
Advances in modeling cellular state dynamics: integrating omics data and 
predictive techniques
Sungwon Jung a,b

aDepartment of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea; bGachon Institute of 
Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea

ABSTRACT  
Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex 
biological processes such as cell differentiation, disease progression, and tissue development. This 
review provides a comprehensive overview of current approaches for modeling cellular state 
dynamics, focusing on techniques ranging from dynamic or static biomolecular network models 
to deep learning models. We highlight how these approaches integrated with various omics 
data such as transcriptomics, and single-cell RNA sequencing could be used to capture and 
predict cellular behavior and transitions. We also discuss applications of these modeling 
approaches in predicting gene knockout effects, designing targeted interventions, and 
simulating organ development. This review emphasizes the importance of selecting appropriate 
modeling strategies based on scalability and resolution requirements, which vary according to 
the complexity and size of biological systems under study. By evaluating strengths, limitations, 
and recent advancements of these methodologies, we aim to guide future research in 
developing more robust and interpretable models for understanding and manipulating cellular 
state dynamics in various biological contexts, ultimately advancing therapeutic strategies and 
precision medicine.
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Introduction

Manipulation and intervening cell phenotypes have long 
been a central objective in the field of biology primarily 
due to their potential in advancing therapeutic strat
egies and understanding disease mechanisms. Phenoty
pic changes in cells, such as alterations in morphology, 
proliferation rates, and gene expression profiles, are 
often driven by external stimuli or genetic modifications, 
providing crucial insights into cellular function and dys
function. The capability to engineer and control cell phe
notypes has led to significant advancements in areas 
such as regenerative medicine, cancer treatment, and 
immune therapies (Kim et al. 2024a). For instance, repro
gramming of somatic cells to induced pluripotent stem 
cells (Takahashi and Yamanaka 2006) has demonstrated 
a profound impact of modulating cellular states for 
therapeutic purposes. More recently, advancements in 
CRISPR-Cas9 gene-editing technology have further facili
tated precise interventions at the molecular level, allow
ing for targeted changes of cell phenotypes and paving 
the way for personalized medicine approaches (Doudna 

and Charpentier 2014). These breakthroughs underscore 
the pivotal role of phenotype manipulation in both fun
damental biology and translational medicine.

Strategies for researching the intervention of cell phe
notypes have evolved significantly, transitioning from 
traditional experimental trial-and-error approaches that 
rely on isolated findings to more sophisticated 
methods grounded in a comprehensive understanding 
of biomolecular mechanisms. Initially, much of cellular 
biology research has focused on altering phenotypes 
based on single-gene experiments or individual 
pathway perturbations, often resulting in limited pre
dictability and inconsistent outcomes. However, with 
the advent of high-throughput technologies and 
omics-based data such as genomics, transcriptomics, 
proteomics, and metabolomics, researchers can now 
map complex cellular networks and identify key regulat
ory components at the systems biology level. This shift 
enables a more holistic approach to phenotype modu
lation, where interventions are designed based on the 
integration of large-scale data to pinpoint molecular 
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drivers of cellular behavior (Barabasi et al. 2011; Aeber
sold and Mann 2016). As a result, researchers can now 
alter components within these identified mechanisms 
with a higher accuracy, transforming the field from 
empirical experimentation to predictive and mechan
ism-based interventions that are key to advancing per
sonalized medicine and regenerative therapies.

Recent studies have increasingly focused on interven
ing cell phenotypes through systematic modeling of cel
lular state dynamics, leveraging omics data to capture 
the complex and dynamic nature of cellular processes. 
These models utilize large-scale datasets of various 
omics profiles, allowing researchers to construct compu
tational frameworks that can simulate cellular responses 
to various stimuli or perturbations. By analyzing these 
models, it becomes possible to predict phenotypic out
comes based on molecular alterations and to identify 
key regulatory genes for targeted interventions (Trapnell 
et al. 2014). Such approaches have opened new avenues 
for precision medicine, tissue engineering, and drug dis
covery, offering the potential to manipulate cell states 
with unprecedented specificity. However, it is crucial 
for the scientific community to assess these emerging 
methodologies critically and evaluate their advantages – 
such as the ability to capture dynamic interactions and 
predict long-term phenotypic changes – against their 
limitations such as the complexity of model validation 
and the potential for overfitting due to noisy or incom
plete data. Comprehensive review of these recent 
approaches will help us refine their applications and 
ensure that models are robust and generalizable, ulti
mately advancing the field of cellular phenotypic 
control. To assist readers in navigating the key technical 
terms and concepts used throughout this review, a glos
sary of definitions has been included as Table 1.

Models of cellular state dynamics

Concept of cellular states and cellular state 
dynamics

The concept of representing cell phenotypes as discrete 
states within a dynamic landscape of cellular state tran
sitions offers a powerful framework for understanding 
cellular behavior and its regulation. In this concept, 
each cell phenotype characterized by a unique combi
nation of gene expression, protein activity, and meta
bolic functions can be considered a steady state within 
a cellular state space (Figure 1(A)). Transitions between 
phenotypes such as those observed during differen
tiation, reprogramming, and disease progression are 
viewed as shifts in cellular state dynamics governed by 
both intrinsic molecular regulatory networks and 

extrinsic environmental cues (Moris et al. 2016; Jeong 
et al. 2023). These transitions often occur along 
defined paths within the cellular state space, where 
cells traverse through intermediate or unsteady states 
before reaching a new phenotype. By modeling cell phe
notypes as cellular states and their transitions as 
dynamic processes, it becomes possible to predict cellu
lar responses to perturbations, identify critical regulatory 
factors, and even manipulate cell fate (Figure 1(B)). This 
framework has been particularly useful for understand
ing complex biological processes such as cancer metas
tasis and stem cell differentiation, where multiple 
phenotypic states and transitions are involved (Gupta 
et al. 2011). As such, modeling the dynamics of cellular 
states provides a unifying approach to studying pheno
typic changes of cells and mechanisms underlying them. 
Many different modeling approaches have been used. 
Representative strategies of modeling cellular state 
dynamics will be covered in the following subsections.

Modeling dynamics of cellular states using 
boolean and probabilistic boolean networks

A Boolean network (BN) is a discrete mathematical model 
used to represent regulatory interactions between com
ponents of biological systems, such as genes or proteins, 
where each component is assigned a binary state (0 or 1, 
representing inactive or active, respectively) (Figure 2(A)). 
The state of each component at any time is determined 
by a Boolean function of the states of its regulators at 
the previous time point. These Boolean functions define 
logical rules governing the system’s behavior. Over 
time, the model transitions through different cellular 
states and forms a trajectory in a cellular state space. 
The state dynamics of a BN describes how the model 
evolves from an initial cellular state, following its update 
rules at each discrete time step. These dynamics even
tually reach a steady state or an attractor, which can be 
a fixed point where the cell settles into a single state or 
a cyclic attractor where the cell oscillates between a set 
of states. Attractors correspond to the long-term behavior 
of a biological system and often represent stable cellular 
phenotypes or biological processes such as cell differen
tiation and apoptosis. Many studies (Barman and Kwon 
2017; Munoz et al. 2018; Liu et al. 2021; Trinh and Kwon 
2021; Choi et al. 2022; Liu et al. 2022; Argyris et al. 2023; 
Benes et al. 2023; Kim et al. 2023; Singh et al. 2023; Kim 
et al. 2024b) have utilized BN to model the dynamics of 
cellular states. For instance, BN has been used to study 
gene regulatory networks (GRNs), focusing on steady- 
state gene expression data (Trinh and Kwon 2021). Simi
larly, fibroblast-like synoviocytes in rheumatoid arthritis 
have been simulated (Singh et al. 2023), predicting drug 
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responses based on steady state of cell dynamics. BN has 
many applications for modeling cellular state dynamics, 
demonstrating the utility of BN in capturing the 
complex regulatory behavior of biological systems 
through dynamic and steady-state properties of cells.

A Probabilistic Boolean network (PBN) is a mathemat
ical model used to represent the dynamics by extending 
the traditional BN framework to incorporate stochastic 
elements (Figure 2(B)). In a PBN, the state of each gene 
is represented as a binary variable (0 or 1), like the rep
resentation in BN. However, the state of a gene 
evolves over time based on a set of probabilistically 
selected Boolean functions instead of a single Boolean 
function. This probabilistic selection accounts for 
inherent biological uncertainty and noise in gene 
expression. The state of the cell evolves according to 
the probabilistically chosen Boolean functions, generat
ing a stochastic dynamic system of cellular state tran
sitions. Over time, the cell may reach a steady state, 
where distribution of cellular states becomes stationary. 
Several studies (Tercan et al. 2022; Šliogeris et al. 2023) 
have applied PBNs to model cellular dynamics in 
cancer and transdifferentiation, respectively, emphasiz
ing the importance of identifying key attractors in pre
dicting cellular outcomes. Additionally, methods have 

been proposed for designing PBNs that can achieve 
desired cellular steady-state distributions (Kobayashi 
and Hiraishi 2017), offering insights into how interven
tions in gene networks can control cell states. These 
works demonstrate the utility of PBNs in modeling the 
probabilistic and dynamic nature of cellular state 
regulation.

These BN and PBN modeling are widely used 
approaches to studying dynamics of cellular states by 
representing mechanisms of dynamics as discrete 
systems. One of the key advantages of both BN and PBN 
modeling is their ability to simulate cell state transitions 
over time, enabling the discovery of steady states, some 
of which may represent unknown or unobserved cell phe
notypes. This is particularly important for identifying 
hidden cellular behaviors or potential disease states. 
Additionally, they allow for the simulation of dynamic 
responses to interventions, such as activating or inhibiting 
specific genes and altering regulatory interactions, provid
ing a powerful framework to explore therapeutic strat
egies in silico. Despite these advantages, both BN and 
PBN approaches face limitations in scalability because 
the size of the cellular state space grows exponentially 
with the number of genes, making it computationally 
challenging to model large biological mechanisms. This 

Table 1. Glossary of key concepts.
Attractors in network models Stable states of a system in dynamic models, representing phenotypes or biological processes like differentiation or 

apoptosis.
Boolean networks (BN) A mathematical model where biological systems are represented as networks of genes or proteins, each with binary states 

(active or inactive), used to study state transitions.
Cell reprogramming The process of converting one cell type into another, such as somatic cells into induced pluripotent stem cells, often for 

therapeutic applications.
Cellular state dynamics The study of changes in cellular states (phenotypes) over time, often in response to internal genetic regulation or external 

stimuli. Used to understand processes such as cell differentiation, disease progression, and cellular reprogramming.
Critical state transitions Key points where cellular states shift dramatically, often associated with the onset of diseases or major phenotypic 

changes.
Deep learning in biology Machine learning methods using neural networks to analyze large-scale biological data, predict cellular behavior, and 

simulate responses to perturbations.
Dynamic vs. Statis models 

Dynamic models 
Static models

Represent temporal changes in cellular states, capturing transitions and interactions over time. 
Represent regulatory interactions as fixed snapshots, useful for identifying critical genes or pathways

Gene regulatory networks (GRNs) Networks depicting regulatory interactions among genes, essential for understanding the control of cellular functions and 
responses.

Genome-scale models Computational models that incorporate data from entire genomes to simulate cellular metabolism, gene regulation, or 
interaction networks.

Omics data Comprehensive datasets that include information about various molecular layers of cells, such as genomics (DNA 
sequences), transcriptomics (gene expression), proteomics (protein expression), and metabolomics (metabolite profiles).

Pathway activity inference Predicting the activity of biological pathways based on gene or protein expression data to understand cellular responses 
or identify intervention points.

Perturbation Any alteration or intervention in a biological system, such as gene knockouts, drug treatments, or environmental changes, 
used to study system responses and predict outcomes.

Petri-net A graphical and mathematical modeling tool used to represent concurrent processes in biological systems, incorporating 
both qualitative and quantitative data to simulate interactions and dynamics of complex networks.

Probabilistic Boolean networks 
(PBN)

An extension of Boolean networks incorporating probabilistic rules to account for biological variability and uncertainty in 
regulatory mechanisms.

Single-cell RNA sequencing 
(scRNA-seq)

A technique for analyzing gene expression at the single-cell level, offering insights into cellular heterogeneity and 
dynamic state transitions.

State space A conceptual representation of all possible cellular states and the transitions between them, often visualized as a 
landscape where valleys represent stable states (attractors).

Time-series omics data Sequentially collected data that captures temporal changes in omics profiles, allowing for the modeling of dynamic 
biological processes.
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restricts their applicability to small – or medium-scale net
works, particularly when high-resolution cellular state 
transition dynamics are required. Furthermore, although 
simplification of gene expression into binary states is prac
tical, it might overlook finer gradations of gene activity 
that play critical roles in complex cellular processes.

While BNs and PBNs provide discrete frameworks for 
modeling cellular dynamics, ordinary differential 
equations (ODEs) are widely used to model the continu
ous evolution of molecular states. For example, ODE- 
based models have been used to capture dynamic inter
actions in signaling pathways, such as the MAPK signaling 
cascade, where time-resolved molecular concentrations 
are predicted under different perturbations (Kholodenko 
2000). Another study applied ODEs to model the Wnt sig
naling pathway, providing insights into the regulatory 
mechanisms of stem cell differentiation (Giuraniuc et al. 
2022). These approaches highlight the ability of ODEs to 
offer a detailed, time-dependent understanding of cellu
lar processes, complementing the discrete perspectives 
of Boolean models.

Modeling cellular state dynamics using petri-net

Petri-net is a mathematical modeling tool widely used 
for representing and analyzing networks, particularly 
those involving concurrent processes and complex bio
chemical interactions (Murata 1989). It consists of 
places, transitions, and tokens, which represent biologi
cal entities (e.g. metabolites or states), reactions, and 
their current states, respectively (Figure 2(C)). Petri- 
net’s ability to incorporate both qualitative and quanti
tative aspects of biological systems make it particularly 
suited for modeling metabolic pathways, gene regulat
ory networks, and signaling cascades.

For example, a Petri-net can be used to simulate 
metabolic flux in systems biology by capturing the 
dynamic behavior of metabolites and enzymatic reac
tion over time (Baldan et al. 2010). This approach has 
been employed in studies of systems-level phenomena 
such as cellular metabolism under stress conditions 
and drug interaction effects on signaling pathways. 
Additionally, the extension of Petri-net to stochastic 
Petri-nets allows for modeling the inherent randomness 
in gene expression and molecular interactions, offering 
insights into noise-driven phenomena in cellular 
systems (Peter and Peccoud 1998).

One of the strengths of Petri-net is its graphical rep
resentation, which provides an intuitive way to visualize 
complex interactions. Furthermore, Petri-nets can inte
grate multi-omics data, enabling researchers to model 
system-wide interactions with high precision. However, 
challenges such as scalability and the need for accurate 
parameterization remain key limitations, particularly for 
large-scale networks.

Predicting cellular states using deep learning

Deep learning, a subset of machine learning, involves 
using neural networks with multiple layers to learn hier
archical representations of data, enabling models to 
capture complex patterns and interactions. In biological 
contexts, deep learning can be enhanced by integrating 
prior biological knowledge such as genetic interactions 
and GRNs to inform the learning process. By embedding 
this knowledge into a deep learning model (Roohani 
et al. 2024), prediction of multigene perturbation out
comes improves in accuracy, even for gene combi
nations not previously observed experimentally (Figure 
2(E)). Similarly, a deep generative model ca be leveraged 

Figure 1. Cellular state space and state dynamics. (A) An example of representing different cell phenotypes as steady states within the 
landscape of cellular state. Bright-colored space represents the area of unstable states, and the dark colored space represents the area 
of stable steady states. (B) Concept of cellular state transitions between steady states of cell phenotypes through unstable intermedi
ate states. Gray-colored states are intermediate states that will converge to nearby steady states, where several steady states of 
different phenotypes can be present. The approach of controlling cell state dynamics is applying intervention on the cell state 
space and altering the trajectory of cell state changes.
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Figure 2. Popular models for studying dynamics of cellular states. (A) An example of Boolean network of three genes. Each state is 
represented as a node with three 0 (inactive) or 1 (active) as values. Each state will go to another state in the next time step in a 
deterministic way. Green states are attractor (steady) states and gray states are unstable intermediate states. (B) An example of Prob
abilistic Boolean network of three genes. State transition occurs probabilistically based on the specified probability. (C) An example of 
a Petri-net model. Circles represent places and rectangles represent transitions. (D) Estimating key intervention points from static 
regulatory models. Static regulatory model is built from data of multiple cellular states. Regulatory components that are different 
between states are identified (blue-colored nodes). Based on identified regulatory components of difference, key biological com
ponents or genes (red-colored nodes) of high impact on the difference are identified as potential interventions that can drive differ
ences between states. (E) Deep learning approach of estimating changed cellular state (omics profile) based on a current state and 
perturbation information. Prior knowledge on genetic regulations is often integrated in the process of learning and data embedding. 
Generative models can be used to construct a new profile of cellular state after perturbation.
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to infer effects of gene knockouts on cellular states 
without the need for physical knockout data (Yang 
et al. 2023) using variational graph autoencoders to 
simulate GRNs. These approaches illustrate how deep 
learning models, when coupled with prior biological 
knowledge, can predict novel cellular states, enable 
exploration of unseen genetic perturbations and simu
lation of complex cellular responses, and advance the 
field of modeling cellular state dynamics and genetic 
perturbation prediction.

Predicting cellular state dynamics by analyzing 
static biomolecular networks

Analyzing static biomolecular network structures has 
been also a popular approach for predicting effective 
intervention points that can guide cellular states 
toward desirable phenotypes (Gao et al. 2014; Sun 
et al. 2015; Alvarez et al. 2016; Hu et al. 2019; Zhong 
et al. 2023). This approach involves comparing biomole
cular network structures between different cellular 
states, such as healthy and diseased conditions, to ident
ify critical genes or interactions that might play a pivotal 
role in driving cell state transitions (Figure 2(D)). By lever
aging network-based metrics and control theory, 
researchers can suggest specific genes or proteins that, 
when targeted, may modulate the network’s behavior 
and potentially reverse or halt disease progression. For 
example, an approach has been introduced to detect 
tipping points in cellular systems by analyzing network 
entropy changes at a single-sample level (Zhong et al. 
2023), revealing early warning signals of critical state 
transitions in complex diseases. Similarly, a method has 
been developed for applying network controllability 
theory to estimate optimal control genes in disease-per
turbed networks (Hu et al. 2019), suggesting them as 
potential targets for combination therapies. These 
studies exemplify how comparative network analysis 
can uncover key regulators and synergistic intervention 
points, offering insights into effective strategies for 
therapeutic interventions.

Scalability of modeling the dynamics of 
cellular states

Modeling of cellular state dynamics can be approached 
through various methodologies, each offering distinct 
levels of scalability and resolution. State-space models 
such as BN (discrete state) and ordinary differential 
equations (continuous state) generally do not have 
high scalability due to exponential increase of cellular 
states with a large number of genes, making them suit
able for capturing cellular states of small biomolecular 

mechanisms. Machine learning-based models, particu
larly deep learning approaches, exhibit flexibility in cap
turing complex dynamics with varying scalability and 
resolution. However, they often require large datasets 
for training. Thus, the choice of modeling approach 
depends on trade-offs between scalability and resol
ution, which are determined by specific characteristics 
and goals of the study.

Modeling the dynamics of cellular states in small 
scale with high-resolution state information

Traditionally, BN modeling has been widely used to 
study the dynamics of cellular states at the scale of 
tens of genes, allowing researchers to capture key regu
latory interactions governing cellular processes in a sim
plified and qualitative manner. This approach is 
exemplified by many studies (Munoz et al. 2018; Choi 
et al. 2022; Kim et al. 2023), where BNs have been 
applied to infer or simulate cellular behavior with man
ageable computational complexity, focusing on rela
tively small networks. However, as the complexity of 
biological systems requires more comprehensive rep
resentations, recent advancements have developed 
strategies to increase the scalability of BN-based model
ing to encompass hundreds of genes. These strategies 
often involve integrating machine learning techniques, 
optimization algorithms, and more sophisticated data 
integration methods. For instance, a strategy has been 
introduced to combine machine learning with BN (Kim 
et al. 2024b), while a constrained genetic algorithm- 
based inference method has been developed to 
handle larger models (Trinh and Kwon 2021). A novel 
encoding scheme has been proposed for efficient 
Boolean function representation (Liu et al. 2021), and 
mutual information-based feature selection has been 
utilized to scale up the modeling (Barman and Kwon 
2017). Additionally, large-scale Boolean models have 
been constructed by integrating extensive signaling 
pathways to simulate disease-specific cellular behaviors 
(Singh et al. 2023). These advancements demonstrate 
that it is now feasible to model dynamics of cellular 
states at a larger-scale, enabling more comprehensive 
simulations of complex cellular systems.

PBNs have been also used to model the dynamics of 
cellular states due to their ability to incorporate stochasti
city and uncertainty inherent in biological systems. 
However, the scalability of PBNs is often further limited, 
typically up to tens of genes, because the stochastic 
nature of the model can lead to a rapid increase in compu
tational complexity with the number of genes. For 
instance, a PBN inference method has been demonstrated 
directly from steady-state gene expression data (Šliogeris 
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et al. 2023). However, it could only feasibly model up to a 
few dozen genes due to exponential growth of cellular 
state space. To address such limitation, a sampled 
network approach has been recently introduced (Tercan 
et al. 2022), which can significantly reduce computational 
demands, thereby enabling the modeling of cellular state 
dynamics involving hundreds of genes. This approach 
marks a promising advancement in applying PBNs to 
more complex and larger-scale models of cellular state 
dynamics, expanding the potential of PBNs for capturing 
intricate biological processes at a broader scale.

Modeling the dynamics of cellular states in large 
scale

Deep learning-based approaches have demonstrated sig
nificant scalability in modeling the dynamics of cellular 
states particularly due to their ability to handle high- 
dimensional data and learn complex, non-linear relation
ships among thousands of genes. These methods leverage 
advanced deep learning architectures that can integrate 
large-scale data with gene regulatory networks to model 
intricate gene interactions. For instance, a graph-based 
deep learning model has been utilized to infer gene 
knockout effects using wild-type scRNA-seq data (Yang 
et al. 2023), effectively capturing regulatory changes 
across thousands of cells and gene interactions. Similarly, 
the scalability of deep learning models has been demon
strated (Roohani et al. 2024), which integrate a knowledge 
graph of gene–gene relationships to predict transcrip
tional outcomes of both single and multigene pertur
bations at a scale involving over 1,500 perturbations and 
170,000 cells. The scalability of these approaches is 
rooted in their ability to efficiently encode complex 
gene relationships and perturbational effects into the 
model, allowing for simultaneous analysis of thousands 
of genes and prediction of novel genetic interactions. 
This scalability is crucial for advancing our understanding 
of cellular processes and for developing precise genetic 
interventions.

Static network-based analysis of cellular state 
changes also offers a scalable approach that can efficien
tly handle thousands of genes, making it suitable for 
analyzing large biological systems. This scalability 
arises from the fact that static networks represent inter
actions between genes as fixed connections, allowing 
for the use of well-established algorithms to identify 
critical genes or pathways without considering the 
concept of state dynamics. This makes the construction 
and analysis of static models computationally simpler 
and more feasible compared to those of dynamic 
models, which require extensive data to accurately 
capture temporal changes in cellular states. The 

Sample-Perturbed Network Entropy (SPNE) method has 
been introduced for identifying critical transitions in bio
logical systems (Zhong et al. 2023), while a method has 
been developed to identify optimal control genes in 
disease-perturbed networks for combination therapy 
(Hu et al. 2019). Both methods leveraged static 
network representations to identify critical genes and 
pathways effectively. However, this approach has limit
ations compared to dynamic network-based modeling, 
as it cannot capture temporal or causal relationships 
inherent in cellular processes, potentially missing transi
ent interactions or regulatory events that occur during 
cellular state transitions. Thus, while static network 
analysis is more scalable and easier to implement than 
dynamic network analysis, it provides a less detailed 
view of the dynamic changes in cellular states.

Necessary data for modeling cellular state 
dynamics

Gene expression data of one or more steady 
states

To model cellular state dynamics, many methods have 
been tried to capture the dynamics model that can rep
resent one or more observed steady states. Each steady 
state represents a distinct cellular phenotype. These 
methods allow for the analysis of cellular state transitions, 
including shifts between different phenotypes. Such 
models can help identify critical regulatory pathways 
and predict cellular responses to perturbations. For 
instance, several studies (Trinh and Kwon 2021; Šliogeris 
et al. 2023) have focused on inferring cellular dynamics 
using data from a single steady state, enabling the recon
struction of PBNs and BNs, respectively, from such limited 
data. This approach provides insights into underlying 
regulatory mechanisms of a particular cellular phenotype 
without requiring data of various cellular states. In con
trast, some studies (Tercan et al. 2022; Zhong et al. 
2023) have used data from multiple steady states to con
struct models that can capture the dynamics between 
different cellular phenotypes. These models provide a 
more comprehensive understanding of transitions 
between phenotypes, such as during transdifferentiation 
and disease progression, by identifying critical states and 
molecular mechanisms driving these changes.

Single-cell RNA-Seq and multi-omics data

Single-cell RNA-seq (scRNA-seq) provides a high-resol
ution snapshot of the transcriptomic landscape at the 
individual cell level, allowing researchers to capture 
the heterogeneity and dynamic transitions of cellular 
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states. By collecting scRNA-seq data from cells of various 
types or states, it is possible to construct models that can 
map the trajectories of cellular differentiation, activation, 
or reprogramming processes, thereby elucidating 
dynamic pathways and transitions between distinct cel
lular states (Huynh-Thu et al. 2010; Lim et al. 2016; Mat
sumoto and Kiryu 2016; Aibar et al. 2017; Chan et al. 
2017; Matsumoto et al. 2017; Specht and Li 2017; Papili 
Gao et al. 2018; Woodhouse et al. 2018; Moerman 
et al. 2019; Kartha et al. 2022; Osorio et al. 2022; Fleck 
et al. 2023; González-Blas C et al. 2023; Kamimoto et al. 
2023; Shin and Cho 2023; Wang et al. 2023; Zhang 
et al. 2023; Lee et al. 2024a). Additionally, scRNA-seq 
data from perturbed cells, such as those exposed to 
drugs, genetic modifications, or environmental stressors, 
can be used to directly model the impact of these pertur
bations on cellular profiles (Lotfollahi et al. 2019; Osorio 
et al. 2022; Yang et al. 2023; Roohani et al. 2024). This 
approach enables the identification of GRNs, pathway 
alterations, and specific molecular mechanisms that 
drive cellular responses to perturbations, thus providing 
insights into how cells adapt or transition under various 
conditions. By integrating temporal or pseudotime 
analysis with scRNA-seq data, researchers can further 
infer the progression and lineage relationships of cellular 
states, making it a powerful tool for understanding cellu
lar dynamics in development, disease, and response to 
treatment.

Single-cell multi-omics data, which simultaneously 
captures transcriptomic, epigenomic, and proteomic 
layers, also offers unparalleled resolution in understand
ing cellular state dynamics (Lee et al. 2024b). The 
inclusion of epigenetic data, such as DNA methylation 
and histone modifications, provides critical insights 
into the regulatory mechanisms that govern cellular 
transitions and fate decisions. For instance, single-cell 
ATAC-seq combined with RNA-seq has been used to 
map the chromatin accessibility landscape alongside 
gene expression profiles, enabling a more comprehen
sive modeling of stem cell differentiation processes 
(Buenrostro et al. 2015). Incorporating epigenetic 
status into multi-omics data for cellular state modeling 
allows for a deeper understanding of how chromatin 
structure and regulatory elements influence dynamic 
cellular behaviors.

Time-series omics data

The modeling of cellular state dynamics using time- 
series omics data provides an opportunity to capture 
temporal changes in biological systems, enabling the 
construction of models that can more accurately 
reflect the dynamic nature of cellular states over time, 

rather than relying on static or steady-state profiles. 
This approach is particularly useful for understanding 
complex biological processes as it allows for the identifi
cation of regulatory relationships and interactions that 
change in response to different conditions or stimuli. 
For instance, the effectiveness of using time-series 
gene expression data has been demonstrated to infer 
BNs with high accuracy (Liu et al. 2021), thereby recon
structing temporal dynamics of GRNs. Similarly, a 
method has been employed to infer BNs from time- 
series data (Barman and Kwon 2017), improving the 
ability to predict both the structure and dynamics of cel
lular states. More recently, time-series data has been 
used to build large-scale dynamic models (Borzou 
et al. 2023), integrating protein–protein interactions 
and biochemical reactions to capture genome-wide 
changes in cellular states over time. A limitation in 
using time-series data is the difficulty of obtaining 
time-series profiles over short time periods to accurately 
capture the changing status of cellular dynamics. Never
theless, these studies exemplify the utility of time-series 
data in developing models that represent the evolving 
nature of cellular states, providing deeper insights into 
underlying mechanisms of complex biological systems.

Useful omics atlas databases

In addition to individually available omics data, omics 
atlas databases provide valuable resources for modeling 
cellular states by integrating multi-layered data. For 
instance, the Human Cell Atlas (Regev et al. 2017) 
offers high-resolution transcriptomic data, which are 
critical for understanding cellular heterogeneity and 
dynamic state transitions. The Mouse Organogenesis 
Cell Atlas (Cao et al. 2019) provides high-resolution 
single-cell RNA-sequencing data across various stages 
of mouse development, offering a valuable resource 
for modeling cellular states during organogenesis. Fur
thermore, resources like scMoresDB (Chen et al. 2024) 
and SMARTdb (Liu et al. 2024) include integrated 
multi-omics data, enabling more comprehensive model
ing of regulatory mechanisms underlying cellular state 
changes.

Applications of modeling cellular state 
dynamics

Modeling organ development process

Modeling the dynamics of cellular states is a powerful 
approach to understanding intricate processes that 
govern organ development. By capturing interactions 
and regulatory mechanisms between genes, proteins, 
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and other molecular components, researchers can con
struct models to predict how cellular behavior evolves 
over time, ultimately leading to the formation and differ
entiation of tissues and organs. For example, regulatory 
dynamics has been modeled for Arabidopsis thaliana’s 
flower and root development (Munoz et al. 2018). This 
demonstrates the potential of modeling the dynamic 
behavior of cellular states, thereby offering valuable 
insights into fundamental processes that drive organ 
development.

Predicting result of gene knockout or target 
intervention

Modeling the dynamics of cellular states can be also 
used to predict effects of perturbations, such as gene 
knockouts and targeted interventions. This process typi
cally involves three main steps: (1) constructing a 
dynamic model that captures the behavior of cellular 
states, (2) introducing perturbations to the model to 
simulate gene knockouts or drug treatments, and (3) 
simulating the model to identify new steady states and 
understand cellular dynamics after perturbation. For 
instance, this approach has been applied to predict 
gene functions under virtual knockout conditions 
using scRNA-seq data (Yang et al. 2023). Similarly, 
steady-state gene expression dynamics has been 
modeled (Trinh and Kwon 2021), revealing regulatory 
structures that could be influenced by gene knockouts. 
Drug synergies have been predicted in rheumatoid 
arthritis (Singh et al. 2023), demonstrating how 
dynamic modeling can guide therapeutic interventions. 
Cellular responses to perturbations have been also simu
lated (Kim et al. 2024b), highlighting its use in predicting 
anti-cancer drug responses. Transcriptional outcomes 
have been predicted in response to multigene pertur
bations (Roohani et al. 2024). Additionally, a method 
has been presented to identify optimal control genes 
in disease-perturbed networks (Hu et al. 2019), serving 
as targets for combination therapy. Cellular responses 
to treatments have been also simulated in diseases 
such as colorectal cancer (Borzou et al. 2023). These 
studies collectively demonstrate the potential of 

dynamic modeling in predicting the impact of genetic 
or pharmacological interventions on cellular states, pro
viding valuable insights for systems biology and pre
cision medicine.

Modifying cellular states to desired phenotypes

Another promising application of modeling cellular state 
dynamics is identifying optimal interventions that can 
modify cells from initial to desired states, providing 
insights into how cellular behaviors can be controlled 
for therapeutic applications. This process typically 
involves collecting data from multiple cellular states, 
constructing a model that captures dynamic interactions 
within the cellular system, and then simulating the 
model to identify interventions capable of driving the 
transition from an initial state to a desired state. For 
instance, transcription factors have been identified that 
could induce transdifferentiation between immune cell 
types (Tercan et al. 2022). Key interventions have been 
predicted to trigger cellular state changes in tumor pro
gression and cell differentiation (Zhong et al. 2023). In 
another study (Kim et al. 2023), a cellular state dynamics 
model was constructed based on epithelial-to-mesench
ymal transition (EMT) data, allowing the identification of 
interventions that could reverse EMT in lung cancer cells 
while avoiding intermediate hybrid states. Similarly, 
transcriptomic data has been used to construct a cellular 
state dynamics model of basal-like breast cancer cells 
and identified the inhibition of BCL11A and HDAC1/2 
as optimal interventions for reprogramming these cells 
into a less aggressive luminal A phenotype (Choi et al. 
2022). These studies exemplify how dynamic cellular 
state modeling, informed by experimental data, can be 
leveraged to discover targeted interventions that could 
guide cellular transitions toward desired outcomes in 
various biological contexts.

Discussion

This review provides a comprehensive overview of 
current studies used to model the dynamics of cellular 
states, a crucial aspect in understanding complex 

Table 2. Representative studies of modeling cellular state dynamics.
Study Used model Application Input data Size of model

Roohani et al. (2024) Deep learning Predicting multigene perturbation effect scRNA-seq 5,000 genes
Borzou et al. (2023) Static network + ODE Drug treatment effect prediction Time-series proteomics 3,347 biomolecules
Kim et al. (2023) BN Modifying cell phenotype Manual model construction 31 genes
Yang et al. (2023) Deep learning Predicting gene knock-out effect scRNA-seq 3,000 genes
Zhong et al. (2023) Static network Key gene identification Bulk or scRNA-seq Scale of whole genome
Choi et al. (2022) BN Cancer subtype alteration Manual model construction 28 genes
Tercan et al. (2022) PBN B cell transdifferentiation scRNA-seq 30 transcription factors
Hu et al. (2019) Static network Drug treatment prediction RNA-seq 5,959 genes
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biological processes such as cell differentiation, disease 
progression, and tissue development. We examined a 
broad spectrum of modeling approaches, ranging from 
BN and PBN that offer insights into the regulatory logic 
of gene interactions to deep learning methods that 
leverage large-scale data to predict cellular behavior 
with high accuracy. We also highlighted the increasingly 
important role of scRNA-seq data in unraveling the het
erogeneity and transitions of cellular states, thus offering 
high-resolution insights into cellular processes. Metrics 
such as predictive accuracy, robustness to noise, and 
computational efficiency are also essential for evaluating 
these modeling approaches, ensuring their generaliz
ability and utility across diverse biological contexts 
(Perumal and Gunawan 2011; Lotfollahi et al. 2019; Kami
moto et al. 2023).

The versatility of these modeling approaches enables 
researchers to understand cellular state transitions in 
different contexts, such as predicting outcomes of 
gene knockouts, designing therapeutic interventions, 
and simulating organ development. While BNs excel in 
capturing discrete state transitions of small-to- 
medium-scale networks, deep learning and static 
network analysis have demonstrated superior scalability, 
enabling modeling of more complex, large-scale biologi
cal systems. A summary of representative studies from 
these perspectives is listed in Table 2, and a comparative 
summary of the methodologies mentioned in this 
review is provided in Table 3. Our review emphasized 
the necessity of integrating multiple data types, includ
ing steady-state gene expression, time-series omics, 
and scRNA-seq, to construct accurate and generalizable 
models of cellular state dynamics.

Contributions of this review to the scientific research 
community are multifold. Firstly, it serves as a valuable 
reference for researchers seeking to understand or 
apply various modeling techniques to study cellular 
state dynamics. Secondly, this review underscores the 
importance of combining data-driven approaches with 

systems biology frameworks, promoting a more holistic 
understanding of cellular behavior. Lastly, by highlight
ing strengths and limitations of current methodologies, 
this review offers guidance for future research directions, 
encouraging the development of more scalable, accu
rate, and interpretable models that can advance our 
understanding of cell biology.

In conclusion, modeling of cellular state dynamics is a 
rapidly evolving field that holds great promise for 
unlocking complexities of cellular function and disease 
mechanisms. As high-throughput technologies and 
computational methods continue to advance, we antici
pate that integrating multi-omics data with sophisti
cated modeling techniques will lead to even more 
refined and predictive models, ultimately enhancing 
our ability to manipulate cellular states for therapeutic 
purposes and furthering our understanding of funda
mental biological processes.
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