Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Feb 1;153(2):343–350. doi: 10.1042/bj1530343

Bile acids of snakes of the subfamily Viperinae and the biosynthesis of C-23-hydroxylated bile acids in liver homogenate fractions from the adder, Vipera berus (Linn.).

S Ikawa, A R Tammar
PMCID: PMC1172580  PMID: 6007

Abstract

1. Analysis of bile salts of four snakes of the subfamily Viperinae showed that their bile acids consisted mainly of C-23-hydroxylated bile acids. 2. Incubations of 14C-labelled sodium cholate (3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oate) and deoxycholate (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oate) with whole and fractionated adder liver homogenates were carried out in the presence of molecular oxygen and NADPH or an NADPH-generating system. The formation of C-23-hydroxylated bile acids, namely bitocholic acid (3 alpha, 12 alpha, 23xi-trihydroxy-5 beta-cholan-24-oic acid) and 3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-cholanic acid (3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-5 beta-cholan-24-oic acid), was observed mainly in the microsomal fraction and partly in the mitochondrial fraction. 3. Biosynthetic pathways of C-23-hydroxylated bile acids are discussed.

Full text

PDF
346

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson I. G., Haslewood G. A. Comparative studies of bile salts. 5 alpha-Chimaerol, a new bile alcohol from the white sucker Catostomus commersoni Lacépède. Biochem J. 1970 Feb;116(4):581–585. doi: 10.1042/bj1160581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson I. G., Haslewood G. A., Oldham R. S., Amos B., Tökés L. A more detailed study of bile salt evolution, including techniques for small-scale identification and their application to amphibian biles. Biochem J. 1974 Aug;141(2):485–494. doi: 10.1042/bj1410485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERGSTROM S., DANIELSSON H., KAZUNO T. Bile acids and steroids. 98. The metabolism of bile acids in python and constrictor snakes. J Biol Chem. 1960 Apr;235:983–988. [PubMed] [Google Scholar]
  4. Björkhem I., Gustafsson J. Omega-hydroxylation of steriod side-chain in biosynthesis of bile acids. Eur J Biochem. 1973 Jul 2;36(1):201–212. doi: 10.1111/j.1432-1033.1973.tb02902.x. [DOI] [PubMed] [Google Scholar]
  5. DANIELSSON H., ENEROTH P., HELLSTROM K., SJOVALL J. Synthesis of some 3beta-hydroxylated bile acids and the isolation of 3beta, 12alpha-dihydroxy-5beta-cholanic acid from feces. J Biol Chem. 1962 Dec;237:3657–3659. [PubMed] [Google Scholar]
  6. ENEROTH P. THIN-LAYER CHROMATOGRAPHY OF BILE ACIDS. J Lipid Res. 1963 Jan;4:11–16. [PubMed] [Google Scholar]
  7. Einarsson K., Johansson G. Effect of carbon monoxide and phenobarbital on hydroxylation of bile acids by rat liver microsomes. FEBS Lett. 1969 Aug;4(3):177–180. doi: 10.1016/0014-5793(69)80228-0. [DOI] [PubMed] [Google Scholar]
  8. Eneroth P., Gordon B., Sjövall J. Characterization of trisubstituted cholanoic acids in human feces. J Lipid Res. 1966 Jul;7(4):524–530. [PubMed] [Google Scholar]
  9. HASLEWOOD G. A. D., WOOTTON V. Comparative studies of 'bile salts'; preliminary survey. Biochem J. 1950 Nov-Dec;47(5):584–597. doi: 10.1042/bj0470584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HASLEWOOD G. A. Comparative studies of 'bile salts'. 13. Bile acids of the leopard seal, Hydrurga leptonyx, and of two snakes of the genus Bitis. Biochem J. 1961 Feb;78:352–359. doi: 10.1042/bj0780352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haslewood G. A. Bile salt evolution. J Lipid Res. 1967 Nov;8(6):535–550. [PubMed] [Google Scholar]
  12. Haslewood G. A. Metabolism of steroids: 4. Ketonic acids derived from cholic acid. Biochem J. 1944;38(1):108–111. doi: 10.1042/bj0380108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ikawa S., Ayaki Y., Ogura M., Yamasaki K. The metabolism in vivo and in vitro of 3-oxo-7 -hydroxychol-4-enoic acid-24- 14 C as an intermediate of chenodeoxycholic acid biogenesis. J Biochem. 1972 Apr;71(4):579–587. [PubMed] [Google Scholar]
  14. KUFF E. L., SCHNEIDER W. C. Intracellular distribution of enzymes. XII. Biochemical heterogeneity of mitochondria. J Biol Chem. 1954 Feb;206(2):677–685. [PubMed] [Google Scholar]
  15. Kallner A. A method of synthesis of allocholanoic acids. Bile acids and steroids 182. Acta Chem Scand. 1967;21(2):322–328. doi: 10.3891/acta.chem.scand.21-0322. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. THOMAS P. J., HSIA S. L., MATSCHINER J. T., DOISY E. A., Jr, ELLIOTT W. H., THAYER S. A., DOISY E. A. BILE ACIDS. XIX. METABOLISM OF LITHOCHOLIC ACID-24-14C IN THE RAT. J Biol Chem. 1964 Jan;239:102–105. [PubMed] [Google Scholar]
  18. TOMKINS G. M. A mammalian 3alpha-hydroxysteroid dehydrogenase. J Biol Chem. 1956 Jan;218(1):437–447. [PubMed] [Google Scholar]
  19. USUI T. THIN-LAYER CHROMATOGRAPHY OF BILE ACIDS WITH SPECIAL REFERENCE TO SEPARATION OF KETO BILE ACIDS. J Biochem. 1963 Sep;54:283–286. doi: 10.1093/oxfordjournals.jbchem.a127785. [DOI] [PubMed] [Google Scholar]
  20. WILGRAM G. F., KENNEDY E. P. INTRACELLULAR DISTRIBUTION OF SOME ENZYMES CATALYZING REACTIONS IN THE BIOSYNTHESIS OF COMPLEX LIPIDS. J Biol Chem. 1963 Aug;238:2615–2619. [PubMed] [Google Scholar]
  21. Yamasaki K., Ikawa S., Kinoshita D., Usui T. Enzymatic 7-beta-hydroxlation of 3-beta-hydroxychol-5-enoic acid. Yonago Acta Med. 1967 Oct;11(3):159–164. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES