into mutually exclusive groups by
fluorescence-activated cell sorting using a reporter construct to
identify cancer cells and potential precancerous cells. This model
exhibits high predilection for malignant peripheral nerve sheath

tumor (MPNST) [3], a type of soft tissue sarcoma with a particularly
poor prognosis due to aggressive growth, limited response to
conventional treatment, and ineffective targeted therapies [4–7].
In our model, MPNST is caused by combined heritable mutations
in the tumor suppressor genes TP53 and BRCA2 [8–10]. MPNSTs in
this model preferentially arise in a discrete anatomic location
within a predictable timeframe [9, 10], facilitating definition of the
precancerous microenvironment.
We profiled transcriptomes of precancerous and cancer micro-

environments from our zebrafish MPNST model by gene expression
and ontology analyses. We demonstrated broad activation of
inflammatory and immune-associated signaling networks in precan-
cerous and cancer microenvironments and identified gene expression
patterns that uniquely define cancer versus precancerous microenvir-
onments. Cancers contained numerous presumptive macrophages
that were frequently located in the periphery and at invasive margins.
Markers for both M1 and M2 macrophage polarization were
upregulated in precancerous and cancer microenvironments, sug-
gesting the presence of a mixed macrophage population during
sarcomagenesis. Using a comparative genomics approach, we
identified conserved gene expression differences in MPNST versus
benign samples in human and zebrafish and confirmed expression of
select extracellular matrix proteins in human and zebrafish MPNST.
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Finally, we functionally validated the matricellular protein periostin
(POSTN) as a contributor to human MPNST cell growth. This work
identifies distinguishing characteristics of the cancer-prone cellular
microenvironment that potentially influence MPNST initiation and
progression in vertebrates.

RESULTS
Isolation and analysis of the cellular microenvironment from
cancer-prone tissues using a zebrafish model
We previously showed that zebrafish with mutations in brca2 and
tp53 develop soft tissue sarcomas with histologic and

Fig. 1 Use of a tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1 zebrafish model to isolate and analyze the cellular component of a cancer-prone
microenvironment. A The optic nerve pathway (ONP) is a cancer-prone site in brca2hg5/hg5;tp53zdf1/zdf1 zebrafish. B Zebrafish ONP cancers
exhibit ubiquitous sox10 expression (brown chromogen). Asterisk, blood vessel containing sox10-negative erythrocytes; arrows, fragments of
optic nerve. Ret, retina; ON, optic nerve. C, D Zebrafish carrying a sox10-RFP reporter construct (tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1) develop
RFP-expressing cancers. E Experimental design showing experimental cohorts and workflow for tissue collection and RNA isolation. RFP-
positive cells are shown in red. Remaining areas shaded in gray are composed of RFP-negative cells. ‡RNA was of insufficient quantity for
RNAseq analysis. F RFP-positive and RFP-negative cell fractions were collected from isolated ONP tissues by fluorescence-activated cell sorting
(FACS). FACS analysis of control (not shown) and precancerous ONP samples showed similar distributions of RFP-positive and RFP-negative cell
populations. The full gating strategy, including the panels shown in (F), is in Fig. S1. G Principal component analysis of samples analyzed by
RNA-seq.
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immunohistochemical features of MPNST [3, 8, 10]. Although
mutations in TP53 and BRCA2 are uncommon in human MPNST
[11–13], ERK and AKT activation occur frequently [14–16] and are
detectable in cancers from our zebrafish model (Fig. S1A). The
optic nerve pathway (ONP) is a cancer-prone site in our model,
with particularly high cancer incidence in this location in
brca2hg5/hg5;tp53zdf1/zdf1 zebrafish [9, 10]. Tissues within the ONP
are circumscribed by the infraorbital bones that surround the eye
and associated soft tissues [17, 18] (Fig. 1A), allowing discrete and
consistent collection of tissues from this location (Fig. S2A–C).
ONP cancers in brca2hg5/hg5;tp53zdf1/zdf1 zebrafish are further
defined by widespread sox10 expression (Figs. 1B, S3,
and Kouprianov et al. [8]) and the precancerous ONP in
brca2hg5/hg5;tp53zdf1/zdf1 frequently exhibits aberrant proliferation
of sox10-positive cells [8]. Therefore, we introduced a sox10:RFP
reporter construct [19] to generate tg(sox10:RFP);brca2hg5/
hg5;tp53zdf1/zdf1 zebrafish (Fig. 1C). Sox10-expressing (RFP-positive)
cells in the ONP from zebrafish of this genotype constitute a pool
of cells from which a malignant clone is likely to emerge [8] and
are subsequently referred to as “potential precancerous cells”.
Cancers from this zebrafish cohort highly express RFP (Fig. 1D).
We used RFP expression to segregate and analyze cancer and

potential precancerous cells from the cellular component of the ONP
microenvironment (Fig. 1E). The experimental cohorts in Table 1
were used to collect ONP samples from control (tg(sox10:RFP)),
precancerous (tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1), and cancer
(tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1) groups. We previously showed
a mean age at tumor onset of 8.7 months in brca2hg5/hg5;tp53zdf1/zdf1

zebrafish [10], while aberrantly proliferative cells arise in the
precancerous ONP as early as 4 months of age [8]. Control and
precancerous ONP samples were pooled from five individual
zebrafish per replicate, while ONP cancer samples were collected
from individual cancer-bearing zebrafish (Table 1). We analyzed
dissociated cells from ONP samples by fluorescence-assisted cell
sorting (Figs. 1F and S1B, C) and collected RFP-positive and RFP-
negative cell populations for RNA-seq analysis. In both precancerous
(Fig. 1F) and control (not shown) ONP samples, most cells were RFP-
negative. In comparison, most cells from ONP cancer specimens were
RFP-positive (Fig. 1F). RFP-negative fractions were analyzed for all
three experimental cohorts. We were unable to isolate RNA of

sufficient quantity and quality from the RFP-positive fraction of
control samples, and therefore only RFP-positive fractions from
precancerous and cancer samples were analyzed. RNA-seq analysis
generated ~35-45 million uniquely mapped reads per sample (Fig.
S4A) and principal component analysis of replicates revealed distinct
clustering within experimental cohorts (Fig. 1G, Fig. S4B). To facilitate
subsequent bioinformatics analyses, zebrafish gene names were
converted to known human orthologues using a publicly available
dataset to generate a “humanized” gene list (see Methods).

Pathway and gene set enrichment analyses of precancerous
and cancer microenvironments suggests activation of
immune/inflammatory networks
Datasets were analyzed using Ingenuity Pathways Analysis (IPA)
and significantly affected pathways for each comparison were
identified (Table S1) and segregated based on the predicted
direction of activity (Fig. S5). In precancerous and cancer
microenvironments, enriched canonical pathways with predicted
pathway activation included a broad and diverse array of
pathways associated with inflammation, immune cell signaling,
and chronic inflammatory conditions (Figs. 2A and S5B).
We next used IPA to evaluate upstream transcriptional

regulators that correlated to observed changes in gene expres-
sion for each comparison (Table S2). We refined this analysis to
identify genes classified as upstream regulators that were
associated with predicted pathway activation in our data set
and were also significantly upregulated in the precancerous and/
or cancer microenvironment versus the control microenviron-
ment
(Fig. 2B). In agreement with the above findings, many upstream
regulators correlated to pathway activation in precancerous or
cancer microenvironments were pro-inflammatory signaling
molecules. This included zebrafish orthologues for interferon
gamma (IFN-γ), interleukin 1 beta (IL1B), interleukin 6 (IL6), and
tumor necrosis factor alpha (TNF-α) (Fig. 2B). Also enriched were
positive cell cycle regulators such as zebrafish orthologues for the
E2F transcription factors E2F1 and E2F3 (Fig. 2B and Table S2).
We used Gene Set Enrichment Analysis (GSEA) to identify

hallmark gene sets enriched in precancerous and cancer micro-
environments (Table S3). 13 hallmark gene sets had a positive
normalized enrichment score (NES) in the comparisons of both
precancerous and cancer microenvironments versus the control
microenvironment (Fig. 2C). These gene sets also had a positive
NES in the comparison of cancer versus precancerous
microenvironments. Nearly all were associated with inflammation
(6 of 13 gene sets) or cell cycle progression and cell growth
(6 of 13 gene sets) (Fig. 2C).

Pathway and gene set enrichment analyses identify
expression profile changes that uniquely define the cancer
microenvironment
To assess changes that may characterize the progression from
precancerous to cancer microenvironment, we used IPA and GSEA
to identify gene expression patterns that are unique to the cancer
microenvironment. IPA identified 17 enriched canonical pathways
with predicted pathway activation that were exclusive to the
comparison of cancer versus precancerous microenvironments
(Fig. 3A and Table S1). A number of enriched pathways are
associated with cellular metabolism and include both synthetic
and degradative processes (e.g., gluoconeogenesis, glycogen
degradation, and lysosomal function).
We next assessed upstream transcriptional regulators that

correlated to our observed changes in gene expression specifically
in the comparison of cancer versus precancerous microenviron-
ments (Table S2). This analysis focused on genes classified as
upstream regulators that were associated with predicted pathway
activation exclusively in the comparison of cancer versus

Table 1. Study populations used for RNAseq analysis of the cellular
microenvironment in the zebrafish optic nerve pathway (ONP).

Cohort # Males # Females Age (mo)

Precancerous ONP (tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1)a

Replicate 1 (n= 5) 4 1 4.5

Replicate 2 (n= 5) 2 3 4.5

Replicate 3 (n= 5) 3 2 4.7

Control ONP (tg(sox10:RFP))a

Replicate 1 (n= 5) 3 2 4.6

Replicate 2 (n= 5) 3 2 5.0

Replicate 3 (n= 5) 2 3 5.0

ONP cancers (tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1)b

Ocular cancer 1 (OD) -- 1 7.5

Ocular cancer 2 (OD) 1 -- 8.1

Ocular cancer 3 (OS) 1 -- 8.1

Ocular cancer 4 (OD) -- 1 10.4

Mo months, OD right side, OS left side.
aONP tissues from both the right and left sides were collected and pooled
from five zebrafish for each replicate.
bONP cancers were collected and analyzed individually.

C. Cero et al.

181

Oncogene (2025) 44:179 – 191



precancerous microenvironments and were also significantly
upregulated in the comparison of cancer versus precancerous
microenvironments (Fig. 3B). The 23 upstream regulators identi-
fied by this analysis were predominated by secreted factors and
membrane-associated signaling molecules. They included

molecules that directly or indirectly regulate inflammatory cell
growth and behavior, including zebrafish orthologues for colony
stimulating factor 1 (CSF1), CXC motif chemokine ligand 8 (CXCL8),
P-selectin glycoprotein ligand-1 (PSGL-1, encoded by SELPLG), and
ADAM metallopeptidase domain 17 (ADAM17) (Fig. 3B).
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GSEA identified 6 hallmark gene sets with a positive NES
exclusively in the comparison of cancer versus precancerous
microenvironment (Fig. 3C and Table S3). We also identified
6 hallmark gene sets that were divergently enriched in
precancerous and cancer microenvironments, i.e., gene sets were
associated with a negative NES in the comparison of precancerous
versus control microenvironments and a positive NES in the
comparison of cancer versus control microenvironments (Fig. 3D
and Table S3). Positively enriched hallmark gene sets that
distinguished the cancer microenvironment include signaling
networks such as TNF-alpha signaling; metabolism-associated
processes such as glycolysis; and microenvironmental conditions
that include hypoxia, adipogenesis, and angiogenesis (Fig. 3C, D).

Macrophages may contribute to precancerous and cancer
microenvironmental phenotypes
Given the pro-inflammatory gene expression profiles for
the precancerous and cancer microenvironments, we analyzed
zebrafish ONP cancers for the presence of macrophages and
neutrophils. 15 ONP cancers from brca2hg5/hg5;tp53zdf1/zdf1 that were
described in a previous study [9] were analyzed for expression of
myeloperoxidase (mpx1) and l-plastin (lcp1) (Figs. 4A–C and S1D–G).
While mpx1 is considered neutrophil-specific in zebrafish, some
studies suggest that both neutrophils and macrophages can
express lcp1 and are differentiated by presence or absence of
mpx1 expression [20–23]. However, lcp1 has been used as a specific
marker for zebrafish macrophages [23–25]. These differences may
reflect different methodologies used for cell identification and/or
differences in developmental stage. In the current study, we
observed limited overlap of lcp1- and mpx1-expressing cells in serial
sections of ONP cancers, suggesting that most lcp1-positive cells in
these specimens are macrophages (Figs. 4B, C and S1F, G). We
attempted to confirm this with a reportedly macrophage-specific
antibody (mfap4 [26]), but in our hands this antibody did not
generate consistent labeling in control tissues. We therefore
considered mpx-positive cells to be neutrophils and lcp1-positive
cells to be presumptive macrophages.
13 of 15 ONP cancers (87%) were dominated by infiltrating

presumptive macrophages, as indicated by the predominance of
lcp1-positive cells versus mpx1-positive cells (Fig. 4A–C). In these
13 cancers, lcp1-positive cells were frequently located along the
periphery and invasive margins (Fig. 4B). Two of 15 ONP cancers
(13%) exhibited relatively greater expression of mpx1 versus lcp1,
indicating a predominance of neutrophils (Figs. 4A and S1F, G). In
these two cancers, mpx1-positive cells were present primarily
within the tumor, while lcp1-positive cells were more abundant at
the tumor periphery, and there was limited overlap of cells
expressing these markers in serial sections (Fig. S1F, G).
Given the frequent localization of lcp1-positive presumptive

macrophages to the invasive edge of zebrafish ONP cancers, we
assessed the relative expression of matrix metalloproteinases
(MMPs) and cathepsins (CTSs) in precancerous and cancer
microenvironments versus the control microenvironment
(Fig. 4D, E). The precancerous microenvironment showed
significant upregulation of zebrafish orthologues for MMP25 and

CTSB, while orthologues for multiple MMPs and CTSs were
upregulated in the cancer microenvironment. Notably, down-
regulation of zebrafish orthologues for MMP23B, MMP28, and CTSF
are consistent with downregulated expression of these genes in
several human cancer types [27–29]. We also assessed the relative
expression of interleukins and chemokines in precancerous and
cancer microenvironments versus the control microenvironment
(Fig. 4F). Several of these factors were significantly upregulated in
the precancerous microenvironment, while numerous pro-
inflammatory and pro-tumorigenic interleukins and chemokines
[30–33] were upregulated in the cancer microenvironment.
M1/M2 macrophage polarization has been described in

zebrafish and carp, and comparative genetic analyses suggest
conservation of M1 and M2 gene expression profiles in fish and
humans [34–36]. To determine whether precancerous and cancer
microenvironments exhibited gene expression profiles consistent
with macrophage polarization, we assessed expression of select
mammalian markers for M1 polarization (IL1B, IL6, TNF, CXCL11,
NOS2, TNFRSF1B, IL12B, and CD40) and M2 polarization (IL10,
MARCO, ARG1, ALOX5AP, MRC1/CD206, TGFB1, and CD36) (Fig. 4G).
These markers include genes previously used to define M1 and M2
polarization in embryonic zebrafish (M1, orthologues for IL1B, IL6,
TNF, and CXCL11; M2, orthologues for TGFB1, CCR2, and CXCR4)
[34, 36]. Both M1 and M2 markers were significantly upregulated
in precancerous and cancer microenvironments, inconsistent with
macrophage polarization.
We profiled the expression of validated gene lists for M1 and

M2 phenotypes derived from the hybrid mouse diversity panel,
which were predictive of macrophage response in various human
diseases such as cancer [37]. 944 (74%) of M1 signature genes and
1998 (76%) of M2 signature genes [37] were represented in the
humanized gene list derived from zebrafish specimens. Compar-
ison of differentially expressed M1 and M2 signature gene profiles
did not indicate clear polarization toward one phenotype in either
precancerous or cancer microenvironments (Fig. 4H). The propor-
tions of M1 and M2 signature genes for each comparison
were similar, and signature genes were predominantly upregu-
lated (Fig. 4I).

Cross-species comparative genomics analysis and candidate
gene evaluation in human patient samples
To identify potential conserved contributors to MPNST tumor-
igenesis, we performed a cross-species comparison of differen-
tially expressed genes in benign versus malignant specimens from
human patients and from our zebrafish model. We compared our
gene expression data to a previous study [38] reporting gene
expression differences in human MPNST and ANNUBP (atypical
neurofibromatosis neoplasm of unidentified biologic potential
[39]) versus neurofibroma. In performing this analysis, we note
that we have not identified neurofibroma or ANNUBP in our
zebrafish model, although an aberrant proliferative cell population
does arise prior to MPNST onset [8]; the comparison of benign to
malignant specimens in humans and zebrafish is thus imperfect.
Nonetheless, comparison of gene expression profiles from MPNST
versus benign specimens in humans and zebrafish identified

Fig. 2 Pathway and gene set enrichment analyses suggest activation of pro-inflammatory and pro-growth signaling in precancerous and
cancer cellular microenvironments. A Inflammation and immune-associated canonical pathways identified by Ingenuity Pathways Analysis
(IPA) that were predicted to be activated for comparisons of precancerous versus control and cancer versus control microenvironments (MEs).
Orange bars represent activation z-score with predicted pathway activation; grey lines represent −log10(enrichment p value); purple shading
indicates pathways that were also predicted to be activated in the comparison of cancer versus precancerous microenvironments (Table S1).
B Genetic upstream regulators associated with predicted pathway activation as identified by IPA that were significantly upregulated in each
comparison. Purple shading indicates genetic upstream regulators associated with predicted pathway activation pathways that were also
significantly upregulated in the comparison of cancer versus precancerous MEs (Table S2). C Gene set enrichment analysis (GSEA) identified
13 hallmark gene sets with positive normalized enrichment scores (NES) in both precancerous and cancer MEs versus the control ME. All 13
gene sets also had positive NES in the comparison of cancer versus precancerous MEs (Table S3). These commonly enriched hallmark gene
sets were predominantly associated with inflammation or cell cycle/cell growth processes.
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140 genes common to both data sets (Fig. 5A). 67% (n= 94) of
differentially expressed genes showed concordant expression
patterns in human and zebrafish specimens, i.e., up- or down-
regulated expression in both human and zebrafish MPNST versus
their respective benign counterparts. Multiple of these genes have
been previously identified as contributors to human MPNST
progression, such as BIRC5 [40], CRABP2 [41], and TWIST1 [42].
Periostin (POSTN) and CTHRC1 are extracellular matrix (matri-

cellular) proteins that contribute to progression in multiple human

cancer types but have not been studied in MPNST. Both genes are
significantly upregulated in MPNSTs in humans and zebrafish
versus their respective benign counterparts (Fig. 5A). We assessed
POSTN and CTHRC1 expression in human patient-derived MPNST
samples and a tissue microarray (TMA) composed of core biopsies
from benign and malignant human peripheral nerve tumors
(Figs. 5B and S6A–C). POSTN was strongly expressed in 3 of 4
human MPNST samples, while CTHRC1 was strongly expressed in 1
of 4 samples. Semi-quantitative analysis of POSTN expression in

Fig. 3 Pathway and gene set enrichment analyses identify gene expression changes that uniquely characterize the cancer versus
precancerous microenvironment. A Canonical pathways identified by Ingenuity Pathways Analysis (IPA) that were predicted to be activated
exclusively in the comparison of cancer versus precancerous microenvironments (MEs). B Genetic upstream regulators associated with
predicted pathway activation as identified by IPA that were significantly upregulated exclusively in the comparison of cancer versus
precancerous MEs. C Gene set enrichment analysis (GSEA) identifies six hallmark gene sets with a positive normalized enrichment score (NES)
exclusively in the comparison of cancer versus precancerous MEs. D GSEA identifies 6 hallmark gene sets with a negative NES in the
comparison of precancerous versus control MEs, but a positive NES in the comparison of cancer versus control MEs.
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the human TMA showed that similar proportions of malignant
(73%; n= 16 of 22 cores) and benign tumors (75%; n= 15 of 20
cores) exhibited POSTN expression in at least 25% of the sample. A
higher proportion of malignant tumors (45%; n= 10 of 22 cores)

showed POSTN expression of at least moderate intensity
compared to benign tumors (35%; n= 7 of 20 cores).
We also assessed POSTN expression in zebrafish MPNSTs by

RNA in situ hybridization (Fig. S7). As POSTN is a duplicated gene
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in zebrafish, we validated RNA probes for postna and postnb
(Fig. S7A) and analyzed both orthologues in the same zebrafish
ONP cancer specimens used for IHC analyses (Figs. 4, S1F, G, and
S3). Three of the 15 specimens had insufficient tumor tissue
remaining for ISH analysis and thus 12 ONP cancer specimens
were analyzed. postna expression was detected in 8 of 12 ONP
cancers and postnb expression was detected in 10 of 12 ONP
cancers. There was considerable variability in expression of both
orthologues in ONP cancer specimens and moderate levels of
expression were observed in only two specimens (Fig. S7B). The
remaining postn-expressing cancers exhibited low postnb expres-
sion and very rare foci of positivity for postna (Fig. S7C). Although
detectable expression was low overall, we noted that foci of
postna and postnb expression were often at the interface of cancer
cells and non-cancer tissues located either at the tumor margin or
entrapped within the tumor (Fig. S7B, C).

Functional assessment validates the matricellular protein
periostin (POSTN) as a contributor to MPNST growth
After determining that POSTN is highly expressed in human
MPNST samples, we tested the functional effects of POSTN
deficiency in MPNST cells (Fig. S8A). We detected POSTN
expression in three human MPSNT cell lines (JH-002, St88, and
S462) (Figs. 6A and S9A) and used an siRNA pool against POSTN to
knock down its expression in each cell line (Figs. 6B, S8B, and S9B).
POSTN signaling is mediated by integrin receptors, and integrins
α5β1, αVβ3, and αVβ5 function as receptors for POSTN in
other human cancer types [43, 44]. We found that all three
MPNST cell lines express multiple integrin α and β subunits,
with their expression largely unaffected by POSTN knockdown
(Figs. 6B and S10).
Upon POSTN knockdown in MPNST cells we observed a

significant reduction in cytoplasmic area accompanied by marked
alterations in cytoskeletal morphology (Figs. 6C and S8C). Time-
course analyses of cell growth after POSTN knockdown suggested
severe growth retardation in all three MPNST cell lines based on
percent confluency (Figs. 6D and S8D). Since the reduced cell area
observed in MPNST cells with POSTN knockdown could impact
assessments of confluency, we analyzed cell growth by MTT and
EdU incorporation assays. These assays demonstrated growth
impairment after POSTN knockdown that was attributable to both
increased cell death as well as a decreased proportion of actively
proliferating cells (Figs. 6D and S8D), suggesting that POSTN
deficiency may have both cytotoxic and cytostatic effects in
MPNST cells.

DISCUSSION
The microenvironment is increasingly recognized as a significant
contributor to cancer initiation, wherein carcinogenesis may
require both a transformed clone and a synchronously altered
local microenvironment that supports the survival of cancer-
initiating cells [1, 2]. However, characteristics that define this
precancerous or premalignant niche are not well understood.
Zebrafish (Danio rerio) provides an excellent complementary

animal model for analyzing microenvironmental cell-cancer cell

interactions [45]. Zebrafish have been used previously to identify
tumor-promoting interactions between preneoplastic or early
cancer cells and surrounding cells [21, 46, 47]. Although these
investigations preserved the natural pathophysiology of tumor
initiation and progression in an in vivo setting, they were
conducted with larval zebrafish and thus may not fully capture
intercellular interactions relevant to carcinogenesis in adult
animals.
We built upon these prior studies using a zebrafish model for

MPNST that enabled global characterization of the gene expres-
sion profiles for precancerous and cancer cellular microenviron-
ments. The ONP is a cancer predilection site in this model [8–10]
and was the focus of these analyses since ocular tissues are
circumscribed by the infraorbital bones [17, 18] and can be
collected in a consistent manner. MPNST in our zebrafish model
results from combined inherited mutations in brca2 and tp53
[3, 10], which differs from the most common genetic contributors
to MPNSTs in humans [11, 48]. These differences are considera-
tions in interpreting our results. However, human MPNSTs do
acquire somatic TP53 mutations [11, 13] and have been found to
exhibit evidence of “BRCAness” [12, 49, 50].
Our analyses of the precancerous and cancer microenvironment

in the zebrafish MPNST model suggest broad activation of
multiple immune- and inflammation-associated pathways, which
may indicate that local inflammation promotes MPNST initiation
and progression. Similarly, in mouse models, neurofibroma is
promoted by an inflammatory microenvironment [51]. Inflamma-
tion has been suggested broadly as a major contributor to
formation of the precancerous niche and a driver of cancer
initiation and progression [1, 2], which is supported by studies in
mice [52–55] and zebrafish [21, 46, 47]. As investigations into the
role for inflammation in MPNST are limited, further studies are
required to define this relationship.
We identified macrophages as potential contributors to

microenvironmental phenotypes in zebrafish MPNST. Previous
studies have implicated macrophages in promoting the growth
of both neurofibroma and MPNST [56–59], although macro-
phage enrichment is significantly impacted by mouse strain in
MPNST mouse models [60]. Our analysis suggests the presence
of both M1- and M2-polarized macrophages in precancerous
and cancer microenvironments, similar to a neurofibroma mouse
model [61]. While the presence of presumptive macrophages at
cancer margins in our model suggests a role in invasive
behavior, further studies are required to assess macrophage-
MPNST interactions.
In a cross-species comparative analysis, we found most

differentially expressed genes in MPNST versus benign counter-
parts in both humans and zebrafish showed concordant expres-
sion changes, including multiple up-regulated genes
independently identified as contributors to MPNST progression
[40–42, 62]. We confirmed expression of two additional upregu-
lated gene candidates, POSTN and CTHRC1, that have not been
previously assessed in human MPNST but are known contributors
to progression in other human cancer types [63–66]. Although we
did not observe clear differences in POSTN expression in benign
versus malignant human samples, sample size and tumor

Fig. 4 Presumptive macrophages may contribute to precancerous and cancer microenvironmental phenotypes. Human orthologues for
zebrafish genes are shown. Gene expression data reflects comparisons of precancerous versus control, cancer versus control, and cancer
versus precancerous cellular microenvironments (ME). Numerical values in panels D–G show adjusted p-values for the comparisons and color
shading indicates log2 fold change (FC) values. A Identification of predominant inflammatory cell type in zebrafish ONP cancers as defined by
lcp1 expression (presumptive macrophages) and mpx1 expression (neutrophils). B Lcp1-expressing presumptive macrophages (purple
chromogen) are abundant and predominantly localize to peripheral margins and invasive edges. C Mpx1-expressing neutrophils (purple
chromogen) are present in low numbers. D Matrix metalloproteinase (MMP) gene expression profile. E Cathepsin (CTS) gene expression
profile. F Interleukin and chemokine gene expression profile. G Expression of known markers for mammalian M1 and M2 phenotypes. Gene
names in bold have been identified previously as M1 and M2 markers in zebrafish [34, 36]. H Proportions of differentially expressed M1 and
M2 signature genes [37]. I Proportions of genes identified in panel (H) that were significantly up- or downregulated.
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Fig. 5 Comparative genomics analysis and candidate gene evaluation in human patient samples identifies potential contributors to
MPNST progression. A Comparison of gene expression profiles for malignant versus benign samples in humans (MPNST and ANNUBP versus
neurofibroma) and zebrafish (cancer cells versus potential precancerous cells; cancer microenvironment (ME) versus precancerous ME). Dots
represent log2 fold changes per gene for human (black dots) and zebrafish (purple dots) comparisons and connecting lines (purple) depict the
relative shift in log2 fold change value. B Expression of candidate genes POSTN and CTHRC1 in human MPNST specimens detected by Western
blotting and immunohistochemistry. ANNUBP, atypical neurofibromatosis neoplasm of unidentified biologic potential; TMA, tissue microarray.
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heterogeneity were likely confounders (as suggested by frequent
differences in expression scores in duplicate cores (Fig. S6B)). We
also confirmed expression of zebrafish orthologues for POSTN in
zebrafish MPNSTs. While overall expression was low, possibly due
to the age of these specimens, we noted a predilection for POSTN
expression at cancer cell-normal tissue interfaces.

We performed preliminary functional validation of POSTN as a
contributor to human MPNST progression. Our in vitro studies
confirmed expression of POSTN in three human MPNST cell lines,
as well as expression of integrin receptors that mediate POSTN
signaling in other human cancer types [43, 44]. We showed that
POSTN knockdown altered cellular morphology and reduced cell

Fig. 6 Periostin (POSTN) knockdown profoundly impacts MPNST cell morphology and growth. A The human MPNST cell lines JH2-002,
St88, and S462 express POSTN, with variability in expression level between cell lines (see also Fig. S9A, S8A for POSTN expression in S462 cells).
B siRNA-mediated knockdown of POSTN in MPNST cells reduces its expression at both mRNA and protein levels, while expression of integrin
receptor subunits is largely unaffected (see also Fig. S9B, S8B for POSTN expression in S462 cells). C POSTN knockdown significantly reduces
MPNST cell size, as quantified by cytoplasmic area, and drastically alters cytoskeletal architecture (n= 120 cells per condition, imaged after
48 h incubation with control (Ctrl) or POSTN siRNA). Data for St88 cells are shown. D POSTN knockdown impairs MPNST cell growth by
significantly reducing both cell viability and proliferative capacity. Data for St88 cells are shown. Significance, *p ≤ 0.05, **p ≤ 0.005,
***p ≤ 0.0005, and ****p ≤ 0.0001. See Fig. S8A, S9A for experimental timeline.
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growth through both increased cytotoxicity and decreased
proliferation in all three MPNST cell lines. We note some variability
across cells lines in POSTN expression level and responses to
POSTN knockdown (Figs. 6 and S8). The impact of POSTN
knockdown was relatively less severe in the cell line with the
lowest levels of expression of POSTN and integrin receptor
subunits (S462 cells), suggesting that these cells may be
comparatively less reliant on POSTN signaling. Irrespective of
these individual cell line variations, our data demonstrate that
POSTN knockdown profoundly impacts MPNST cell growth and
survival. These data support further investigation of POSTN as a
therapeutic target in MPNST and demonstrate the utility of
human-zebrafish comparative genomics analyses in identifying
conserved genetic contributors to cancer.
Limitations to this study include the use of RNA expression

profiling to define precancerous and cancer microenvironments,
which may not correlate to protein expression. Also, many
proteins require post-translational modifications for functionality
that are not captured by RNA-seq analysis. Finally, bioinformatics
analysis was facilitated by zebrafish-to-human orthologue map-
ping, with duplicated zebrafish genes summed to the level of the
most significantly differentially expressed orthologue. While this
conversion enabled comparative gene expression and pathway
analyses, potential differences in the contributions of specific
zebrafish orthologues to specific phenotypes are not captured.
The tumor microenvironment for soft tissue sarcomas such as

MPNST is relatively uncharacterized, and little is known about
microenvironmental factors that may promote or repress sarco-
magenesis. The prognosis remains poor for MPNST patients due to
aggressive infiltrative growth, frequent metastasis, and limited
response to conventional or targeted therapies. The current study
provides new insight into candidate microenvironmental factors
in sarcomagenesis and highlights potential contributors to MPNST
initiation and progression for future study.

MATERIALS AND METHODS
In vivo animal studies
Experiments were performed with adult zebrafish and included precancer-
ous and cancerous cohorts (tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1) and a
control cohort (tg:sox10:RFP) [19]. Specific details for the study population
are in Table 1. Ocular tumor specimens used for protein isolation were
derived from additional tg(sox10:RFP);brca2hg5/hg5;tp53zdf1/zdf1 zebrafish
upon tumor development. All animal studies were approved by the
Institutional Animal Care and Use Committee, North Carolina State
University, Raleigh, NC, and by the Institutional Care and Use Committee,
The Ohio State University, Columbus, OH. Animal studies were performed
in accordance with approved protocols and complied with ARRIVE
guidelines.

Bioinformatics analysis
The quality of sequenced reads were assessed using FastQC, and good-
quality reads were aligned to the Zebrafish reference genome (GRCz10
version 87) downloaded from the Ensemble database using the STAR
aligner [67]. Unique Ensembl gene counts were tabulated using the HTSeq
python package [68] for each sample. RNA-seq data has been deposited at
GEO and are publicly available as of the date of publication (GEO:
GSE198220).

Differential gene expression analysis
Normalization of raw counts and differentially expressed gene lists were
generated with the DESeq2 [69] package in R 4.0 after using the
org.Dr.eg.db package (Marc Carlson (2021). org.Dr.eg.db: Genome wide
annotation for Zebrafish) to map Ensembl gene IDs to gene name.
Counts were summed to unique gene symbol prior to DESeq normal-
ization and analysis. Genes with less than one count in one half of the
sample space were removed. Normalized counts, log2 fold change in
gene expression, and adjusted p-values [70] were calculated for each
treatment comparison using DESeq2. For some downstream analyses, a
“humanized” gene list was generated for each comparison by merging

identified zebrafish gene names with human orthologous gene names
(Zebrafish Information Network (ZFIN) “Human and Zebrafish Orthology”
dataset, https://zfin.org/downloads). Where human gene symbols
mapped to duplicated zebrafish genes, expression data for the zebrafish
orthologue with the smallest associated adjusted p-value was retained
for subsequent analysis in IPA.

Cross-species comparative genomics analysis
Gene lists from a previous study reporting differential gene expression in
human MPNST and ANNUBP (atypical neurofibromatosis neoplasm of
unidentified biologic potential [39]) versus neurofibroma [38] were
compared to the “humanized” gene lists generated as described above
for the following comparisons: zebrafish cancer cells versus potential
precancerous cells; zebrafish cancer ME cells versus precancerous ME
cells. For this analysis, differentially expressed genes in zebrafish
datasets were identified by the following criteria: abs(log2 fold change)
>1.5 and adjusted p < 0.05. These parameters are equivalent to the
parameters used to identify differentially expressed genes in the human
study [38].

Analyses with human patient samples and cell lines
Human specimens used in experiments included anonymized tumor
samples from human MPNST patients; a commercially available tissue
microarray; and MPNST cell lines sNF96.2, JH2-002, St88, and S462. IRB
approval was not required for the use of these specimens. See
Supplemental Materials and Methods for experimental details.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study have been
deposited in GEO (https://www.ncbi.nlm.nih.gov/geo/) and are publicly available as
of the date of publication (GEO: GSE198220).
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