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Abstract: Myogenic regulator factors (MRFs) are essential for skeletal muscle development in ver-
tebrates, including fish. This study aimed to characterize the role of myogenic regulatory factor 4
(MRF4) in muscle development in Nile tilapia by cloning NT-MRF4 from muscle tissues. To explore
the function of NT-MRF4, CRISPR/Cas9 gene editing was employed. The NT-MRF4 cDNA was
1146 bp long and had encoded 225 amino acids, featuring a myogenic basic domain, a helix-loop-helix
domain, and a nuclear localization signal. NT-MRF4 mRNA was exclusively expressed in adult
muscle tissues, with expression also observed during embryonic and larval stages. Food-deprived
Nile tilapia exhibited significantly lower NT-MRF4 mRNA levels than the controls while re-feeding
markedly increased expression. The CRISPR/Cas9 gene editing of NT-MRF4 successfully generated
two types of gene disruption, leading to a frame-shift mutation in the NT-MRF4 protein. Expression
analysis of MRF and MEF2 genes in gene-edited (GE) Nile tilapia revealed that MyoG expressions
nearly doubled compared to wild-type (WT) fish, suggesting that MyoG compensates for the loss
of MRF4 function. Additionally, MEF2b, MEF2d, and MEF2a expressions significantly increased in
GE Nile tilapia, supporting continued muscle development. Overall, these findings suggest that
NT-MRF4 regulates muscle development, while MyoG may compensate for its inactivation to sustain
normal muscle growth.
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1. Introduction

Muscle myogenesis is a series of events involved in muscle development. The initiation
and regulation of these processes are governed by myogenic regulatory factors (MRFs).
The MRF gene family comprises four members of muscle regulatory proteins including
myoblast determination protein (MyoD), myogenic regulatory factor 5 (MRF5), also referred
to as myogenic factor 5 (myf5) (hereafter referred to as MRF5), myogenic regulatory factor
4 (MRF4), also known as myogenic factor 6 (myf6) (hereafter referred to as MRF4), and
myogenin (MyoG) [1–5]. The first protein identified in the MRF family was MyoD [2].
The other three MRF proteins were discovered shortly after and were found to share
homology with MyoD [3–5]. MRF4 was the last of these to be identified [5]. MRF family
proteins possess a basic helix-loop-helix (bHLH) domain, enabling them to recognize the
E-box motif (CANNTG) in the regulatory regions of target genes. These E-box motifs are
commonly located in the regulatory regions of genes expressed by the E-protein family
of bHLH proteins [6]. The bHLH domain exhibits high homology among MRF family
proteins, enabling similar roles in muscle development. MyoD and MRF5 play key roles in
differentiation and proliferation during embryogenesis, while MyoG and MRF4 primarily
drive myoblast differentiation [1].

MRFs demonstrate almost similar functions across higher vertebrates [1] and fish [7].
However, both extrinsic and intrinsic factors must be considered when studying growth-
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related genes in fish [8]. Extrinsic factors, such as temperature and food supply, and
intrinsic factors, including age, sex, genetics, and gene interactions, influence muscle
growth in fish [9]. The muscle regulatory gene MRF4 is expressed in various adult muscle
fibers [10] and its expression is reported to be the highest among the MRFs in adult rodent
muscle [11]. However, the specific role of MRFs remains to be determined due to gene
interactions at the complex MRF4/MRF5 locus, where the effects of one gene are influenced
by other genes [12]. Although the regulation of MRF4 has been extensively studied in higher
vertebrates, particularly in rodents [5,13], research on MRF4 in fish remains limited. Notable
exceptions include studies on zebrafish (Danio rerio) [14], yellowtail amberjack (Seriola
lalandi) [15], common snowtrout (Schizothorax richardsonii) [16], and ya-fish (Schizothorax
prenanti) [17]. MRF4 expressions have previously been reported to vary across different
developmental stages [15,17] and food-deprived fish [16]. Although some studies have
functionally characterized MRFs by producing MRF mutant offsprings [13,18,19]; however,
no published reports have used CRISPR/Cas9 techniques to investigate MRF4 in fish.

CRISPR/Cas9 is an effective and straightforward genome editing technology that can
efficiently generate specific gene disruptions. The CRISPR/Cas9 system comprises the
Cas9 endonuclease and a single guide RNA (sgRNA), which directs the Cas9 enzyme to a
particular location within the genome. Once at the target sequence, Cas9 cleaves the DNA,
resulting in double-strand breaks that enable precise modifications to the genome. This
technique has been extensively applied to generate frameshift mutations in coding protein
sequences, which resulted in the loss of functional alleles in many fish species including
Nile tilapia (Oreochromis niloticus) [20]. Although CRISPR/Cas9 is a popular technology
for producing progeny with enhanced growth and immunity, it is now extensively used
for the functional characterization of genes [21–24]. In the present study, gene editing was
performed on the MRF4 gene in Nile tilapia to facilitate its functional characterization.

Nile tilapia is a highly versatile fish and is often called the “aquatic chicken” due to
its adaptability and widespread consumption. It originates from tropical and subtropi-
cal Africa, and is now farmed worldwide, including in South Korea [25]. It is not only
useful for aquaculture, but also a key non-model species for research in various scientific
fields: growth and physiology [26], endocrinology [27], genomic biology, and molecular
genetics [28]. Despite genetic improvement programs aimed at enhancing tilapia growth in
Asian countries, limited genetic diversity, inbreeding, and hybridization have resulted in
decreased growth rates and earlier sexual maturation in farmed populations. Therefore, the
potential role of environmental factors, age, sex, and genetics on the growth and develop-
ment of tilapia have been extensively studied [29–32]. However, the molecular mechanism
through which MRFs function in development and muscle regulation has yet to be ex-
plored. Consequently, this study characterized a muscle regulatory gene, MRF4, in Nile
tilapia. An extensive in silico analysis of Nile tilapia MRF4 was conducted and analyzed
mRNA expressions in different experimental tissues. To further investigate the functional
characterization of the MRF4 gene, CRISPR/Cas9 gene editing was employed to produce
MRF4 mutant progeny of Nile tilapia, allowing for the observation of expression levels of
MRF genes and other growth-related genes in wild-type and gene-edited populations.

