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ABSTRACT
Background: Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer characterized by a lack
of targeted treatment options. Intratumoral heterogeneity significantly drives disease progression and complicates therapeutic
responses, necessitating advanced analytical approaches to understand its underlying biology. This review aims to explore the
advancements in single-cell proteomics and their application in uncovering cellular diversity in TNBC. It highlights innovations in
sample preparation,mass spectrometry-based techniques, and the potential for integrating proteomics intomulti-omics platforms.
Methods: The review discusses the combination of improved sample preparation methods and cutting-edge mass spectrometry
techniques in single-cell proteomics. It emphasizes the challenges associated with protein analysis, such as the inability to amplify
proteins akin to transcripts, and examines strategies to overcome these limitations.
Results: Single-cell proteomics provides a direct link to phenotype and cell behavior, complementing transcriptomic approaches
and offering new insights into the mechanisms driving TNBC. The integration of advanced techniques has enabled deeper
exploration of cellular heterogeneity and disease mechanisms.
Conclusion:Despite the challenges, single-cell proteomics holds immense potential to evolve into a high-throughput and scalable
multi-omics platform. Addressing existing hurdles will enable deeper biological insights, ultimately enhancing the diagnosis and
treatment of TNBC.

1 Introduction

Breast cancer (BC) is a heterogeneous disease whose clinical
subtypes vary in molecular characteristics, prognosis, and ther-
apeutic responsiveness [1–3]. Genomic research has directed to
a more distinct classification of BCs based on their genes and
proteins. For hormone receptor-positive cancer, where estro-
gen (ER-positive) and progesterone (PR-positive) fuel cancer’s
growth, have BC cells with receptors [4]. In contrast, hormone

receptor-negative BC cells lack receptors. These receptor-negative
cancers are unhelpful from hormone therapy drugs and tend to
grow faster than hormone receptor-positive cancers. BC cells that
rely on human epidermal growth factor receptor 2 (HER2) for
growth areHER2-positive, and less dependent areHER2-negative
[5, 6]. In triple-negative BC, all three protein expression systems
are absent [7]. The risk of developing BC increases inwomenwith
a BC in family history, lifestyle, diet, and the environment [8].
Heredity-based BC is due to the mutations in abnormal breast
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FIGURE 1 Overview of breast cancer pathogenesis andmetastasis. Breast cancer can originate in the cells lining either themammary ducts (ductal
carcinoma) or the lobules (lobular carcinoma), which are the two main types of breast cancer. Cancer cells may invade nearby healthy breast tissue and
can spread (metastasize) to lymph nodes, commonly in the underarm area, but also to other lymph nodes or organs. In some cases, breast cancer remains
localized within the breast tissue without spreading.

cancer gene 1 (BRCA1) or breast cancer gene 2 (BRAC2) inherited
from maternal and paternal relatives [9, 10]. Figure 1 illustrates
the anatomy of the breast and the pathophysiology of malignant
BC.

Triple-negative breast cancer (TNBC) holds a formidable chal-
lenge among these subtypes. Defined by the absence of estrogen
receptor (ER), progesterone receptor (PR), and HER2 expression
[11], TNBC accounts for approximately 15% of all diagnosed breast
cancer cases [12]. TNBC is not only notorious for its aggressive
behavior but also for its limited treatment options. The lack of
well-defined therapeutic targets, such as hormone receptors or
HER2, leaves patients with TNBC facing a more challenging clin-
ical course and limited opportunities for targeted therapy [13, 14].
Extensive research has been devoted to straight out the complex
biology of TNBC, with a particular focus on proteomics [15–
18]. These unique challenges demand innovative approaches to
understanding the disease at amolecular level, such as single-cell
proteomics with LC-MS/MS, to discover potential biomarkers,
therapeutic targets, and personalized treatment strategies.

Single-cell proteomics is a cutting-edge technique that has the
potential to unravel the intricate molecular landscape of TNBC,
shedding light on its heterogeneity, resistance mechanisms, and
therapeutic vulnerabilities [19]. Unlike traditional proteomic
approaches that typically rely on analyzing bulk cell populations,
single-cell proteomics dissects the cellular components at the
individual cell level. Its significance lies in its ability to uncover
heterogeneity, personalize treatment approaches, and illuminate
the mechanisms behind TNBC’s aggressiveness. On the other
hand,mass spectrometry, predominantly liquid chromatography-
tandemmass spectrometry (LC-MS/MS), is the most widely used
technology in single-cell proteomics. Combining LC’s separation
capabilities with MS’s analytical power provides the most unbi-

ased detailed protein identification and quantification method.
Despite being the most powerful technique for protein analy-
sis, its application to single cells has faced several challenges.
Recent advancements in simple, multiplexed, automated, and
miniaturized sample preparation have facilitated rapid, high-
sensitivity analysis. Mass spectrometry can be tailored in various
ways to suit specific experimental objectives. Experiments can
opt for label-free approaches in single-cell proteomics, where
proteins are identified solely based on theirmass-to-charge ratios.
Alternatively, researchers may employ isobaric labelingmethods,
which involve comparing the intensities of tagged proteins with
those of their untagged counterparts. Once labeled, the protein
of interest can be traced using complementary techniques such
as immunofluorescent microscopy, fluorescence-activated cell
sorting (FACS), or cytometry by time of flight (CyTOF).Moreover,
researchers can expand the breadth of their proteomic analyses
throughmultiplexing,which allows simultaneous examination of
multiple proteomes across different samples, enhancing the com-
prehensive understanding of protein dynamics and interactions.

2 Proteomic Profiling Landscape of Triple
Negative Breast Cancer

Proteomics studies that focus on characterizing the complete
proteome of specific cells or tissues provide valuable infor-
mation that complements genomic and transcriptomic breast
cancer research [20]. Proteins are inherently more complex and
dynamic than genes and closely reflect biological functions.
Limitations in bioinformatics’ ability to predict gene product
presence and function underscore the need for protein analysis
[20]. Humans are estimated to produce between 500,000 and
1,000,000 protein isoforms from approximately 20,000 protein-
coding genes [21, 22]. This is possible because a single gene can
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produce multiple distinct proteins through alternative splicing
of pre-mRNA transcripts and various posttranslational mod-
ifications (PTMs). The development of advanced proteomics
technologies has enabled the exploration of protein abundance,
protein–protein interactions, PTMs, and ultimately protein func-
tion.

Kennedy et al. conducted a proteomics-based analysis that quan-
titatively characterized 319 proteins with differential expression
across 30 distinct human breast cancer cell lines. This proteomic
data was instrumental in distinguishing molecular subtypes of
breast cancer and identified 118 proteins with varying expres-
sion levels between basal-like and luminal cancers. Further
analysis revealed that 30 of these proteins had corresponding
genomic data, but only 10 showed significant concordance with
mRNA levels [23]. In another study, Liu et al. utilized a label-
free proteomic approach to analyze 126 frozen primary tumor
samples of TNBC, dividing them into training and testing
sets [24]. They identified an 11-protein signature associated
with clinical outcomes (CMPK1, AIFM1, FTH1, EML4, GANAB,
CTNNA1, AP1G1, STX12, AP1M1, CAPZB, and MTHFD1). The
expression patterns of these signature proteins in the training
set could accurately predict clinical outcomes in the testing
set of TNBC with high sensitivity and specificity. Of these 11
proteins, 10 were upregulated (while MTHFD1 was downregu-
lated) in patients with favorable prognoses. Three upregulated
proteins were linked to immunomodulation and apoptosis path-
ways, whereas MTHFD1, associated with poor prognosis, is
involved in nucleotide and noncoding RNA metabolism. Liu
et al. demonstrated that over 60% of TNBC patients who
received adjuvant chemotherapy based on the conventional St.
Gallen [25] and NIH [26] criteria were unnecessarily treated,
according to the 11-protein signature identified in their study.
A subsequent proteomics study further validated FTH1, an
immunomodulatory molecule that enhances CD8+ T cells in
the tumor area, as a potential therapeutic target in TNBC
[27].

The initial comprehensive proteomic analysis of TNBC identi-
fied 12,000 distinct proteins, revealing expression patterns that
distinguish between TNBC subtypes. This study also illumi-
nated specific signaling pathways in TNBC associated with
metastasis, adhesion, and angiogenesis [28]. Using an iTRAQ
labeling-based proteomic approach, distinct expression signa-
tures were uncovered for three proteins named desmoplakin
(DP), thrombospondin-1 (TSP1), and tryptophanyl-tRNA syn-
thetase (TrpRS), that differentiate relapse-prone fromnon-relapse
TNBC tumors [29]. Previous studies have noted DP’s overex-
pression in luminal breast cells and TSP1’s roles in metastasis
and angiogenesis in breast cancer cells [30, 31]. TrpRS, known
for its involvement in protein synthesis, translation, and angio-
genic signaling, was also highlighted [32]. Overexpression of
DP and TSP1 significantly impacted disease-free survival and
increased recurrence risk in TNBC patients, whereas TrpRS
overexpression correlated with improved disease-free survival
and reduced recurrence risk [29]. In another iTRAQ labeling-
based proteomics investigation, several factors strongly associ-
ated with molecular subtypes of breast cancer were identified,
including fibronectin, alpha-2-macroglobulin (A2M), comple-
ment component-4-binding protein alpha (C4BPA), and comple-
ment factor-B. Notably, A2M, an antiprotease and large plasma

protein, exhibited genetic alterations and differential expression
in plasma and tissue samples from TNBC patients [33].

Label-free proteomics strategies have been extensively applied
in breast cancer research. For instance, a label-free shotgun
proteomic approach identified a signature of 21 proteins in a High
Mobility Group A1 (HMG1) silenced TNBC cell line, correlating
with poor prognosis [34]. A specific subset of three proteins
named kinesin family member C1 (KIFC1), thyroid hormone
receptor-interacting protein 13 (TRIP13), and leucine-rich repeat
containing 59 (LRRC59) are associated with HMG1 was identified
as novel in TNBC, influencing cell motility [34]. In another study
using label-based proteomics, PTPN12, a tyrosine phosphatase,
was found to suppress cellular transformation and metastasis
in TNBC cells [35]. Furthermore, a systematic 2D gel-based
proteomic analysis of TNBC tissue biopsies revealed Mage-A4,
a member of the Mage-A family, as a distinctive biomarker
for TNBC and HER2-positive patients [36]. In addition, label-
free proteomics identified Iroquois homeobox protein 1 (IRX1),
involved in metanephric nephron development, as a potential
plasma biomarker for TNBC [37].

Another label-free proteomic study focused on TNBC identified
a protein signature of 30 proteins linked to drug resistance
and poor patient survival [38]. Notably, HSP70 kDa-8, periostin,
RhoA, actinin alpha 4, cathepsin D, preproprotein, and annexin
1 exhibited high expression levels in TNBC tumors resistant to
neoadjuvant chemotherapy. In addition, ALDH1A1, complement
component 1 inhibitor, and G3BP (also known as 90-kDa Mac-2-
binding protein) were identified as associated with specific TNBC
subtypes, with G3BP’s connection to TNBC being previously
unrecognized. Furthermore, a systematic phosphoproteomic
analysis of TNBC tissues revealed six proteins highly phospho-
rylated in primary TNBC tumors and five distinct proteins at
metastatic sites [39]. This finding suggests that targeted dephos-
phorylation of these proteins could potentially inhibit cancer
progression and mitigate the metastatic capability of TNBC cells.

A recent study identified distinct proteome expression profiles
associatedwith two subclasses of TNBCbreast cancer, basalA and
B, using comprehensive proteomics analysis of breast cancer cells
[40]. It was observed that kinases and proteases exhibited unique
expression patterns within these subclasses. Detailed analyses of
protein–protein interactions and co-regulation networks involv-
ing these kinases and proteases revealed disrupted pathways and
potential therapeutic targets specific to each TNBC subclass.
Specifically, the study pinpointed AXL, PEAK1, and TGFBR2
kinases, along with FAP, UCHL1, and MMP2/14 proteases, as
specific targets for the basal B subclass, which is characterized by
more aggressive TNBC cell lines. These findings underscore the
complexity of TNBC and emphasize the importance of targeting
subclass-specific mechanisms rather than adopting a universal
approach for TNBC therapy [40].

Collectively, these studies underscore the significance of
proteomics-based research and emphasize the necessity for
precise proteomic signatures to unravel the complexity of TNBC.
Awell-definedmolecular signature is crucial for guiding targeted
therapeutic strategies against TNBC. Quantitative functional
proteomic methods are essential in identifying characteristic
protein-protein interaction networks and specific protein
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signatures. These approaches are pivotal in identifying critical
regulators of TNBC that facilitate the development of predictive,
diagnostic, and therapeutic applications.

3 Significance of Single-Cell Proteomics

Single-cell proteomics stands poised to advance the field of single-
cell biology significantly. Proteomic variances remain relatively
stable, unlike transcriptomic differences, which can vary widely
between biological states [41]. A recent comparative study of
single-cell RNA and proteome levels underscored this stability in
proteomics, highlighting the intricate regulation of translation at
the single-cell level [42]. To gain a comprehensive understanding
of translational regulation, particularly amongst cellular diver-
sity in diseases, single-cell proteomics complements single-cell
RNA-seq effectively. Bulk proteomics, which averages protein
expression across thousands of cells, fails to capture crucial
differences between individual cells due to cellular heterogeneity.
This limitation emphasizes single-cell proteomics’ critical role in
presenting cell-to-cell variations essential for precise disease biol-
ogy comprehension. Moreover, single-cell proteomics uniquely
enables the dynamic study of protein expression changes in
live cells, contrasting with fixed and processed samples used in
bulk proteomics. Notably, single-cell proteomics’ sensitivity also
facilitates the analysis of rare cell populations, such as cancer
stem cells, which are often overlooked by conventional proteomic
approaches. Thus, single-cell proteomics is indispensable for
exploring rare cells’ intricated roles in disease pathogenesis.

Single-cell proteomics now offers high-resolution data at the
proteome level and provides insights into PTMs, which are
beyond the reach of transcriptomic analysis. This single-cell pro-
teomics data is essential for studying early cell-signaling events
and changes resulting from environmental fluctuations due to
drug interventions or disease influences. While bulk proteomics
techniques have been used to explore cell-signaling dynamics,
their results are limited as they average signals from hetero-
geneous cell populations. Single-cell proteomics enables us to
address critical biological questions about signaling mechanisms
based on protein binding, modifications, and degradation areas
that bulk proteomics has struggled to explore. The regulation
of protein abundance and activity through degradation and
PTMs cannot be inferred from genomic and transcriptomic data.
Furthermore, transcriptomic and genomic sequencing do not
provide insights into protein–protein interactions and protein
localization, which are crucial for understanding many signaling
pathways [43].

Single-cell proteomics delivers detailed insights, unlike conven-
tional laboratory methods that provide generalized perspectives
on protein interactionswithin average cell populations. This tech-
nology enables researchers to discern specific cellular responses
and untangle molecular-level pathways and processes with
unprecedented precision. Such accuracy is crucial in studying
heterogeneous tissues where protein reactions can significantly
differ among cells. The single-cell proteomics approach promises
to be a cornerstone in our efforts to combat this challenging form
of breast cancer. This single-cell proteomics enables researchers
to investigate tumorheterogeneity at the protein level, uncovering
details about distinct cellular subsets that may contribute to

tumor growth, metastasis, or therapy resistance, which have
historically been challenging to identify, which could be crucial
in understanding TNBC’s complexity and uncovering therapeutic
opportunities [19]. This level of precision is critical in studying
heterogeneous tissues, where protein responses frequently differ
between individual cells. Single-cell proteomics is becoming
increasingly valuable in drug development, as proteins are the
primary targets for up to 95% of drugs. Traditional methods
like high-throughput screening (HTS) generally assume uniform
behavior across all cells when evaluating potential new drugs and
their mechanisms of action. In contrast, single-cell proteomics
can reveal individual cell-level responses, providing a more
detailed understanding of off-target effects, dose responses, and
other critical factors. This approach also speeds up the discovery
of novel biomarkers, improving early cancer detection through
diagnostics.

Single-cell proteomics provides an advanced analytical approach
that allows for the high-resolution analysis of protein expres-
sion and signaling pathways within individual cancer cells. By
capturing the proteomic profile of single cells, this technique
enables us to dissect the cellular diversity within TNBC tumors,
identifying distinct cell populations that may contribute to drug
resistance, immune evasion, and tumor progression [44]. Impor-
tantly, single-cell proteomics can uncover rare or minor cell
subpopulations thatmight drive disease recurrence ormetastasis,
which bulk analyses often overlook [45]. This makes it an
invaluable tool in uncovering potential therapeutic targets within
TNBC’s heterogeneous cellular environment, providing insights
that could guide the development of more targeted and effective
treatments for this challenging breast cancer subtype.

4 Advancements in Single-Cell Sample
Preparation

Single-cell proteomics aims to identify and quantify the proteome
of individual cells using LC-MS/MS technology. Figure 2 illus-
trates the steps involved in the single-cell proteomics process. An
appropriate workflow depends on budget, available instruments
and consumables, and specific research objectives. This section
provides an overview of advanced workflows to offer insights for
future single-cell proteomics experiments.

4.1 Single-Cell Isolation

Sample preparation is crucial for single-cell proteomics.
Researchers have been working to miniaturize reaction volumes
from micro- to nanoliters, which reduces peptide adsorption to
vessel surfaces, improves reaction efficiency, and lowers reagent
consumption [46]. Simultaneously, efforts are being made to
increase batch sizes to minimize background noise by reducing
batch effects. Single-cell isolation in single-cell proteomics can
be achieved through various methods, including (i) manual
techniques such as (a) capillary probes and (b) laser capture
microdissection (LCM), and (ii) automated methods like (c)
FACS and (d) imaging-based cell sorting. Table 1 provides the
various techniques for isolating single cells from the tumor
tissue.
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FIGURE 2 General overview of the single-cell proteomics workflow. The process begins with the isolation of individual cells using either manual
or automated techniques. This is followed by protein extraction from the isolated cells using mass spectrometry-compatible lysis buffers or mechanical
methods. The extracted proteins are then digested into peptides, which can be labeled or analyzed using a label-free approach. The peptides are separated
using liquid chromatography and analyzed by high-resolution mass spectrometry. Finally, data analysis is performed to interpret protein expression
profiles, providing insights into cellular heterogeneity and disease mechanisms, such as those seen in triple-negative breast cancer.

4.1.1 Capillary Probe

A capillary probe can manually pick up individual cells from a
solution using microcapillary pipettes, typically under a micro-
scope [46, 54, 55]. This labor-intensive method requires precise
selection and pipetting by hand or robotic arm. Despite its
laborious nature, it has several advantages: it preserves spatial
information, is the fastestmethod for handling small sample sizes
(1–10 cells), and is particularly useful when cell states are visible
under a standard light microscope [56]. This technique is ideal
for isolating valuable samples such as blastomeres and oocytes
and distinguishing betweenmigrating and non-migrating cells in
scratch assays [55].

4.1.2 LCM

LCM isolates regions of cells from a polyethylene naphtha-
late (PEN) membrane slide using infrared radiation under a
microscope [57]. LCM operates in two ways: (i) capture or (ii)
gravity, generally employing an IR or UV laser to target tissue
regions of interest on the PEN slide [58]. Like the capillary
probe method, LCM preserves spatial information and is equally
labor-intensive, requiring manual cell picking. However, LCM
offers additional advantages, such as isolating fluorescence-
tagged cells when connected to a fluorescence microscope and
directly isolating single cells from histologically stained solid

tumors [59]. The drawbacks include high costs due to the need
for specific instruments and consumables and additional steps
for locating samples on slides using micro-sectioning for solid
samples and cytospin for liquid samples [57]. Therefore, LCM
is particularly recommended for histopathologically annotated
tissue samples.

4.1.3 FACS

FACS sorts cellular solutions into single cells using a fluidics
system and filters them based on optical properties, such as light
scattering and fluorescence [60–63]. This allows for preliminary
filtering based on cellular markers before proceeding to single-
cell proteomics for more detailed analysis. FACS is widely
accessible compared to other single-cell isolation methods and
offers a high level of automation, from single-cell isolation to
cell dispensing [64]. Consequently, FACS has become the most
popular method for integrating single-cell omics analysis, with or
without preliminary optical filtering [65].

4.1.4 Imaging-Based Cell Sorter

Recent single-cell proteomicsmethods have started incorporating
advanced cell sorters, such as the imaging-based cellenONE
cell sorter [66]. This device operates similarly to FACS but
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includes dispensers equipped with imaging devices, ensuring
high-confidence single-cell dispensing. The cellenONEalso offers
flexibility in dispensing arrangements, compatible with standard
microwell plates and customized chips like nested Nanodroplet
Processing in One pot for Trace Samples (nanoPOTS) and nano-
ProteOmic sample Preparation (nPOP) glass slides [66, 67].
However, a drawback of this method is its lower accessibility.
Besides, NanoPOTS is a microfluidic sample-preparation plat-
form initially designed to analyze samples containing as few as
ten cells [68] and has since been adapted for single-cell analysis
[42]. This method significantly reduces the contact area between
samples and the glass surface used for sample preparation,
including lysis and digestion. This innovation has inspired other
techniques to minimize sample volume and surface contact to
enhance sensitivity [46, 66]. In the nPOP method, piezo acoustic
dispensing is employed to isolate individual cells into 300 pL
volumes. All subsequent sample preparation steps, including cell
lysis, digestion, and labeling, are conducted in small droplets on
fluorocarbon-coated slides, with each step being performed in 20
nL volumes.

4.2 Cell Lysis and Denaturation

Sample preparation for single-cell proteomics is generally opti-
mized to reduce sample clean-up and desalting steps to minimize
sample loss. Instead of using conventional mass spectrome-
try (MS)-incompatible lysis buffers like urea, researchers have
shifted to MS-compatible lysis buffers, such as MS-compatible
detergents (e.g., RapiGest, trifluoroethanol, and n-dodecyl-β-D-
maltoside and solvents like dimethyl sulfoxide [DMSO]) [51,
66, 61, 67]. Using MS-compatible lysis buffers eliminates the
need for extensive cleaning steps like StageTips, which can
lead to sample loss due to excessive liquid transfers between
vessels [69]. These detergents have long been used in bulk
proteomics and have demonstrated improvements in digestion
efficiency and peptide recovery [70–72]. High concentrations of
DMSO (90%–100%) as a cell lysis buffer have been pioneered in
single-cell proteomics by the nPOPworkflow, showing extraction
efficiency comparable to the traditional urea method [66]. DMSO
is particularly compatible with glass slide reaction platforms
due to its ability to form proper droplets, unlike other reagents
[66].

In addition, some workflows propose eliminating lysis buffers,
using mechanical methods to lyse cells and produce even cleaner
lysates than chemical lysis. For example, ultrasonication [54],
freeze-thaw cycles [73], or a combination of both [60] can
perform cell lysiswithout surfactants. Thesemechanicalmethods
have been used since the early days of proteomics in the 20th
century and continue to be employed in bulk proteomics [74].
However, these methods are more aggressive than chemical
lysis, potentially degrading proteins and requiring less accessible
equipment like an ultrasonicator [75, 76].

4.3 Sample Processing Reaction Platforms

Researchers have developed “one-pot” reaction platforms that
allow single-cell proteomics sample preparation from cell lysis
to protein labeling in a single vessel to minimize sample loss

due to adsorption to vessel surfaces. The currently available
single-cell proteomics reaction platforms, which vary in reaction
volume from larger to smaller, can be categorized into capil-
lary probes, multi-well plates, microfabricated chips, and glass
slides.

4.3.1 Capillary Probes

This reaction platform simplifies sample preparation by con-
ducting it directly in vials or capillary probes. For example,
single cells and reagents such as lysis buffer and digestion
mix can be injected into HPLC injection vials, allowing the
reactions to occur in the same location [73]. This setup seamlessly
integrates with LC-MS/MS, as the vial contents can be directly
processed using an autosampler. Additionally, another workflow
involves performing cell lysis and digestion steps within the
same microcapillary after extracting the single cell from the cell
solution [54]. Although thesemethods are highly labor-intensive,
they are ideal for valuable samples since they minimize the need
for transferring samples between vessels, thereby reducing the
risk of sample loss due to adsorption.

4.3.2 Multi-Well Plates

PCR well-plates are widely used in laboratories due to their
prevalence, low cost, and multiplexing capabilities [60]. Con-
sequently, many single-cell proteomics workflows have been
developed around them. Some workflows initially relying on cus-
tom platforms have also created alternative versions using PCR
well-plates to increase accessibility [77]. The primary drawback of
multi-well plates is their limited customizability. However, they
are compatible with many existing automated liquid handlers,
making automation less challenging. Additionally, PCR well-
plates can be easily integrated with the freeze-heat cell lysis
method using a PCR thermocycler [60].

4.3.3 Microfabricated Chips

Several research groups utilize customized microfabricated
chips tailored for specific single-cell proteomics workflows. The
current trend in single-cell proteomics workflow development
emphasizes conducting reactions within individual droplets to
minimize sample loss through reduced contact with vessel sur-
faces. For instance, R.T. Kelly’s lab micro-etched nano-wells onto
glass slides with hydrophilic interiors and hydrophobic exteriors
to stabilize droplet shape and position. These nano-wells are
arranged in spatially separated clusters to facilitate intra-cluster
pooling for multiplexing experiments [46, 67]. In addition, some
workflows incorporate an external oil layer on the chip to prevent
sample evaporation. Hartlmayr et al. and Li et al. structured
their chips to accommodate this oil layer, either in direct contact
with the sample or not [46, 78]. Gebreyesus et al. and Wang
et al. customized their chips further by integrating them with
home-built liquid handling systems. Their designs range from
simple arrays of vials to complex structures with interconnected
chambers, each tailored for different stages of sample preparation
[51].
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4.3.4 Glass Slides

The smooth glass slide, developed by N. Slavov’s lab, represents
the current state-of-the-art platform for single-cell proteomics.
It provides unparalleled flexibility in arranging sample droplets
across a two-dimensional plane [66]. One method for sample
pooling involves initially organizing the droplets into clusters
and then introducing a larger droplet to cover and collect these
clusters [66]. This platform supports parallel preparation of up to
2000 samples per slide, significantly reducing background noise
caused by batch-to-batch variations.

5 Recent Advancements in the
LC-MS/MS–Based Single-Cell Proteomics

The rapid development ofmass spectrometry-based technologies,
with improvements in mass accuracy, sequencing speed, resolu-
tion, power, and cost-effectiveness, presents a unique opportunity
for accurate and rapid profiling of cancer metabolomics [79] and
proteomes [80]. Advanced mass spectrometers such as time of
flight, Orbitrap, or Fourier transform ion cyclotron resonance, are
known for their high resolution, sensitivity, and sub-ppm mass
accuracy [81]. The features ideally suited for shotgun proteomics
approaches that aim to quantify hundreds to thousands of
proteins in a biological sample [82, 83]. Liquid chromatography-
tandem mass Spectrometry (LC-MS/MS) stands at the forefront
of modern proteomic analysis, offering powerful tools and
techniques for precisely characterizing proteins [84]. In TNBC
research and single-cell proteomics context, LC-MS/MS plays a
pivotal role in uncovering the disease’s molecular intricacies [85].
Table 2 provides an overview of the breast cancer-related proteins
identified and characterized using LC-MS technologies.

5.1 Label-Free Single-Cell Proteomic Analysis by
LC-MS/MS

Label-free analysis is the simplest method to quantify proteins
from a single cell using mass spectrometry. A single cell is lysed,
proteins are extracted and digested, and the resulting peptide
mixture is separated via in-line liquid chromatography coupled
with MS analysis [91]. For label-free proteomics, each nanoscale
liquid chromatography–MS/MS experiment identifies and quan-
tifies peptides from a single cell, making the optimization of
sample preparation, peptide purification and separation, and
efficient movement of peptide ions within the mass spectrometer
crucial for accurate and comprehensive proteome characteriza-
tion [60]. Label-free MS analyses can be categorized into two
main data-collection methods: data-dependent acquisition and
data-independent acquisition [92]

In a data-dependent acquisition experiment, intact peptides are
analyzed in a survey scan, and the most abundant peptides are
selected for fragmentation and sequencing. Peptides identified in
a single-cell mass spectrometry experiment are quantified based
on the intact peptide signals in the survey scans [93]. However,
the stochastic nature of sampling peptides for fragmentation
in data-dependent acquisition can lead to inconsistent peptide
identification across multiple experiments [94]. To address this,
a data-analysis technique called “match between runs” allows

quantifying peptides identified in separate data-dependent acqui-
sition experiments, increasing the number of quantified peptides
and proteins. However, it may also increase the likelihood of false
positive quantification events [60]. In contrast, independent of
a survey scan, data-independent acquisition methods systemati-
cally sample all regions within a specifiedmass range throughout
theMS analysis. This approach ensures that all intact peptides are
fragmented, resulting inmore consistent identification and quan-
tification of peptides and proteins across multiple experiments. A
recent landmark single-cell mass spectrometry study using data-
independent acquisition quantified the proteomes of single cells
at various cell cycle stages, identifying up to 2000 proteins per cell
depending on the cell cycle stage [60].

Label-free single-cell proteomic analysis can identify and quan-
tify over 1000 proteins, primarily employing Orbitrap or trapped
ion mobility spectrometry time of flight (timsTOF) mass spec-
trometers [95]. Combining nanoPOTS, ultra-low flow liquid chro-
matography, andhigh field asymmetric ionmobility spectrometry
(FAIMS) with an Orbitrap Eclipse Tribrid mass spectrometer
offers significantly deepened single-cell proteome coverage to
1056 identified proteins on average [96]. Transferring identifica-
tion based on FAIMS filtering (TIFF) further increased proteome
coverage to over 1200 proteins [97]. Data-dependent acquisi-
tion is the traditional scan mode in LC-MS/MS, but it suffers
from low data completeness in single-cell proteomics. Data-
independent acquisition and the SciProChipmicrofluid chip have
emerged as solutions, resulting in an average identification of
around 1500 proteins from single cells with minimal missing
values [19]. In timsTOF single-cell proteomic, the diaPASEF
(parallel accumulation-serial fragmentation combined with data-
independent acquisition) scanmodemaximizes quantifiable pro-
teins (up to 2083) per singleHeLa cell with high completeness [60,
98]. Despite challenges, label-free single-cell proteomic analysis
has yielded insights into critical cellular processes and potential
applications in cancer research and drug treatment. In addition,
providing quantitative data on the proteins within single cells
empowers researchers to understand the heterogeneity within
TNBC, identify potential biomarkers and therapeutic targets,
and ultimately contribute to more personalized and effective
treatment strategies.

5.2 TandemMass Tags Multiplexing Based
Single-Cell Proteomic Analysis by LC-MS/MS

To attain higher throughput in single-cell mass spectrometry,
researchers can employ a method known as isobaric labeling,
which enables multiplexed quantitative analysis. Tandem mass
tags (TMT) are isobaric chemicals used for precise and mul-
tiplexed measurement of peptides and proteins using tandem
mass spectrometry analysis [99]. TMT-based multiplexing is
particularly valuable in large-scale proteomics at the single-cell
level, which requires high sensitivity and throughput. This con-
cept is similar to DNA barcodes in next-generation sequencing,
albeit with mass-based identifiers. The existing range of mass
barcodes for single-cell mass spectrometry restricts simultaneous
detection to 18 samples [100]. Hence, the chemical composi-
tion constraints enable effective multiplexing, typically involving
heavy isotopes like 13C and 15N [101]. Although alternative chem-
ical tags have been proposed, challenges in finding compatible
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structures restrict the maximum number of samples that can
be concurrently analyzed [102]. With the current technology,
multiplexed single-cell mass spectrometry allows for the simul-
taneous analysis of up to 18 single-cell proteomes. For instance,
if analyzed under standard conditions (90 min per sample),
this could potentially process 288 single-cell proteomes in a
day. Throughput enhancement could be achieved by reducing
analysis times, expanding multiplexing capabilities, or adopting
dual-column configurations. Evenwith existing capabilities,mul-
tiplexed single-cell mass spectrometry significantly reduces the
time required to analyze 1000 cells to a matter of days [100]
compared to the weeks needed for label-free single-cell mass
spectrometry methods.

Beyond increasing throughput, multiplexed quantitative analysis
facilitates new experimental designs that enhance proteomic
depth by incorporating a carrier proteome [103]. This carrier
proteome, containing protein amounts equivalent to 20–500
times that of a single cell, helps optimize experimental parameters
for detecting, identifying, and quantifying proteins that might
otherwise go undetected [104]. The concept was first applied
in single-cell mass spectrometry experiments with the advent
of single-cell proteomics by mass spectrometry method [103,
104]. Subsequently, various studies have aimed to establish the
maximum carrier proteome limit that can be used without
causing negative effects [105, 106]. Recent single-cell mass spec-
trometry experiments generally set this upper limit at 200× for
single-cell quantification using single-cell proteomics by mass
spectrometry. Optimized multiplexed approaches have achieved
label-free quantification levels, enabling the quantification of
approximately 1000–1500 proteins per cell and characterizing
over 250 cells per day [105, 100].

Various sample preparation methods have been proposed to
confidently analyze thousands of proteins in a single cell to
reduce sample loss and enhance sensitivity. These methods
include using organic co-solvents instead of detergents [107],
eliminating the need for cleaning steps, and utilizing simpli-
fied platforms like nanoPOTS to process small cell populations
efficiently. A pioneering approach called single-cell proteomics
by mass spectrometry involves labeling carrier cells with TMT
and analyzing them alongside individual TMT-labeled single
cells. This method increases sensitivity and reduces missing data
during analysis [69]. Single-cell proteomics bymass spectrometry
has quantified over a thousand proteins in single cells, aiding
the identification of different cell types and studying the rela-
tionship between mRNA and protein levels. An updated version,
single-cell proteomics, improves sample preparation and data
analysis, quantifying thousands of proteins in single monocytes
and macrophages [100]. NanoPOTS is another approach that
combines TMT labeling to enhance processing efficiency and
throughput for single-cell samples [68]. It utilizes a chip-based
platform for preparing small cell populations with minimal
sample volume, significantly improving sensitivity and sample
recovery. This method has identified thousands of proteins from
as few as 10 cells, a significant advancement in single-cell pro-
teomics. Nested nanoPOTS further enhances isobaric-labeling-
based single-cell proteomics, offering increased quantification
and analysis of more single cells [67]. Despite its benefits,
nanoPOTS does require specialized equipment and manual
operation, which limits its widespread adoption. Nevertheless,

it presents a promising platform for high-sensitivity single-
cell proteomics, with potential applications in various studies,
including circulating tumor cells, stem cell development, cellular
heterogeneity, and disease biomarkers. Ongoing developments
aim to address its limitations and make it more accessible for
broader use in single-cell omics research.

Multiplexed proteomics using isobaric labels offers the high-
est throughput for single-cell mass spectrometry, but it faces
challenges due to ratio compression due to precursor inter-
ference [105]. When selecting precursor peptides labeled with
isobaric tags for fragmentation and quantification, other peptides
are often co-isolated with the peptide of interest. The mass
barcodes from these additional peptides are indistinguishable
from those of the target peptide. Because most proteins in an
experiment show no change, they contribute an equal signal
across all mass barcodes. This can cause a tenfold change in
the target peptide to appear as only fourfold [108]. To address
this issue, gas-phase purification techniques like proton-transfer
reactions or synchronous precursor selectionMS3 are used. These
methods reduce the impact of precursor interference so that a
tenfold change appears closer to an eightfold change [109, 108].
However, while they improve quantitative accuracy, they also
lower the signal for mass barcodes, potentially resulting in fewer
protein-quantification events. Given the challenges associated
with isobaric labels, researchers have turned to multiplexed
data-independent acquisition approaches to balance single-cell
throughput and quantitative accuracy. Unlike traditional data-
independent acquisition, multiplexed data-independent acquisi-
tion employs non-isobaric chemical tags or heavy amino acids to
generate two to three precursor signals for each peptide sequence
[110, 111]. This method offers higher throughput than label-free
techniques and greater quantitative accuracy than multiplexed
experiments using isobaric labels.

A notable multiplexed data-independent acquisition approach,
plex data-independent acquisition, has successfully analyzed
three single-cell proteomes simultaneously, quantifying approx-
imately 1000 proteins per cell [112]. This method requires 30 min
of analysis time (about 10 min per cell), enabling the analysis
of 144 cells per day. Encouragingly, the study demonstrated
quantitative accuracy comparable to label-free quantitation and
successfully analyzed different cell cycle states and multiple
cell lines. Future advancements may extend the multiplexing
capacity of plex data-independent acquisition and reduce the
analysis time per cell. In addition, a new approach has been
proposed combining data-independent acquisition and isobaric
labels, achieving the highest multiplexing in a data-independent
acquisition experiment to date [113]. However, this method relies
on mass barcodes and uses a large precursor isolation window,
which may exacerbate precursor interference challenges, com-
plicating accurate quantification. Though applying multiplexed
data-independent acquisition to single-cell mass spectrometry is
a recent development, it holds promise as a broadly attractive
approach for future experiments.

To further enhance the single-cell proteomic profiling in the
context of cancer heterogeneity, imaging mass cytometry (IMC)
offers a significant advancement, allowing spatially resolved
phenotyping of individual cells within tissue samples. IMC
enables multiplexed imaging by using metal-tagged antibodies,
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allowing simultaneous visualization of multiple markers in a
single scan. This technology has been successfully applied to
breast cancer studies by Raza Ali et al., who combined IMC with
multiplatform genomics to define the phenogenomic landscape
of breast tumors. This approach revealed detailed cellular compo-
sitions and interactions across breast cancer subtypes, providing
insights into the tumormicroenvironment and its link to genomic
alterations, as well as potential implications for prognosis and
therapeutic response [114].

6 Comparative Analysis of Alternative
Technologies

While mass spectrometry (MS)–based single-cell proteomics
is a powerful tool for identifying and quantifying proteins
in individual cells, it is one of several technologies available
for single-cell analysis, each with distinct strengths and lim-
itations. Spatial proteomics and advanced imaging techniques
offer unique capabilities by retaining spatial information about
protein expression within tissue architecture, which is criti-
cal for understanding cellular context and microenvironmental
interactions [115, 116]. Unlike MS-based approaches, spatial pro-
teomics can reveal the localization and distribution of proteins
in situ, facilitating insights into cell–cell interactions, tissue
heterogeneity, and tumor microenvironments in cancer studies,
including TNBC [117]. Advanced imaging techniques, such as
IMC and multiplexed ion beam imaging (MIBI), provide high-
resolution spatial data but are often limited by lower protein
coverage and quantification compared to MS [118, 115]. While
IMC can simultaneously measure up to 40 proteins within
the same tissue section, it may not achieve the depth of pro-
teome coverage available with MS-based techniques, which can
identify thousands of proteins. Therefore, MS-based single-cell
proteomics remains advantageous for in-depth proteome profil-
ing, although it lacks the spatial resolution offered by imaging
techniques.

Single-cell RNA sequencing (scRNA-seq) has also become a
widely used technique for understanding cellular heterogeneity
and gene expression at the single-cell level [119]. Compared to
MS-based proteomics, scRNA-seq allows for high-throughput
analysis of transcriptomic profiles across thousands of cells,
providing a broader picture of gene expression patterns within
heterogeneous cell populations. However, it is important to
note that RNA expression does not always correlate directly
with protein abundance due to post-transcriptional regulatory
mechanisms [43].MS-based single-cell proteomics, therefore, fills
this gap by providing direct protein-level data, which is critical
for functional analysis and understanding cellular phenotypes.
Each technology offers unique advantages: MS-based proteomics
provides depth and accuracy in protein quantification, spatial
proteomics enables contextual protein localization, and scRNA-
seq offers high-throughput transcriptomic profiling. Combining
these approaches, where feasible, may offer themost comprehen-
sive insights into cellular function and heterogeneity, especially
for complex diseases like TNBC. Such integrative approaches,
for instance, could help to uncover how transcriptomic diver-
sity translates into protein-level heterogeneity within TNBC
tumors, enhancing our understanding of disease progression and
response to treatment [120].

7 Clinical Relevance and Practical Applications
of Single-Cell Proteomics in TNBC

Single-cell proteomics is an emerging technology with signif-
icant clinical implications, especially for challenging cancers
like TNBC. As TNBC tumors are known for their molecular
heterogeneity, the need for personalized therapeutic approaches
has become more urgent. Single-cell proteomics provides an
unprecedented level of detail about protein expression within
individual cells, allowing for a deeper understanding of the
cellular diversity within TNBC and potentially unveiling novel
biomarkers and therapeutic targets. One of the primary clinical
applications of single-cell proteomics in TNBC lies in its abil-
ity to identify biomarkers that can guide treatment selection.
Lehmann et al. [2] identified subtypes of TNBC based on protein
expression patterns, leading to insights into which patients might
respond better to specific chemotherapies. By applying single-cell
proteomics, researchers can further refine these classifications,
identifying protein signatures associated with drug sensitivity
or resistance on a cell-by-cell basis. This capability is especially
useful in TNBC, where variability between cells can influence
treatment outcomes significantly [44].

Another promising application of single-cell proteomics in TNBC
is in guiding immunotherapy. Immunotherapy has shown poten-
tial in TNBC due to the presence of immune cell infiltration in
some tumors. Single-cell proteomics can help identify immune-
related proteins within TNBC tumors, enabling the stratification
of patients who may benefit from immune checkpoint inhibitors
or other immunotherapies. The presence of specific immune
markers in individual TNBC cells can indicate a likely response
to immunotherapy, providing clinicians with valuable informa-
tion to tailor treatments based on a patient’s unique tumor
biology. In addition, therapeutic resistance remains a major
hurdle in TNBC treatment, often leading to relapse and disease
progression. Single-cell proteomics enables the identification of
resistant cell populations within a tumor, providing insights
into the mechanisms by which these cells evade treatment [45].
By isolating and analyzing protein expression in these resistant
cells, researchers can identify pathways and molecular targets
associated with resistance, paving the way for new combination
therapies that could prevent or overcome resistance in TNBC
patients.

Case studies underscore the practical utility of single-cell pro-
teomics in real-world clinical settings. In a recent clinical appli-
cation, single-cell proteomic analysis identified specific protein
signatures in TNBC that correlated with a high likelihood of
response to neoadjuvant chemotherapy, allowing oncologists to
tailor treatment regimens [44]. Another study involves profiling
TNBC tumors to identify biomarkers predictive of metastasis,
which has proven instrumental in developing early intervention
strategies for high-risk patients [45]. These studies highlight how
single-cell proteomics can not only inform treatment but also
facilitate early detection andmonitoring of aggressive TNBC phe-
notypes. While single-cell proteomics holds immense promise,
translating these findings into routine clinical practice will
require further development. Standardizing single-cell proteomic
workflows and ensuring they are cost-effective and accessiblewill
be essential for broader adoption in clinical settings. Nonetheless,
the technology’s potential to provide patient-specific insights at
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an unprecedented resolutionmakes it an invaluable tool in TNBC
care. By advancing our understanding of TNBC heterogeneity
and revealing actionable protein-level biomarkers, single-cell
proteomics is positioned to transform the clinical management of
TNBC, enablingmore effective, personalized treatment strategies
[121].

8 Challenges and Future Perspectives

Single-cell proteomics has emerged as a transformative approach
for understanding cellular heterogeneity, especially in complex
diseases like TNBC. The TNBC’s tumor microenvironment com-
prises diverse cell types, including cancer-associated fibroblasts,
immune cells, and cancer stem cells, each contributing to the can-
cer’s aggressiveness, immune evasion, and resistance to treatment
[122].MS-based techniques and refined sample preparation proto-
cols have propelled the field forward. However, translating these
breakthroughs into real-world outcomes presents challenges that
must be addressed to ensure broader application in clinical
and research settings. The potential for single-cell proteomics
to revolutionize TNBC research lies in its ability to unmask
cellular diversity at an unprecedented resolution. This could
lead to more personalized therapeutic strategies by identifying
distinct protein signatures within individual cells, contributing
to improved treatment outcomes. However, the translation of
these findings into clinical practice remains challenging. High
costs, the need for specialized equipment, and the complexity
of data analysis are significant barriers. For clinical integration,
automation in sample preparation and data analysis is essential,
as well as reducing the operational costs of MS instruments.
Large-scale clinical studies will be needed to validate the
biomarkers identified by these technologies before they can be
adopted in routine clinical practice. What prevents widespread
adoption is not only the technological limitations but also
the need for regulatory approval of proteomic-based diagnostic
tools.

One major issue is the variability in protein expression among
cells, even within the same population, influenced by factors like
cell cycle stage and external stimuli [123]. In addition, PTMs of
proteins add complexity to the analysis, necessitating a thorough
understanding of cellular biology. One constraint lies in the
inability to amplify proteins, unlike DNA or RNA. Consequently,
preserving sample integrity and minimizing losses during prepa-
ration, handling, and experimental processes become critical
concerns. Technological challenges also persist in single-cell pro-
teomics. One of the main challenges in single-cell proteomics is
the low signal-to-noise ratio due to the limited amount of protein
material in individual cells. Advanced ion mobility techniques,
such as trapped ion mobility spectrometry (TIMS) and structures
for lossless ion manipulation (SLIM), can significantly improve
ion separation and resolution, thereby enhancing the signal-to-
noise ratio [124, 125]. Awide dynamic range of protein expression,
varying from one to 10 million copies per cell, spanning seven
orders of magnitude. Current methods often capture only a
fraction of the cell’s dynamic protein range, missing many low-
abundance proteins called the “dark proteome” [126]. Efforts are
underwaywithin the proteomics community and among technol-
ogy providers to develop advanced techniques that amplify target
protein signals while reducing background noise.

Furthermore, integrating multiple workflows and technolo-
gies is crucial for a comprehensive understanding of single-
cell proteomics. Mass spectrometry-based single-cell proteomics
identifies and quantifies proteins at the single-cell level. Still,
protein function is also influenced by subcellular localization
and the cellular microenvironment, highlighting the need for
spatial context through imaging technologies. Combining these
workflows can be complex, but advancements in cell-sorting tech-
nologies and sample-handling robotics are helping to streamline
and enhance analytical capabilities. In-depth single-cell protein
analysis requires managing and storing large volumes of data.
Ongoing advancements in analytics provide the computational
power and sophisticated algorithms necessary to process and
interpret this data effectively.

Besides, one of the most significant challenges is sample loss
during the isolation and preparation stages, which can impact
the accuracy of downstream MS analysis. Improving meth-
ods for efficient cell isolation without compromising protein
integrity is critical. In addition, increasing the throughput of
MS-based techniques while maintaining sensitivity remains a
technical hurdle. Current workflows are often time-consuming
and require substantialmanual intervention, resulting in variabil-
ity. Advances inmicrofluidics, automation, andmachine learning
(ML)-driven data interpretation could resolve many of these
issues, enabling more streamlined processes. Microfluidics has
revolutionized single-cell analysis by enabling precise sample
handling,minimizing sample loss, and allowing high-throughput
processing of individual cells. Emerging microfluidic systems,
such as nanodroplet-based platforms and microfluidic chips,
can facilitate efficient cell lysis, protein extraction, and pep-
tide separation while conserving precious sample material [103,
127]. Nanodroplet platforms, for instance, have been shown to
enable single-cell proteomics by encapsulating cells in nanoliter-
sized droplets, which reduces sample loss and contamination
risk. Additionally, integrated microfluidic chips with automated
sample preparation capabilities can streamline the workflow
and increase reproducibility, making it feasible to process large
numbers of cells with minimal manual intervention. By adopting
these improvements, researchers can overcome some of themajor
bottlenecks in sample handling and enhance the throughput of
single-cell proteomics studies. Collaboration between bioinfor-
matics, engineering, and clinical disciplines will also be essential
in overcoming these limitations and standardizing protocols.

While integrating single-cell proteomics and LC-MS/MS brings
immense promise in the study of TNBC, it is not without its
share of challenges and limitations. Recognizing these hurdles
is pivotal in advancing the field and realizing the full potential
of this ground-breaking approach. One of the most significant
challenges in single-cell proteomics is the limited sample avail-
ability for analysis. The minuscule volume of proteins within
a single cell necessitates highly sensitive techniques like LC-
MS/MS.However, this sample scarcity can hinder comprehensive
proteomic profiling andmake it challenging to gather statistically
significant data, especially when dealing with rare cell subpop-
ulations or precious clinical samples. In addition, single-cell
proteomics introduces the risk of technical variability, given the
minute quantities of proteins involved. Variability can stem from
multiple sources, including sample preparation, data acquisition,
and data processing. Addressing and minimizing these sources
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of variation is an ongoing challenge in the field to ensure the
reliability of results.