2. Materials and Methods
2.1. Experimental Fish and Husbandry

Adult Nile tilapia were collected from a commercial tilapia aquaculture farm (Docheon
Fish Farm, Changnyeong-gun, Gyeongsangnam-do, Republic of Korea) and transported to
the Laboratory of Molecular Physiology of the Department of Fisheries Science, Chonnam
National University, Yeosu, Republic of Korea. The collected fish were acclimatized in
rearing tanks for a week with continuous aeration. The water temperature of the rearing
tanks were maintained at 26 ◦C. Fish were fed with commercial tilapia pellet feed. After
acclimatization, Nile tilapia were used in different experiments.
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2.2. Identifying Myogenic Regulatory Factor 4 (MRF4), Bioinformatic, and Expression Analysis
2.2.1. Identification of Myogenic Regulatory Factor 4 (MRF4) Gene in Nile Tilapia

The Nile tilapia myogenic regulatory factor 4 (MRF4) gene (NCBI accession No. NM_0012-
82891) was identified in the NCBI genome assembly (O_niloticus_UMD_NMBU) of Nile
tilapia using BLAST search.

2.2.2. Tissue Collection for Gene Cloning

Ten Nile tilapia were anesthetized using tricaine methanesulfonate (MS-222) before
tissue collection. Skeletal muscle tissues were then collected for cloning and sequencing of
the MRF4 gene. The collected tissues were immediately flash frozen in liquid nitrogen and
stored at −80 ◦C.

2.2.3. Total RNA Extraction and cDNA Synthesis

Total cellular RNA was extracted from the collected tissues using the ISOSPIN Cell and
Tissue RNA kit (Nippon Gene, Tokyo, Japan). First-strand and 5′ and 3′ rapid amplification
of cDNA ends (RACE) cDNAs were synthesized from total RNA using the Superscript
III First-strand cDNA synthesis kit (Invitrogen, Waltham, MA, USA) and the SMARTer®

RACE 5′/3′ kit (Takara Bio Inc., Shiga, Japan), respectively.

2.2.4. Cloning of Full-Length Nile Tilapia MRF4 (NT-MRF4) cDNA

The full-length cDNA sequence of MRF4 was cloned following the method described
previously by [33]. Initially, a partial fragment of the NT-MRF4 gene was cloned using a
Phusion® High-Fidelity DNA Polymerase kit (New England Biolabs Inc., Ipswich, MA,
USA) by reverse transcription-polymerase chain reaction (RT-PCR). Primers were designed
based on the predicted genomic sequence of Nile tilapia. Next, 5′-RACE and 3′-RACE
primers were designed from this partial fragment. The 5′-RACE and 3′RACE fragments
were amplified using the SMARTer® RACE 5′/3′ kit. The RACE PCR products were ligated
into the linearized pRACE vector and transformed into stellar competent cells (Takara
Bio Inc., Shiga, Japan). Positive clones were selected and sequenced at Macrogen (Seoul,
Republic of Korea). The 5′- and 3′-RACE fragments were combined, with the overlapping
region of the partial fragment trimmed to obtain the full-length cDNA sequence of NT-
MRF4. The primers used for NT-MRF4 gene sequencing are listed in Table 1, and the PCR
thermal cycling conditions are provided in Supplementary Table S1.

Table 1. Primers used for cDNA cloning and expression analysis of NT-MRF4.

Primer Name Sequence (5′—3′) Purpose

MRF4-Fw GTACAATGGCAATGACAGCTC
RT-PCRMRF4-Rv CACTGGCTCCTTCTGTGCA

NT-MRF4-5′RACE GATTACGCCAAGCTTCTCTCCCCACCGGACGGGACATTATC
RACE PCRNT-MRF4-3′RACE GATTACGCCAAGCTTCAACCTCCGCTGACCATTCCACTTCAG

NT-MRF4-Fw TGGCAATGACAGCCCACTG

qRT-PCRNT-MRF4-Rv CTTACGTCTATCCGTGGGAG
NT-EF1a-Fw GGTGTGAAGCAGCTCATCG
NT-EF1a-Rv CACTGGTCTCCAGCATGTTG

2.2.5. Bioinformatic Analysis of the NT-MRF4

The nucleotide and protein sequences of the NT-MRF4 gene were analyzed using
various online bioinformatic tools and software. The source information for all tools and
software used in this study is listed in Supplementary Table S2.

Analysis of General Sequence Features

The open reading frame (ORF) of NT-MRF4 was identified with ORFfinder. The
amino acid sequence of NT-MRF4 was predicted using the EMBOSS Transeq online tool.
ProtParam was employed to calculate the molecular weight and other physicochemical
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properties of the NT-MRF4 protein. Conserved domains and functional motifs were
analyzed through the NCBI Conserved Domain database, Simple Modular Architecture
Research Tool (SMART), and Motif scan. The nuclear localization signal was predicted
using NLStradamus web server. Gene Ontology (GO) terms were predicted using the
Contact-guided Iterative Threading ASSEmbly Refinement (C-I-TASSER) server. The
genomic exon–intron structure of NT-MRF4 was predicted using the SCIPIO web tool.

Multiple Sequence Alignment

Seven amino acid sequences of MRF4 from different chordate species were aligned
using the online multiple sequence alignment program ClustalO and subsequently visual-
ized and edited using Jalview software v. 2.11. The full-length amino acid sequences of
MRF4 from 7 species were obtained from the NCBI database, and comprehensive sequence
details are presented in Supplementary Table S3.

Phylogenetic Analysis

A phylogenetic tree of the MRF4 was constructed using protein sequences from
25 chordate species with MEGA v. 11.0.8 software. The protein sequences were aligned
using the ClustalO aliment option. The evolutionary phylogenetic tree was constructed
using the neighbor-joining algorithm with the bootstrap method and 1000 replicates. The
full-length amino acid sequences of MRF4 were obtained for 25 species from the NCBI
database, and comprehensive sequence details are presented in Supplementary Table S4.

Synteny Analysis

A synteny map of MRF4 was generated using a web-based synteny browser Genomi-
cus ver. 110.01. Genes flanking next to MRF4 were obtained for six chordate species viz.
Nile tilapia (Oreochomis niloticus), zebrafish (Danio rerio), frog (Xenopus tropicalis), chicken
(Gallus gallus), mouse (Mus musculus), and human (Homo sapiens) from Genomicus, as
mentioned previously by [34].

Structural Model Prediction of NT-MRF4 Protein

The two-dimensional structure of NT-MRF4 was predicted using the PDBsum online
tool. The three-dimensional (3D) protein structure of NT-MRF4 was generated using the
online protein structure and functional prediction program I-TASSER. Afterward, the
generated 3D model was refined using the GalaxyRefine web server. The refined 3D model
was then validated using the MolProbity server. The predicted 3D structure was visualized
and analyzed using UCSF ChimeraX v.1.3 software.

Prediction of Subcellular Localization

The subcellular localization of the NT-MRF4 protein was predicted using ProtComp
9.0 and CELLO v.2.5 online tools, while interactive protein features were visualized through
Predict protein and Protter servers.

Protein–Protein Interaction Network Analysis

The protein–protein interaction network analysis of NT-MRF4 was performed using
STRING database.

2.2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis of NT-MRF4 mRNA
Tissue Sample Collection, Total RNA Extraction, and cDNA Synthesis

Prior to tissue collection, the fish were anesthetized with MS-222, after which ten
different tissue samples were collected: skeletal muscle (MUS), brain (BRN), gill (GIL),
heart (HRT), stomach (STM), intestine (INT), liver (LIV), kidney (KID), spleen (SPL), and
gonads (GND). A set of tissue samples were also collected during embryonic and larval
development at the following stages: fertilized egg (FtE), 1 day-post-fertilization (1-F), 2-
day-post-fertilization (2-F), 1-day-post-hatching (1-H), 10-day-post-hatching (10-H), 30-day-
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post-hatching (30-H), 60-day-post-hatching (60-H), and adult (ADT). A third set of tissue
samples was collected from starvation experiments, where fish were starved for 14 days
and then re-fed. Skeletal muscle samples were collected on the 1st day of the experiment as
the control (CNT), then on the 7th day (7D-S) and 14th day (14D-S) of starvation, and finally
from refed (ReF) fish after one day of re-feeding. All collected tissues were washed using
1× PBS, immediately flash-frozen in liquid nitrogen, and stored at −80 ◦C until total RNA
extraction. Total cellular RNAs and cDNAs were extracted and synthesized, respectively,
as described in Section 2.2.3.

qRT-PCR Analysis

To quantify the relative mRNA expression of NT-MRF4 in different experimental
tissues of Nile tilapia, qRT-PCR was performed using a 2× qPCRBIO SyGreen Mix Lo-Rox
kit (PCR Biosystems Ltd., London, UK) in a LightCycler® 96 System (Roche, Mannheim,
Germany) as described previously by [35]. The qRT-PCR was conducted using 10 µL of
reaction mixture containing 5 µL of SyGreen Mix, 0.5 µL of each gene-specific forward
and reverse primer (Table 1), 1 µL of cDNA, and 3 µL of molecular grade ultrapure water.
All reaction mixtures were prepared in quintuplicate, constituting biological replicates.
The thermal cycling included pre-incubation at 95 ◦C for 3 min, followed by 40 cycles of
95 ◦C for 15 s, 60 ◦C for 20 s, and 72 ◦C for 15 s. Data analyses were performed using
the LightCycler® 96 System software. The relative gene expression levels were calculated
using the 2−∆∆CT method, with Nile tilapia housekeeping gene EF1a (GenBank accession
no. AB075952) as an internal reference. The expression level in the gonad was considered
as the reference value (set to 1), to which all other data were normalized.

2.3. CRISPR/Cas9 Knockout of NT-MRF4 Gene in Nile Tilapia
2.3.1. Design and Preparation of Single-Guide RNAs and Cas9 Protein

The genomic sequence of NT-MRF4 was obtained from the NCBI database. The target sites
were identified in exon 1 using the CRISPRscan online tool (https://www.crisprscan.org/;
accessed on 26 May 2023). Two single-guide RNAs (sgRNA) were designed to target the
NT-MRF4 gene (Table 2). The sgRNAs were synthesized using the AccuToolTM gRNA
Design and Synthesis service of Bioneer (Daejeon, Republic of Korea).

Table 2. sgRNA templates and mutation analysis of primers used in CRISPR/Cas9 experiment.

Primer Name Sequence (5′—3′) Accession No. Purpose

sgRNA1 CACGATAATGTCCCGTCCGGTGG

NM_001282891

CRISPR/Cas9
target sitesgRNA2 CGAGGGTCAGTGCCTCATGTGGG

MRF4-Mut-Fw TTGCGCTATCTGGAGGAAGC Mutation analysis
MRF4-Mut-Rv CTCCTGCAGCCTCTCTATGT

2.3.2. Artificial Fertilization and Preparation of One-Cell Embryos

During the spawning season, eggs and sperm were collected from mature Nile tilapia
using the stripping method, as described previously by [19], and were temporarily kept
in clean dishes. Artificial fertilization was performed by gently mixing the eggs and
sperm with water in a Petri dish. After fertilization, one-cell embryos were collected for
microinjection of the sgRNA and Cas9 complex.

2.3.3. Preparation of sgRNA and Cas9 Complex and Microinjection

The sgRNA and Cas9 complex were prepared in a 300 µL tube on ice for microinjection,
achieving a final concentration of 250 ng/µL for sgRNA and 500 ng/µL for Cas9 just before
microinjection as described previously by [20]. A 1% (v/v) solution of phenol red (Sigma-
Aldrich, St. Louis, Mo, USA) was prepared and added to the microinject mixture to monitor
the volume and position of microinjection. The one-cell embryos were microinjected with
the NT-MRF4 sgRNA-Cas9 complex using a nanoliter injection device (Nanoliter 2020

https://www.crisprscan.org/
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Injector, WPI, Sarasota, FL, USA). A total of 500 embryos were microinjected. Untreated
embryos were used as the control (WT).

2.3.4. Mutation Analysis in Cas9/sgRNA Microinjected Offsprings

Microinjected embryos were maintained in incubators, and the survival rate was
determined after hatching. Body weight (g) and total length (cm) of MRF4 gene-edited (GE)
and WT population were measured fortnightly. Fin samples of GE and WT Nile tilapia
were collected from 3-month-old offspring to extract genomic DNA. Genomic DNAs were
extracted using the AccuPrep Genomic DNA Extraction kit (Bioneer, Daejeon, Republic
of Korea) following the manufacturer’s protocol. A 402 bp region containing the sgRNA
target site was amplified using gene-specific primers (Table 2) and then sequenced for
mutation analysis. Mutation analyses were performed using the ICE analysis tools of the
Synthego webserver.

2.3.5. Downstream Gene Expression Analysis in NT-MRF4 Gene-Edited Nile Tilapia
Tissue Sample Collection, Total RNA Extraction, and cDNA Synthesis

Skeletal muscle tissues were collected from WT and GE Nile tilapia. The samples were
collected and processed as described in Section 2.3.1. Total cellular RNAs and cDNAs were
extracted and synthesized, respectively, as described in Section 2.2.3.

qRT-PCR Analysis

To quantify relative mRNA expression of the MRF genes (MRF4, MyoG, MRF5, MyoD)
and myocyte enhancer factor 2 (MEF2) genes (MEF2a, MEF2b, MEF2c, and MEF2d) in WT
and GE Nile tilapia, qRT-PCR was performed as described in Section 2.2.6. The primers
used for qRT-PCR analysis are presented in Table 3.

Table 3. qRT-PCR primers used for downstream gene expression analysis.

Primer Name Sequence (5′—3′) Accession No. Length (bp)

MRF4-Fw TGGCAATGACAGCCCACTG
PQ497691 178MRF4-Rv CTTACGTCTATCCGTGGGAG

MyoG-Fw TGTTGGAGTTGGAGTGACAG
GU246725 171MyoG-Rv CGTCTCTTCTCCCTCAGTGT

MRF5-Fw TCCAGTACATCGAGAGCCTG
XM_005456634 172MRF5-Rv CCGTTGCTGTAGTTTGCATTC

MyoD-Fw CAAGAGGAAGACGACCAACG
GU246715 170MyoD-Rv CGATGTAGCTGATGGCGTTG

MEF2a-Fw TCATGGACGAAAGGAACAGG
XM_025908678 170MEF2a-Rv CAGCAACACTTTGTCCATGTC

MEF2b-Fw GACCAGAGAAATAGACAGGTG
XM_005478988 160MEF2b-Rv GAACTTTGTCCATGTCTGTGC

MEF2c-Fw AGATCACGCGGATTATGGATG
XR_003213332 173MEF2c-Rv CTTGTCCATGTCTGTGCTGG

MEF2d-Fw CAGAGGATCACTGACGAACG
XM_025911272 171MEF2d-Rv GACCTTGTCCATGTCAGTGC

EF1a-Fw GGTGTGAAGCAGCTCATCG
AB075952 187EF1a-Rv CACTGGTCTCCAGCATGTTG

2.4. Statistical Analysis

The mRNA expression values in the experimental tissues were expressed as the
mean ± standard error of the mean (SEM). Changes in relative mRNA expression levels
among the different tissues were statistically analyzed either by one-way analysis of vari-
ance (ANOVA) followed by Tukey’s post hoc test or Student’s t-test, as appropriate, using
GraphPad Prism 10.1.1 software. Statistical significance was considered at p < 0.05. All
graphs were prepared using GraphPad Prism 10.1.1 software.
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3. Results

A comprehensive work-flow along with key results is presented in Figure 1.
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3.1. General Features and Domains of NT-MRF4

A full-length nucleotide sequence of MRF4 was cloned from Nile tilapia and desig-
nated as Nile tilapia MRF4 (NT-MRF4). The NT-MRF4 cDNA sequence (GenBank Accession
No. PQ497691) was 1146 bp long and included a poly-A tail (Figure 2). The 5′ untranslated
region (5′-UTR) was 123 bp and 3′-UTR was 345 bp. A putative polyadenylation signal
(AATAAA) was located at 262 bp downstream of the stop codon. The NT-MRF4 open
reading frame (ORF) was 678 bp and encoded a putative protein of 225 amino acids (aa).
The amino sequence of NT-MRF4 comprises a myogenic basic domain located at 2–95 aa, a
helix-loop-helix (HLH) domain at 96–147 aa, and a serine-rich region at 201–224 aa. Addi-
tionally, the NT-MRF4 protein contains a nuclear localization signal (KTAPTDRRKAATLR-
ERRRLKKI) located at 90–111 aa (Figure 2). The theoretical molecular weight (MW) and
isoelectric point (pI) of NT-MRF4 were 24.91 kDa and 5.83, respectively. The total number
of positively charged residues (Arg + Lys) and negatively charged residues (Asp + Glu)
were found to be 32 and 27, respectively. The protein half-life computed was found to be
30 h in mammalian reticulocytes (in vitro). The grand average of hydropathicity (GRAVY)
was—0.053. The negative value of GRAVY indicates that the protein contains a higher
proportion of polar amino acids. The molecular formula of the protein was identified
as C1063H16970N317O353S11. Other additional physiochemical characteristics and detailed
amino acid composition of NT-MRF4 protein are presented in Table 4. The genomic struc-
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ture of NT-MRF4 contains four exons and three introns spanning 3937 bp from start to stop
codon (Supplementary Figure S1).
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Figure 2. The full-length nucleotide and amino acid sequences of Nile tilapia MRF4 (NT-MRF4) gene
(GenBank accession no. PQ497691). The numbers on the left and right represent the nucleotide and
amino acid positions, respectively. The start codon (ATG) and stop codon (TGA; *) are shown in
bold red letters. The putative polyadenylation signal (AATAA) is underlined. The myogenic basic
domain is highlighted in green shading, and the helix-loop-helix (HLH) domain is shaded in violet.
The overlapping nuclear localization signal is enclosed in a yellow box, while the serine-rich region is
shaded in blue. The N-glycosylation sites are marked with red boxes.

Table 4. Physiological characteristics of the NT-MRF4 protein sequence.

Characteristics Values
Amino Acid (aa) Composition

aa No. %

Number of amino acids 222 Alanine (A) 20 8.9
Molecular weight (kDa) 24.91 Arginine (R) 14 6.2
Theoretical isoelectric point (pI) 5.83 Asparagine (N) 12 5.3
Total number of negatively charged
residues (Asp + Glu) 32

Aspartic acid (D) 13 5.8
Cysteine (C) 6 2.7

Total number of positively charged
residues (Arg + Lys) 27

Glutamine (Q) 8 3.6
Glutamic acid (E) 19 8.4
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Table 4. Cont.

Characteristics Values
Amino Acid (aa) Composition

aa No. %

Atomic composition: Glycine (G) 11 4.9
Carbon (C) 1063 Histidine (H) 7 3.1
Hydrogen (H) 1697 Isoleucine (I) 7 3.1
Nitrogen (N) 317 Leucine (L) 22 9.8
Oxygen (O) 353 Lysine (K) 13 5.8
Sulfur (S) 11 Methionine (M) 5 2.2
Formula C1063H1697N317O353S11 Phenylalanine (F) 3 1.3
Total number of atoms 3441 Proline (P) 12 5.3

Estimated half-life
(Mammalian reticulocytes, in vitro) 30 h

Serine (S) 27 12.0
Threonine (T) 11 4.9

Instability index (II) 64.1 Tryptophan (W) 3 1.3
Aliphatic index 68.18 Tyrosine (Y) 5 2.2
Grand average of hydropathicity −0.741 Valine (V) 7 3.1

3.2. Multiple Sequence Alignment and Identity Index of NT-MRF4

The multiple sequence alignment of NT-MRF4 was performed to identify conserved
regions, reveal evolutionary relationships, and predict functional domains across species.
The analysis revealed that the MRF4 protein in vertebrates contained a conserved helix-
loop-helix (HLH) domain, a nuclear localization signal, and a conserved serine-rich region
(Figure 3). The study also showed that four cysteine residues were conserved in the
myogenic basic domain. A percent identity index of the NT-MRF4 protein with different
fish species presented in Supplementary Table S5 demonstrated that NT-MRF4 shares over
95% identity with MRF4 proteins from Cichliformes fishes.
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while the nuclear localization signal (NLS) is marked with a black over line. Four conserved cysteine
residues in the sequence alignment are indicated with black solid circles.

3.3. Phylogenetic Analysis

An evolutionary phylogenetic tree of the MRF4 protein sequences was constructed to
assess the potential evolutionary connections between NT-MRF4 and the MRF4 proteins of
other vertebrate species. The unrooted phylogenetic tree displayed four major clades, mam-
malian, avian, amphibian, and teleost. Within the teleost clade, MRF4 further sub-clustered
into Cichliformes and Cypriniformes orders. As expected, NT-MRF4 was positioned within
the teleost MRF4 and sub-grouped with the Cichliformes species. Additionally, NT-MRF4
was most closely aligned with the MRF4 of Oreochromis aureus, the phylogenetically closest
match (Figure 4).
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Figure 4. Phylogenetic tree of vertebrate MRF4 amino acid sequences. The analysis used the neighbor
joining method with a bootstrap test of 1000 replicates. The numbers displayed at the nodes represent
the bootstrap probability, with the scale bar corresponding to 0.2 units of the anticipated fraction of
amino acid substitutions (where 1.0 units equals 100 PAMs).
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3.4. Evolutionary Synteny Analysis of NT-MRF4

After analyzing possible evolutionary connections of NT-MRF4 using phylogenetic
analysis, a synteny analysis was performed to determine the origin and orthology relation-
ship between NT-MRF4 with five other vertebrate species, including teleost (zebrafish),
amphibian (frog), avian (chicken), rodent (mouse), and humans. The conserved synteny
of NT-MRF4 locus is located on Chr. LG17 in the genome of Nile tilapia (Figure 5), and
indicates that this gene has a syntenic location. NT-MRF4 is flanked by MRF5 and RPS16 on
the right and left sides, respectively, which are also present in the teleost species. Following
MRF5, NT-MRF4 neighbors LIN7A, ACSS3, and PPFIA2 on the right side. Meanwhile,
NT-MRF4 neighbors RPS16, PPP1R12A, PAWR, and SYT1A are on the left side. A similar
gene neighboring pattern is observed in the teleost species, indicating that the MRF4 is
orthologous among teleost species. In other vertebrates, including humans, MRF5, LIN7A
ACSS3, and PPFIA2 are also found on the right side. Conversely, PTPRQ is present on the
left side between MRF4 and RPS16 in frogs and chickens, while PTPRQ is located in the
position of RPS16 in mice and humans.
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Figure 5. A synteny map compares orthologs of the MRF4 locus and the flanking genes in Nile
tilapia and five other vertebrate species (zebrafish, frog, chicken, mouse, and human). The map was
constructed using data obtained from Genomicus v. 110.01. The map displays genes as block arrows,
orthologs of each gene in different species shown in the same column and color. The positions of gene
(megabases, Mb) are presented below each block arrow based on the Ensembl database. Detailed
chromosomal locations for these genes are provided in Supplementary Table S6.

3.5. The Two- and Three-Dimensional Structure of NT-MRF4

The structural model of NT-MRF was constructed to determine its structural conforma-
tion, which helps to understand its function, potential interaction, and role in the cellular
process. The two-dimensional (2D) protein structure prediction revealed that the NT-MRF4
amino acid sequence contained three helices and four chains with 76 β-turns and 8 γ-turns
in the chain region (Figure 6A). The three-dimensional (3D) structure of NT-MRF4 was
characterized by a classical helix-loop-helix (HLH) configuration, consisting of three alpha
helices interspersed by four loops (Figure 6B). Structure validation of the NT-MRF4 protein
using the MolProbity server confirmed that 82.1% of the residues are in the favored region,
and 96.9% are in the allowed region (Figure 6C).
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cellular location and infer its primary function. Both the Protter and PredictProtein servers 
predicted this protein to be localized in the nucleus (Figure 7A,B). The CELLO2 subcellu-
lar localization predictor, utilizing machine learning, also confirmed nuclear localization 
with a reliability score of 4.783 (Figure 7C). 

 

Figure 6. The two- and three-dimensional protein structures of NT-MRF4. (A) The two-dimensional
structure showing the predicted strand-helix-coil arrangement, and the locations of β- and γ-turns in
the NT-MRF4 sequence. (B) The three-dimensional structure of the NT-MRF4, with the HLH domain,
N-terminal, and C-terminal indicated. (C) MolProbity Ramachandran plot validation analysis of the
NT-MRF4 3D structure.

3.6. Subcellular Localization of NT-MRF4

The prediction of subcellular localization of NT-MRF4 was performed to identify its
cellular location and infer its primary function. Both the Protter and PredictProtein servers
predicted this protein to be localized in the nucleus (Figure 7A,B). The CELLO2 subcellular
localization predictor, utilizing machine learning, also confirmed nuclear localization with
a reliability score of 4.783 (Figure 7C).
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tool prediction identified NT-MRF4 as a nuclear-localized protein. (C) CELLO2 prediction algorithm
defined NT-MRF4 as a nuclear localization protein.

3.7. Gene Ontology (GO) Analysis of NT-MRF4

The GO analysis was performed to predict the biological function, molecular role,
and involvement in cellular processes of NT-MRF4. In the biological process (BP) cate-
gory, NT-MRF4 was involved in “positive regulation of skeletal muscle fiber development”
term (GO:0048743) with a C-scoreGO of 0.50; “regulation of developmental process” term
(GO:0050793) with a C-scoreGO of 0.67 (Supplementary Figure S2). In the molecular func-
tion (MF) category, NT-MRF4 was associated with “transcription factor activity, RNA
polymerase II distal enhancer sequence-specific binding” term (GO: 0003705) with a C-
scoreGO of 0.57 (Supplementary Figure S3A). Nonetheless, the cellular component (CC)
category revealed its “nucleus” localization term (GO:0005634) with a C-scoreGO of 0.89
(Supplementary Figure S3B).

3.8. Prediction of the Functional Protein–Protein Interaction Network of NT-MRF4

Protein–protein interaction network analysis was conducted using STRING ver.12.0 to
identify and predict the potential functional protein interaction network of NT-MRF4 with
other proteins. This analysis revealed a functional association of NT-MRF4 with ten proteins
(Figure 8A). It was observed that MRF4 interacts with MyoG, myocyte enhancer factor
two family proteins (MEF2b and MEF2d), and transcription factor (TCF) family proteins,
which facilitate skeletal muscle development. The strongest interaction was predicted with
MEF2b, with a score of 0.722, followed by MyoG, with a score of 0.664 (Figure 8B).
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Figure 8. (A) The protein–protein interaction network of NT-MRF4 protein. Each node represents a
protein, and each edge indicates interaction, either physical or functional. (B) Prediction score for
functional partner proteins of NT-MRF4.

3.9. Relative mRNA Expression of NT-MRF4 in Different Experimental Tissues

The relative mRNA expression of NT-MRF4 was analyzed in various tissues, at dif-
ferent ages of development and in the skeletal muscle tissues of starved Nile tilapia to
investigate the potential role of the gene. The results are presented in Figure 9. The
mRNA expression of NT-MRF4 in various tissues of Nile tilapia is presented in Figure 9A.
Significantly higher mRNA expression was observed in muscle (MUS) tissue, while ap-
proximately seven-fold lower expression was observed in other tissues. Higher expression
levels were observed among these tissues (other than MUS) in STM, followed by INT, HRT,
and LIV. The MUS tissue was used in further mRNA expression experiments based on
tissue-related expressions.
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were designed within the coding region, located in exon 1. The Cas9 protein and sgRNA 
complex were then injected into one-cell embryos and reared until 90 dpf (Figure 10A). 
After hatching, no significant differences in aberration or mortality rates were observed 
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for the experiment. 
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Figure 9. Relative mRNA expression levels of NT-MRF4 in different experimental tissues of Nile
tilapia. (A) Various tissues of Nile tilapia. BRN: brain, GIL: gill, HRT: heart, LIV: liver, SPL: spleen,
MUS: muscle, INT: intestine, STM: stomach, KID: kidney. (B) Changes in NT-MRF4 mRNA expres-
sions during the development of Nile tilapia. FtE: fertilized egg, 1-F: 1-dpf, 2-F: 2-dpf, 1-H: 1-dph,
10-H: 10-dph, 30-H: 30-dph, 60-H: 60-dph, ADT: adult. (C) Changes in mRNA expressoins of NT-
MRF4 in muscle tissues from the starvation experiment. CNT: control, 7D-S: 7-day starvation, 14D-S:
14-day starvation, ReF: refed. In each bar graph, red circles represent individual data points, serving
as biological replicates. Distinct letters above the bars indicate statistically significant differences
(p < 0.05).

During the development of Nile tilapia, NT-MRF4 mRNA expression levels signif-
icantly increased during the larval stages (dpf, days post-fertilization) compared to the
embryonic stages (dph, days post-hatching). Expression levels continued to rise after
hatching, reaching a peak at 60-dpf (Figure 9B). However, adult fish showed no significant
changes in expression compared to those at 60-dpf.

In food-deprived (starved) Nile tilapia, NT-MRF4 mRNA expression levels signifi-
cantly decreased during the starvation period compared to the feeding phase (control and
refeeding). Expression levels significantly increased during the re-feeding (ReF) phase
compared to both the starvation period and the control (Figure 9C).

3.10. Generation of NT-MRF4 Mutant Progeny Using CRISPR/Cas9 and Mutation Analysis

To disrupt NT-MRF4, two CRISPR/Cas9 target site sgRNAs (Table 2; Figure 10A)
were designed within the coding region, located in exon 1. The Cas9 protein and sgRNA
complex were then injected into one-cell embryos and reared until 90 dpf (Figure 10A).
After hatching, no significant differences in aberration or mortality rates were observed
between the control (WT) and the gene-edited (GE) microinjected groups (Supplementary
Figure S4). Therefore, the dose of the sgRNA and Cas9 complex was considered suitable
for the experiment.
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Figure 10. Generation and analysis of NT-MRF4 disrupted Nile tilapia using CRISPR/Cas9 genome
editing system. (A) Schematic diagram of CRISPR/Cas9 genome editing system followed in this
experiment. (B) The mutations obtained in the MRF4 gene-edited (GE) Nile tilapia. Deleted nu-
cleotides in the MRF4 GE Nile tilapia are indicated with hyphens compared to wild-type (WT).
(C) The predicted amino acid sequence of MRF4 in the GE and WT Nile tilapia. Deleted amino acids
are indicated by hyphens, and altered amino acids are shown in red letters. The number on the right
side represents the total number of amino acids in the coding region.

Mutation analysis revealed that sgRNA1 did not cause any mutation, while sgRNA2
generated two types of deletions in the F1 generation: −1 bp and −15 bp (Figure 10B).
The 15 bp deletion in the nucleotide sequence resulted in the loss of five amino acids. In
contrast, the 1 bp deletion caused a frameshift mutation, leading to premature termination
of transcription (Figure 10C). These results indicate that NT-MRF4 sgRNA2 can effectively
edit the MRF4 gene in Nile tilapia, with mutation types and frequencies showing that
most deletions caused frameshifts, leading to gene structure disruption. The sequencing
chromatograms for these two individuals with the nucleotide deletions at the target site are
presented in Supplementary Figure S5.

3.11. Change in mRNA Expressions of NT-MRF4 and Interacting Growth-Related Genes in WT
and GE Nile Tilapia

The relative mRNA expression analysis of NT-MRF4 and interacting growth-related
genes was performed in 90 dph fish to observe changes in the expression levels of NT-
MRF4 and interacting growth-related genes in WT and NT-MRF4 GE Nile tilapia. The
results are presented in Figure 11. The expression of NT-MRF4 was significantly reduced
in skeletal muscle tissue of GE Nile tilapia compared to WT. Interestingly, the expression
of MyoG was significantly upregulated almost two fold in GE tilapia compared to WT
(Figure 11A). Additionally, the expression of MyoD also significantly increased in GE Nile
tilapia compared to WT. In contrast, MRF5 expression showed no significant changes
between GE and WT tilapia. The mRNA expression levels of MEF2a, MEF2b, and MEF2d
were significantly upregulated in MRF4 GE Nile tilapia compared to WT (Figure 11B).
However, no significant differences were observed in the expression levels of MEF2c
among WT and GE Nile tilapia.
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Figure 11. Changes in relative mRNA expression levels of MRF and MEF2 genes in wild-type and
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4. Discussion

Myogenic regulatory factors (MRFs) play a pivotal role in the determination and
differentiation of skeletal muscle, with MRF4 being the most highly expressed MRF in
healthy mature muscles [11,16,36,37]. This is also significant for MRF4, as its expression
undergoes marked upregulation during embryonic and larval development [17]. In the
present study, a full-length sequence of MRF4 was cloned from the muscle tissue of Nile
tilapia, and functional characterization was performed using mRNA expression analysis
and CRISPR/Cas9 gene editing.

As observed in other vertebrate species, the NT-MRF4 protein sequence contains a
myogenic basic domain and conserved helix-loop-helix (HLH) domain [5,16]. This HLH
domain is a characteristic feature of all MRF genes which is essential for DNA binding and
transcription activation of muscle-related proteins [38,39]. Furthermore, NT-MRF4 contains
a nuclear localization signal, which is a necessary feature for transcriptional factors. This
observation is consistent with the predicted subcellular localization, which suggests the
protein is localized in the nucleus. NT-MRF4 also contains a conserved C-terminal serine-
rich region, a potential phosphorylation site that may play a role in regulatory activities [40].
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The NT-MRF4 sequence shows more than 95% sequence identity with Cichliformes fishes
and more than 80% sequence identity with other fish species, indicating strong conservation
in the length and constitution of the protein. Similarly, the pI of the deduced NT-MRF4
protein is acidic in nature as observed in other fish and higher vertebrates.

The multiple sequence alignment analysis of NT-MRF4 with selected vertebrate MRF4
revealed the presence of conserved domains (HLH, nuclear localization, and serine-rich)
and residues across the amino acid sequences, which suggests evolutionary conservation
of the HLH region. Phylogenetic analysis provided further insights into the evolution-
ary relationship of MRF4 proteins in vertebrates. Specifically, MRF4 was grouped into
mammals, Aves, amphibians, and teleost clades. As expected, NT-MRF4 clustered within
the teleost clade, subclustered with Cichliformes fish, and sub-grouped with Oreochromis
species which share the closest phylogenetic relationship. Evolutionary synteny analysis
also confirmed that Nile tilapia possess the MRF4 gene, and NT-MRF4 has a syntenic match
with MRF4 in other teleost species. Nile tilapia MRF4 is flanked by genes encoding MRF5
and RPS16, which are common genomic features in teleost MRF4. In contrast, in other
vertebrates, such as mammals, Aves, and amphibians, MRF4 is flanked by genes encod-
ing MRF5 and PTPRQ. This difference is likely to result from the 2R genome duplication
event in vertebrates, where an ancestral MRF is duplicated in tandem to generate two
vertebrate MRF genes, MRF4, and MRF5. A similar synteny map of MRF genes was also
reported previously [12]. It has been reported that MRF5 is the ancestral gene of the MRF
family. MRF4 likely emerged from MRF5 via a gene duplication event at the same locus.
Later, MyoG originated from MRF4 via a further duplication event, although MyoG was
subsequently positioned on a different chromosome. MyoD subsequently arose from MRF5
through another gene duplication event on a third chromosome. Phylogenetic analysis
concluded that these four MRF genes evolved from a single ancestral MRF gene due to
gene duplication events and subsequent divergent mutations [41].

Regarding tissue-specific expression, NT-MRF4 mRNA exhibited the highest expres-
sion levels in the muscle tissue. A similar expression pattern was also observed in several
fish species, including zebrafish [14], yellowtail amberjack [15], common snowtrout [16],
ya-fish [17], and golden mandarin fish (Siniperca chuatsi) [7]. The expression of NT-MRF4 in
adult muscle tissue suggests its involvement in the regulation of muscle. During embryonic
and larval development, NT-MRF4 expressions increase from 1-dpf to 60-dph, with the
highest expression observed in the post-larval stages and adult fish muscles. These findings
indicate that NT-MRF4 is involved in adult muscle regulation and both embryonic and
larval development. The elevated expression in the later stages of development suggests
that NT-MRF4 plays a significant role during this period when muscle fibers are more
pronounced and in the maintenance of adult muscle. The expression of MRF4 was also
reported in the embryonic and larval development of various vertebrate species, including
yellowtail amberjack [15], olive flounder (Paralichthys olivaceus) [42], Jinding ducks (Anas
platyrhynchos domestica) [43], and African clawed frog (Xenopus laevis) [44]. In common
snowtrout, MRF4 expression was higher in adult fish muscle compared to younger fish [16],
which aligns with the findings of the present study. This may be linked to a higher terminal
differentiation rate in the myogenic process of muscle during the later stage of the life
cycle [14].

In the context of starvation and re-feeding in Nile tilapia, the expression of NT-MRF4
significantly decreased during the starvation period compared to the control group. The
observed changes in mRNA expressions during the starvation phase may be attributed to
the suppression of muscle proliferation and differentiation due to the absence of sufficient
nutrients, which likely contributes to the reduction in MRF4 expression levels. However,
during the re-feeding phase, the expression increased significantly compared to the star-
vation period. This upregulation during re-feeding may be associated with the process of
muscle regeneration and the realignment of muscle fibers, which are critical for recovery
after a period of nutritional stress and starvation-induced degradation of myofilaments,
as reported in common snowtrout [16], Dabry’s sturgeon (Acipenser dabryanus) [45], and
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African clawed frog [46]. The increase in MRF4 expression during re-feeding supports
the notion that MRFs play an essential role in muscle repair and regeneration following
muscle atrophy induced by starvation [46]. Similarly to the findings in the present study, a
sharp decrease in MRF4 expression was observed in Dabry’s sturgeon during prolonged
starvation [45]. This decrease may be due to the negative impact of reduced MRF4 levels
on muscle development, as it likely inhibits both the proliferation and differentiation of
muscle cells.

MRF4-knockout mice exhibited no observable physical abnormalities at birth [18].
Furthermore, RNAi-mediated silencing of MRF4 in mice led to an increase in myofiber size
or myofiber hypertrophy [13]. Similarly, deletion of the MRF4 gene in mice promoted a
slight trend toward increased muscle fiber size [18]. Despite the reductions in MRF4 mRNA
or protein levels in these mutants, inactivation of the MRF4 gene does not appear to cause
defects in muscle development. In the present study, CRISPR/Cas9-mediated disruption
of the MRF4 gene was performed in Nile tilapia to produce MRF4 mutants. The designed
sgRNA effectively targeted and disrupted the NT-MRF4 gene, resulting in two forms of
deletion. One deletion introduced a frame-shift mutation that generated a premature stop
codon, causing early translation termination, and disrupting the molecular functions of
the NT-MRF4 gene. Meanwhile, gene editing of NT-MRF4 led to a significant reduction
in NT-MRF4 mRNA levels in GE Nile tilapia compared to WT fish. Previous studies also
reported that CRISPR/Cas9-mediated gene disruption lowers the mRNA levels of target
genes in several fish species, including zebrafish [23] and mud loach [47].

The present study investigated the role of MRF4 in regulating muscle-specific gene
expression by examining the expression of MRF and MEF2 genes in GE Nile tilapia. The
relative expression levels of MyoG and MyoD were significantly increased in GE Nile tilapia
compared to WT fish, while no significant changes were observed in MRF5 expression.
Previous studies have indicated that in MRF4 knockout mice, MRF4 function is likely
compensated by other myogenic factor genes, such as MyoG and/or MyoD, allowing
muscle development and maintenance to continue [18]. In the present study, among the
MEF2 genes, the expression of MEF2a, MEF2b, and MEF2d increased significantly in MRF4
GE Nile tilapia, while no significant change was observed in MEF2c expression. These
changes in expression help to continue the maintenance of muscle development in MRF4
GE Nile tilapia. The protein–protein interaction network predictions for NT-MRF4 revealed
a strong association with MEF2 (MEF2b and MEF2d) and MyoG proteins. Indeed, MEF2
proteins are known to regulate the function of myogenic bHLH genes, including MyoG and
MRF4, and play a role in skeletal muscle development during embryogenesis and skeletal
muscle maturation [48,49]. Additionally, it has been demonstrated that knockdown of
MRF4 increases the transcriptional activity of MEF2, while MRF4 overexpression represses
it. In contrast, MyoG overexpression has the opposite effect on MEF2 genes [12,50]. Among
the MRFs, MyoG and MRF4 are essential myogenic factors involved in the later stages of
myogenesis [51,52], and previous studies suggest that MRF4 and MyoG can functionally
substitute for one another during this process [41]. Therefore, the strong association
between MRF4 and MyoG, along with the higher expression of MyoG in GE fish observed
in the present study, suggests that MyoG may compensate for the function of NT-MRF4 to
maintain and continue muscle development and regulation in Nile tilapia. Based on the
findings, future research could focus on the compensatory role of MyoG in the absence of
NT-MRF4 and further explore the regulatory networks involving MEF2 family members in
muscle development. Additionally, the use of CRISPR/Cas9 gene editing in non-model
organisms like Nile tilapia could provide deeper insights into myogenic regulation.

5. Conclusions

NT-MRF4, a myogenic factor gene, was cloned from the muscle tissue of Nile tilapia,
which plays an active role in muscle development and maintenance. NT-MRF4 is exclu-
sively expressed in the muscle tissue of adult Nile tilapia, as well as in embryonic and
larval stages. Protein–protein interactions revealed a strong association of NT-MRF4 with
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MyoG and MEF2 proteins. CRISPR/Cas9 gene editing of NT-MRF4 successfully generated
two types of gene disruptions, resulting in a frame-shift mutation in the transcribed pro-
tein. Expression analysis of MRF and MEF2 genes in GE Nile tilapia showed that MyoG
compensates for the role of MRF4 in gene-edited Nile tilapia, where NT-MRF4 expression
decreased drastically, and MyoG expression increased nearly double compared to WT
fish. Additionally, the expression of MEF2 genes, specifically MEF2b, MEF2d, and MEF2a,
was significantly higher in GE Nile tilapia than in WT, which helps to continue muscle
development in GE fish. Overall, these findings suggest that NT-MRF4 regulates muscle
development in Nile tilapia and that MyoG may compensate for NT-MRF4 in GE Nile
tilapia to maintain normal muscle development and growth.
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