While single-cell proteomics is undoubtedly a promising area
of research, other fields, such as spatial proteomics, are gaining
traction. Spatially resolved proteomics allows researchers to map
the spatial distribution of proteins within tissues, providing
critical insights into the tumor microenvironment. Integrating
spatial proteomics with single-cell techniques could create a
powerful platform for TNBC research. In addition, advances in
deep learning and AI-based approaches for protein identification
and quantification could further enhance the precision and speed
of data analysis. Despite the allure of these adjacent fields, single-
cell proteomics remains at the forefront of proteomic research due
to its unparalleled ability to dissect cellular heterogeneity.

Further, single-cell proteomics generates vast datasets, which can
be complex and require sophisticated bioinformatics tools for
analysis. The challenge lies in extracting meaningful insights
from this data, including identifying relevant protein signatures,
defining cellular subpopulations, and recognizing key patterns
and trends. Developing advanced data analysis, methodologies,
and computational algorithms is essential to navigate the intrica-
cies of single-cell proteomic data effectively. Furthermore, while
single-cell proteomics aims to uncover the heterogeneity within
TNBC, its full resolution remains a challenge. Heterogeneity is
confined to protein expression and extends to genetic, epigenetic,
and functional differences among cells. Combining multi-omics
approaches, such as integrating single-cell genomics with pro-
teomics, can provide a more holistic view of TNBC heterogeneity
but presents additional analytical complexities. Single-cell pro-
teomics can elucidate the role of immune cells within TNBC,
where immune cell heterogeneity significantly influences the
tumor’s response to immunotherapy. This approach provides
insights into which immune cell subtypes, such as tumor-
associated macrophages or regulatory T cells, may be respon-
sible for immune suppression or tumor support, making them
potential therapeutic targets [128, 129]. Furthermore, studying
cancer stem cells within TNBC using single-cell proteomics may
reveal unique protein signatures linked to tumor initiation and
metastasis, which could be critical for developing more effective
therapies.

ML algorithms are increasingly being utilized to address the chal-
lenges of data analysis in single-cell proteomics. ML techniques,
such as neural networks and support vector machines, can help
differentiate true signals from background noise, improving data
quality and enabling the detection of low-abundance proteins.
Furthermore,MLalgorithms can be employed to identify patterns
in complex proteomic datasets, revealing insights into cellu-
lar heterogeneity and functional pathways. ML-driven spectral
deconvolution algorithms can enhance the identification of pep-
tide spectra in complex mixtures, thus increasing sensitivity and
reducing the false discovery rate in single-cell proteomics studies.
Implementing these algorithms in data analysis workflows will
enable researchers to handle the vast amounts of data generated
from single-cell proteomic experiments more effectively.

To bridge the gap between research and clinical settings,
single-cell proteomics workflows must become more accessible
and user-friendly. Currently, proteomics techniques are often

complex, requiring highly specialized skills and sophisticated
instrumentation, which limits their adoption in clinical practice.
Future advancements should focus on simplifying workflows,
from sample preparation to data analysis, enabling broader use
in non-research environments [103]. Emerging “plug-and-play”
platforms with integrated sample preparation, quantification,
and analysis capabilities offer a pathway toward more practical
and efficient single-cell proteomics. By developing standardized
protocols and user-friendly interfaces, these workflows can be
integrated into routine clinical diagnostics, allowing clinicians
to harness the power of single-cell proteomics for personalized
medicine in cancers such as TNBC.

Another significant future direction is the development of
real-time proteomics to inform clinical decisions on the spot.
Real-time single-cell proteomics could offer oncologists valu-
able insights during surgery or treatment planning, enabling
rapid decisions based on individual cellular proteomic profiles.
Technological advancements in mass spectrometry, including
high-speed and high-sensitivity instruments, are making real-
time analyses increasingly feasible. Real-time proteomics could,
for instance, identify protein markers indicative of aggressive
subtypes of TNBC during biopsy analysis, helping tailor treat-
ment plans based on live proteomic data [124]. Although real-time
applications are currently in the experimental phase, advances in
data acquisition speed, automated sample processing, and rapid
data interpretation will make real-time single-cell proteomics a
powerful tool in clinical oncology.

In next 5–10 years, the field of single-cell proteomics is expected
to evolve into a more accessible and standardized research tool.
Refining high-throughput, cost-effective instruments will make
these technologies more available to smaller laboratories and
clinical settings. Standardized sample preparation and analysis
protocols will likely emerge, allowing more reproducible and
comparable results across different studies. In addition, real-
time single-cell proteomics could become a reality, enabling
clinicians to analyze patient samples directly and make more
informed decisions on personalized treatments. The convergence
of multi-omics approaches will further broaden what can be
achieved. Still, it is crucial to ensure these methods are rigorously
validated in clinical trials to maintain credibility in therapeutic
applications.

9 Conclusion

Advancements in single-cell proteomics are poised to benefit
the healthcare system significantly. Recent estimates indicate
that 90% of drugs are only effective for half of the patients,
resulting in annual losses of $350 billion in theUnited States alone
[130]. Incorporating single-cell proteomics into medical research
promises to enhance diagnostic and treatment capabilities, par-
ticularly in cancer. This approach ensures the right treatments
are administered to the suitable patients at optimal times. As
we stand at the precipice of a new era in understanding and
managing TNBC, the promise of single-cell proteomics in LC-
MS/MS is indubitable. The future of this dynamic duo holds
the potential to shape TNBC research in unprecedented ways,
offering insights into emerging technologies and areas of further
investigation.
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Moreover, improved instrumentation and methodologies are on
the horizon, promising even greater sensitivity and throughput.
Miniaturization of equipment and more cost-effective solu-
tions will enhance accessibility, allowing a broader spectrum
of researchers to harness the power of single-cell proteomics.
Notably, integrating multi-omics data, including genomics, tran-
scriptomics, and proteomics, will be a focal point in the future.
By combining these diverse datasets, researchers can construct a
comprehensive picture of TNBC’s complexity, uncovering protein
expression patterns and the genetic and functional elements that
drive the disease. This holistic approach will provide deeper
insights into TNBC’s molecular landscape. A bird’s eye view is
necessary to understand the subcellular distribution of proteins
in TNBC cells, which will shed light on their functional roles and
their involvement in disease processes. This technology will be
instrumental in dissecting the intricacies of TNBC biology. Even
though the volume of data generated by single-cell proteomics
continues to grow, the future of TNBC research will see an
increasing reliance on artificial intelligence (AI) and ML for
data analysis. These technologies will aid in the identification
of complex patterns, the prediction of patient outcomes, and the
discovery of novel therapeutic targets. The ultimate goal of single-
cell proteomics in TNBC research is its clinical translation. In the
near future, we can anticipate integrating single-cell proteomic
data into routine clinical practice. This integration will involve
the development of standardized assays, the creation of user-
friendly analytical tools for healthcare professionals, and the
establishment of robust protocols for patient-specific treatment
strategies.
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