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Abstract: Helicobacter pylori (H. pylori) is a Gram-negative, spiral-shaped bacterium that colonizes the
gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global
prevalence of approximately 50%. Despite the availability of treatment options, H. pylori frequently
reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conven-
tional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to
mitigate the inappropriate use of antibiotics. This review examines H. pylori infection, encompass-
ing transmission pathways, treatment modalities, antibiotic resistance, and eradication strategies.
Additionally, it discusses alternative therapeutic approaches such as probiotics, anti-biofilm agents,
phytotherapy, phototherapy, phage therapy, lactoferrin therapy, and vaccine development. These
strategies aim to reduce antimicrobial resistance and enhance treatment outcomes for H. pylori infec-
tions. While alternative therapies can maintain low bacterial levels, they do not achieve complete
eradication of H. pylori. These therapies are designed to bolster the immune response, minimize side
effects, and provide gastroprotective benefits, rendering them suitable for adjunctive use alongside
conventional treatments. Probiotics may serve as adjunctive therapy for H. pylori; however, their
effectiveness as a monotherapy is limited. Photodynamic and phage therapies exhibit potential in
targeting H. pylori infections, including those caused by drug-resistant strains, without the use of
antibiotics. The development of a reliable vaccine is also critical for the eradication of H. pylori. This
review identifies candidate antigens such as VacA, CagA, and HspA, along with various vaccine formu-
lations, including vector-based and subunit vaccines. Some vaccines have demonstrated efficacy in
clinical trials, while others have shown robust immune protection in preclinical studies. Nevertheless,
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each of the aforementioned alternative therapies requires thorough preclinical and clinical evaluation
to ascertain their efficacy, side effects, cost-effectiveness, and patient compliance.

Keywords: Helicobacter pylori; disease transmission; antibiotic resistance; alternative therapies;
infection control

1. Introduction

Helicobacter pylori (H. pylori) is a spiral-shaped, flagellated, Gram-negative, microaerophilic
bacterium that thrives under specific growth conditions [1–3]. Initially isolated in 1983
from patients diagnosed with antral gastritis [4]. H. pylori has been implicated in various
gastrointestinal disorders, including gastritis, peptic ulcers, and certain malignancies [5].
In 2017, the International Agency for Research on Cancer classified H. pylori as a Class I car-
cinogen [6]. The bacterium possesses several virulence factors that enhance its pathogenic
potential, including resistance to acidic environments and antibiotics [7–10]. Notably, fac-
tors such as Cytotoxin-Associated Gene A (cagA) and Vacuolating Cytotoxin A (vacA) have
been associated with the development of gastric carcinoma [7,11,12]. Research suggests that
the flagella of H. pylori facilitate its penetration into the submucosa of the stomach [13–15],
while the urease enzyme contributes to its survival in acidic conditions [16–18].

H. pylori infection can occur early in life via oral–oral or oral–fecal routes, with natural
elimination rare without antimicrobials [19]. Approximately 4.5 billion people are infected
worldwide, contributing to 9% of cancer-related deaths [20]. Infection rates are 15–25% in
wealthy countries and 75–90% in underdeveloped countries [21,22]. The infection is more
prevalent in impoverished regions compared to industrialized areas. Factors contributing
to this gap include health issues, family finances, ethnicity, and the number of individuals
affected [23]. Exposure to H. pylori increases the likelihood of infection due to prolonged
tobacco use, insufficient vitamin intake, high salt consumption, and living conditions that
alter stomach pH [24].

H. pylori is primarily transmitted through oral–oral and fecal–oral routes [24]. The
bacterium is present in the saliva, feces, and vomit of infected individuals, facilitating trans-
mission [25]. It often spreads within families in developing countries, especially between
infected mothers and their children [26], though partner transmission is uncertain [27,28].
The exact route to the human stomach is unclear, but environmental contamination likely
plays a role [24]. Poor hygiene can contaminate treated water [24], and studies indicate
that water may transfer H. pylori from feces to the mouth. Infection is more common in
children using external water sources or consuming raw vegetables irrigated with untreated
wastewater [29,30]. Food can also become contaminated in unsanitary conditions, and milk,
along with vegetables and meat, has been studied for its role in transmission [31].

The crisis of antimicrobial resistance against pathogenic bacteria is considered an
urgent matter worldwide [32–41]. A key factor in the failure of H. pylori eradication pro-
grams is antibiotic resistance [42]. Proton pump inhibitors (PPIs), combined with two
classes of antimicrobials and bismuth, are the standard treatment for H. pylori infection,
but eradication rates have declined due to drug resistance [20]. The World Health Orga-
nization (WHO) has reported a troubling increase in antimicrobial resistance, with some
antibiotics, like metronidazole and clarithromycin, showing resistance levels of 15% or
more. [20]. Resistance to clarithromycin rose from 15.6% in the early 2000s to over 40% by
2020. Metronidazole resistance increased from 58% in the early 2000s to 78% in 2020, as
indicated by Garvey et al. [43]. Meanwhile, Savoldi et al. [20] reported that standard triple
treatment is less than 80% effective in eradicating H. pylori.

Medical authorities advise discontinuing triple antibiotic therapy if antimicrobial
resistance exceeds 15%, as per the Maastricht IV/Florentine Consensus Report [44]. In
these cases, quadruple therapy, which includes two antimicrobial agents, PPIs, and bismuth
salts, may be used. However, since quadruple therapy still contains antibiotics, individuals
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resistant to these should avoid it. Due to a shortage of bismuth salts, initiating quadruple
therapy with bismuth is impractical in many countries where its use is restricted [45,46].
Furthermore, Poonyam et al. [47], have shown that antimicrobial agents can cause digestive
issues, including diarrhea, eating disorders, vomiting, and abdominal discomfort. There
are significant safety concerns regarding antimicrobial treatment in older adults, children,
and pregnant women, making it inadvisable for these populations [48].

Complementary therapies are gaining popularity for managing H. pylori infections.
Using probiotics and herbal medicines alongside antibiotics can mitigate antibiotic side
effects and reduce resistant organisms [49]. Lactoferrin (LF) inhibits bacterial growth by
depriving bacteria of iron and enhancing membrane permeability [50,51]. LF may also
help treat H. pylori infections and gastric ulcers due to its anti-inflammatory effects [52,53].
Currently, phage therapy has shown promise in treating various illnesses, including chronic
conditions [54]. However, its use against H. pylori may be delayed [55], because the
understanding of H. pylori phage biology is still developing. H. pylori vaccination is rapidly
advancing [1], with about ten antigen types and nearly ten adjuvant types identified to
enhance the immune response [56]. Various delivery technologies have been developed to
improve antigen presentation, and several clinical studies are underway, offering new hope
for eradicating H. pylori infection [57–60]. There is a high demand for alternative drugs to
control H. pylori infections.

Therefore, this review examines H. pylori infection, focusing on transmission path-
ways, treatment modalities, antibiotic resistance, and eradication strategies, which include
tailored therapy and potassium-competitive acid blockers. Additionally, it discusses al-
ternative therapeutic approaches such as probiotics, anti-biofilm agents, phytotherapy,
phototherapy, phage therapy, lactoferrin therapy, and vaccine development. The objective
of these strategies is to mitigate antimicrobial resistance and enhance treatment outcomes
for H. pylori infections.

2. Methodological Methods

The review process was executed following a flowchart, as illustrated in Figure 1,
which delineates the steps for evaluating manuscripts that have successfully undergone
the screening process. This review involved a comprehensive literature analysis aimed at
collecting information on H. pylori, with particular emphasis on transmission pathways,
treatment failures, antimicrobial resistance, and alternative therapeutic strategies. The
inclusion criteria encompassed original research articles, review papers, and clinical trials
that addressed antibiotic resistance, conventional treatment modalities, and alternative
interventions for H. pylori. Key topics explored included the potential applications of
alternative medicine, instances of treatment failure, and vectors of infection. To ensure
the relevance and timeliness of the research, only English-language publications from
1983 to 2024 were considered. The analysis specifically excluded non-research materials
such as editorials and commentaries, non-English publications, duplicate studies, and
research that did not pertain to H. pylori transmission mechanisms, antibiotic resistance,
alternative therapies, or treatment failures. Searches were performed across databases
including PubMed, Web of Science, Scopus, and Google Scholar, utilizing keywords such as
“H. pylori”, “transmission routes”, “antibiotic resistance”, “alternative therapy”, “treatment
failure”, “probiotics”, “phage therapy”, and “vaccine”. The quality of the included studies
was evaluated based on predetermined criteria.
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3. The Transmission Patterns of Helicobacter pylori

The mechanisms underlying the transmission of H. pylori remain inadequately under-
stood. Consequently, there is an urgent need to develop a more comprehensive understand-
ing of the pathways through which H. pylori disseminates into the gastric environment,
thereby enhancing human resistance to such infections. Given that H. pylori appears to have
a restricted host range, it is posited that its primary host is the human gastrointestinal tract,
where infection can occur [24,61]. New infections are believed to arise from environmental
exposure or direct interpersonal contact. Generally, there are three principal modes through
which humans may become infected with H. pylori.

3.1. Human-to-Human Transmission

H. pylori infections are primarily transmitted through person-to-person contact, with
two main modes: vertical and horizontal. Horizontal transmission occurs through contact
with non-family members or environmental contamination. Vertical transmission is the
transfer of an infectious agent from one generation to the next within the same family [62].
Many studies have investigated the link between H. pylori infection and familial suscepti-
bility. The majority of the studies [26,63] indicate that H. pylori infections frequently cluster
in families. H. pylori can spread within families through direct transmission [1,64]. Factors
such as close relationships, genetic predisposition, shared socioeconomic conditions, and
common sources of infection contribute to this spread [65–68]. Yang et al. [14] highlight that
transmission is especially common in households with frequent mother–child interactions.
Research suggests that H. pylori infections may cluster in families, and a study by Ding
et al. [69] found that children can acquire the infection from infected parents.

Childhood infection risk is significantly affected by environmental factors and family
dynamics. Children in larger families with more siblings are more likely to contract H. pylori
infections [70], with mothers and grandparents typically serving as primary caregivers.
Young children can contract H. pylori through oral and fecal pathways by consuming
food chewed by a caregiver, being kissed on the mouth, or if the caregiver fails to wash
their hands after using the bathroom [71]. Thus, children with relatives who have had
H. pylori infections are also at risk [72]. A 2013 study in Japan found that grandmothers
significantly contribute to H. pylori transmission across generations [73]. Goodman and
Correa [74] indicated that older family members are more likely to transmit H. pylori to
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younger siblings, especially those close in age. Fialho et al. [75] found that H. pylori can be
transmitted from younger to older relatives, indicating possible sibling transmission. Patel
et al. [76] discovered that children in economically disadvantaged schools in Edinburgh
had a significantly higher prevalence of H. pylori infection than those in other regions,
even when controlling for other risk factors. Although H. pylori transmission likelihood
decreases with age, Brenner et al. [77] found that couples can still contract the infection.
In a study of 670 couples in Germany, the infection prevalence was 34.9% in women and
14.5% in uninfected husbands.

According to a study conducted in the medical field, 82.4% of gastrointestinal en-
doscopy specialists had H. pylori infections in their stomachs. The infection rate among
gastrointestinal healthcare professionals is 16.8%, whereas it can reach 70% among dental
professionals, according to Kehre et al. [78]. As a result, work-related variables are im-
portant conduits through which potential H. pylori infection can spread. The spread of H.
pylori-contaminated saliva can also occur through the use of shared utensils by individuals
who are infected with this bacterium and healthy individuals who are not. In a study of
328 adult Chinese immigrants living in Melbourne, Australia, Chow et al. [79] examined the
prevalence of H. pylori infection and found significant associations with utensil transmission
in both male and female infectors. Although some evidence suggests that H. pylori can
be transmitted by utensils, a study published by Leung et al. [80] found that the presence
of H. pylori was only 3.7% in infected cases and 10% in salivary-infected cases, indicating
low odds of transmission by utensils. A summary of the data shows that H. pylori most
commonly affects children and adolescents; however, feeding utensils pose a small risk
of infection.

3.2. Animals to Human’s Transmission

Helicobacter species can infect humans and domesticated animals, such as dogs, cats,
pigs, and birds, as well as wild animals like monkeys [81–84]. A Helicobacter bacterium
similar to those in animals with gastritis has also been found in humans with gastritis [85].
A large segment of the global population lives near domestic animals, especially dogs
and cats, highlighting the importance of these findings [86]. While some animals, such as
sheep and dogs, can temporarily carry H. pylori, the impact on humans is still uncertain.
Factors that may increase the risk of H. pylori infection include childhood exposure to
unpasteurized milk, raw vegetable consumption, and contact with pets like dogs and
cats. H. pylori can be transmitted zoonotically, mainly through indirect means [87]. This
infection is a key transmission pathway from animals to humans, especially in developing
countries. Duan et al.’s work, published in 2023, notes that H. pylori infects both humans
and animals [88]. Papież et al. [89] found higher H. pylori infection rates among sheep
ranchers and their families in the Tatra Mountains of Poland (97.6% and 86%, respectively)
compared to farmers without sheep (65.1%) [90]. Several studies have indicated that H.
pylori can be detected in milk [91,92], poultry slaughterhouses [93], and other fresh foods.

3.3. Transmission Through Water and Food

Water is vital for human survival, posing a risk of contact with H. pylori-contaminated
sources [94–96]. H. pylori can survive in various water types, including cold, salty, distilled,
and tap water, due to its ability to modify peptidoglycans in its cell walls. Contaminated
water is a primary vector for H. pylori transmission, often linked to fecal matter [97]. Klein
et al. [98], found that children from high-income families using municipal water are twelve
times more likely to contract H. pylori than those using well water, indicating greater
contamination in city supplies. H. pylori infections can also result from contaminated food,
with fecal contamination of drinking water being a primary transmission route through
streams, rivers, lakes, soil, and groundwater. Studies show high levels of H. pylori in Iranian
water bottles and an increasing infection rate among those using non-municipal water
for toilets [99,100]. Individuals at higher risk may consume water from polluted sources.
Preventing H. pylori spread requires better dietary management and rigorous water testing.
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Contaminated water with H. pylori poses a serious risk, as it can taint fruits and
vegetables, resulting in foodborne illnesses [101]. Hemmatinezhad et al. found that 28%
of 50 fruit salads tested positive for H. pylori through molecular analysis [91]. The risk of
infection can be reduced through thorough cleaning and avoiding contaminated water
sources [91]. Hamada et al. [93] examined 90 samples of chicken meat, gizzards, and liver
from a semi-automated slaughterhouse in Sadat City, Egypt, finding that seven samples
(7.78%) tested positive for H. pylori. Similarly, Mashak et al. [102] tested 600 raw meat
samples from Iranian slaughterhouses for H. pylori. Mutton contamination was 13.07%,
while goat mutton was 11.53%. A study by Shaaban et al. [92] found H. pylori in 5 of 13 milk
samples from farm animals. Figure 2 shows the main routes of H. pylori infection in humans,
with food and water as potential sources. The risk of transmission rises with close contact
between infected individuals and livestock. Regular handwashing and sanitizing are
crucial for health and safety. Regularly examining water sources is crucial for identifying
H. pylori infection origins and reducing transmission risk. Thoroughly clean fruits and
vegetables before consumption and limit fresh meat and dairy intake.
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Figure 2. The pathways through which H. pylori is transmitted. Person-to-person transmission occurs
among children, the elderly, healthcare workers, and individuals living in developing countries. The
bacterium can spread through oral–oral, fecal–oral, or gastric–oral routes, as well as through fecal
shedding that contaminates food or water sources. Oral–oral transmission may occur when sharing
food utensils or between mothers and their newborns. Additionally, H. pylori can be transmitted
to animals such as sheep, dogs, cats, and chickens through fecal shedding or direct fecal–oral
contact. Food and water sources contaminated with H. pylori can also directly transmit the bacteria to
susceptible individuals.

4. H. pylori Infection: Standard Therapy, Antimicrobial Resistance, and Failure
of Treatment

When choosing the optimal therapy, it is essential to consider regional antibiotic
resistance and antimicrobial susceptibility testing results [103,104]. In some countries, a rec-
ommended treatment plan may include mixed therapy, administering multiple medications
simultaneously for two weeks or more [105–107]. Triple therapy, combining amoxicillin,
clarithromycin, and a PPI like omeprazole, has historically been the first-line treatment
for H. pylori [13,107,108]. However, a 2016 study by Thung et al. [109] revealed significant
antibiotic resistance, leading to the recommendation of second-line treatments. In the U.S.
and Europe, quadruple therapy with metronidazole, tetracycline, omeprazole, and bismuth
is now advised [47,110]. Clarithromycin’s minimal effect on stomach pH and effective
mucosal diffusion make it essential in combination therapy for H. pylori infections [111].
The global prevalence of H. pylori and its related diseases is largely due to clarithromycin’s



Diseases 2024, 12, 311 7 of 31

reduced effectiveness and recurrence in countries with poor healthcare infrastructure [112].
Therefore, the use of antimicrobial agents for H. pylori infections should be limited.

A meta-analysis by Boyanova et al. [113], found that H. pylori strains in Bulgaria had
30% resistance to clarithromycin and 42% to metronidazole. Savoldi et al. [20], reported that
clarithromycin resistance in Europe was about 18%, compared to 33% in the western Pacific
and 34% in the Mediterranean [114]. Antimicrobial resistance rates differ significantly
between industrialized and developing nations [20,109,115–120]. Resistance to metron-
idazole and clarithromycin is notably higher than for other antibiotics [119]. In China,
clarithromycin resistance has increased from 14.8% to 52.6% [109]. Over the past century, H.
pylori has increasingly shown resistance to antibiotics like clarithromycin, amoxicillin, and
metronidazole [121,122]. Figure 3 illustrates studies from Asia, Africa, Europe, and America
that examined resistance rates for clarithromycin [123–126], metronidazole [66,125–127],
levofloxacin [124–127], and amoxicillin [124–127] from 2001 to 2022, 2007 to 2017, 2013 to
2021, and 2011 to 2021, respectively.
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Figure 3. The prevalence rates of multidrug-resistant H. pylori across various regions, including
Asia (2001–2022), Africa (2007–2017), Europe (2013–2021), and America (2011–2022). The resistance
rates to clarithromycin were found to be 37% in Asia, 15% in Africa, 22% in Europe, and 31.5% in
America. For metronidazole, the resistance rates were 51% in Asia, 91% in Africa, 27% in Europe,
and 42.1% in America. The resistance rates to levofloxacin were reported as 19% in Asia, 14% in
Africa, 18% in Europe, and 37.6% in America. Lastly, amoxicillin resistance rates were recorded at
4% in Asia, 38% in Africa, 1% in Europe, and 2.6% in America.Resistance mechanisms primarily
stem from mutations that alter pharmacological targets. Drug-resistant genotypes are linked to muta-
tions affecting membrane permeability, biofilm formation, and efflux pumps [120,128]. Amoxicillin
resistance mainly arises from changes in membrane permeability and mutations in the penicillin-
binding protein gene [120]. H. pylori strains often resist clarithromycin due to point mutations in 23S
rRNA. A study at Peking University utilized next-generation sequencing to identify genetic factors
enhancing resistance to levofloxacin and clarithromycin [129]. Key mutation sites for clarithromycin
resistance include peptidyl transferases in the 23S rRNA, with A2143G and A2142G being the most
common. Mutations in the DNA gyrase (gyrA) gene (N87K, D91N, D91G) were linked to levofloxacin
resistance [129]. Reduced drug influx due to structural changes in lipopolysaccharide (LPS) mem-
branes also contributes to resistance. Mutations in the rfaF (LPS heptosyltransferase II) gene lead to
deep, coarse LPS drug absorption [130] and causing slight resistance to chloramphenicol, along with
cross-resistance to amoxicillin, tetracycline, and clarithromycin [131]. Increased expression of tolC
homolog genes (hefA) in patients with gastrointestinal disorders in Iran [132] was linked to efflux
pump induction, as shown by real-time PCR in metronidazole and clarithromycin-resistant bacteria.
The multidrug-resistant phenotype was found in 9.5% of cases. A genome-wide analysis identified
prevalent mutations, including A2143G in 23S rRNA (63.1%) and alterations in the rdxA gene (85.5%).

Hou et al. [133] found that H. pylori’s resistance to antimicrobial agents is the main
factor in biofilm development (Figure 4). Extracellular polymeric substances (EPSs) coat



Diseases 2024, 12, 311 8 of 31

microbial surfaces and, due to their negative charge, hinder the penetration of antimicrobial
agents, making microbes up to a thousand times more resistant to antibiotics than plank-
tonic bacteria [133–135]. Administering antibiotics to H. pylori during biofilm formation
is ineffective, as the antibiotics cannot penetrate the biofilm, resulting in unsuccessful
therapy. Biofilms also protect H. pylori from the immune system, increasing antibiotic
resistance [133]. Patients requiring repeated therapy for H. pylori often need a second treat-
ment long after the first. H. pylori can switch from a spiral to a spherical shape, entering a
viable but nonculturable state (VBNC), which cannot be cultivated [3,136,137]. Microbes
can endure stressful conditions, such as sub-inhibitory drug dosages or unfavorable en-
vironments, without damage [97]. Chaput et al. [138] noted a significant alteration in the
peptidoglycan of spherical H. pylori cells, allowing them to evade immune recognition
while still stimulating IL-8 production in the stomach epithelium. This enables H. pylori to
avoid or modulate the host immune response in a viable but non-culturable (VBNC) state,
facilitating long-term survival in the stomach.
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Figure 4. An overview of the biofilm formation process: (1) Attachment stage of biofilm forma-
tion involves reversible and irreversible processes. Reversible attachment occurs when planktonic
cells adhere to surfaces via chemical interactions, aided by virulence factors like adhesins and pili,
triggering biofilm formation and increasing microbial susceptibility to antimicrobials. (2) Growth
(irreversible attachment) leads to microbial proliferation and colony establishment, enhancing adher-
ence through transcriptional changes. This phase promotes substrate exchange, metabolic product
distribution, and byproduct excretion. H. pylori secrete EPS, which lower biofilm cell susceptibility
to host defenses and antimicrobials. (3) Development features an increasing extracellular matrix
around microcolonies, driven by EPS production and quorum-sensing communication, both vital
for resistance. Mature biofilms have high EPS content and interstitial spaces for nutrient, water, and
planktonic cell movement. (4) Spreading occurs when detachment due to nutrient depletion prompts
cells to seek new surfaces through erosion and sloughing.

Wang and Wang [139] developed a population of spherical H. pylori by treating these
cells with a sublethal dose of antimicrobial agents. Researchers confirmed the pathogenicity
of spherical H. pylori cells by analyzing sequences from various strains. The study found a
complete cagA gene in the bacteria, with about 99% similarity to the original sequence of
vegetative forms. These results indicate that phenotypic changes are crucial for maintaining
H. pylori’s “health” and survival throughout its life cycle [140]. The polymer substances and
coccoid formation of H. pylori, along with the efflux pump on its membrane, contribute to
drug resistance [133]. The efflux pump expels antimicrobial agents, reducing their intracel-
lular concentrations [128,141,142]. In H. pylori, efflux pumps are key players in multidrug
resistance [143]. Biofilms exposed to clarithromycin show significantly higher resistance than
planktonic organisms, with increased expression of efflux pump genes [144,145]. Microor-
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ganisms producing biofilms are more likely to express the efflux pump genes Hp605, Hp971,
Hp1327, Hp1489, Hp118, and Hp1174 than those forming planktonic structures [144,146].
Efflux pumps and biofilms work together to enhance drug resistance.

5. Alternative Therapies

The rise of antimicrobial resistance in H. pylori has complicated treatment. If eradica-
tion fails, multiple rounds of different antimicrobial combinations may be needed. Physi-
cians are now tasked with finding effective alternatives to declining traditional therapies,
which often have higher pill burdens and side effects [147]. Expert guidelines have shifted,
now favoring quadruple therapy with bismuth as the initial treatment over the previous
triple therapy with clarithromycin [148]. With limited options for antibiotic-resistant strains,
innovative treatments, including non-antibiotic approaches, are urgently needed to address
this issue (Figure 5).
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Figure 5. A range of alternative therapeutic approaches has been developed to combat the an-
timicrobial resistance exhibited by H. pylori. Probiotic therapy employs non-immune mechanisms
to counteract H. pylori by competing for attachment sites, inhibiting the expression of virulence
genes, and inducing cell death. Additionally, it reduces inflammatory mediators and regulates anti-
inflammatory cytokines through immune mechanisms. Photodynamic therapy effectively eradicates
H. pylori by generating ROS using a light source in conjunction with a photosensitizer. Phage therapy
involves the production of progeny particles from bacteriophages that lyse host cells. The develop-
ment of vaccines utilizing virulence antigens is crucial for reducing colonization and eradicating H.
pylori. Phytotherapy can inhibit urease activity, prevent bacterial adhesion, and enhance membrane
permeation against H. pylori infection. Lactoferrin therapy sequesters iron, interacts with lipopolysac-
charides and lipoteichoic acids, modulates serine protease activity, and engages with peptidoglycan,
ultimately leading to the collapse of the cellular wall.

5.1. Enhancing Eradication Therapy

H. pylori eradication regimens, developed by gastrointestinal specialists, aim to elimi-
nate this bacterium. However, global success rates have declined, and antimicrobial resis-
tance has increased [149]. A more targeted approach using specific antibiotics is needed
to improve outcomes [105]. Customizing therapy strategies to regional sensitivity profiles
is essential for addressing varying antimicrobial resistance trends [105,150]. However,
the lack of reliable statistics on antibiotic-resistant bacteria in local communities hinders
decision-makers from selecting effective empirical eradication strategies. Regions with
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high metronidazole- and clarithromycin-resistant H. pylori are advised to use bismuth
triple therapy for infection elimination [151–153]. Adding bismuth to certain protocols and
extending treatment to two weeks can boost eradication rates by up to 30% in resistant
strains [154]. Botija et al. [155] conducted an evaluation of the efficacy of colloidal bismuth
subcitrate (CBS) therapy in eradicating H. pylori among patients aged 5 to 8 years. They
utilized data from a national pediatric registry comprising 682 patients. Among these
patients, 38 (5.6%) received CBS treatment, with 50% of this group having experienced
prior unsuccessful eradication attempts. A follow-up assessment of 32 patients revealed an
eradication rate of 93.8% for those treated with CBS, compared to an 86.7% eradication rate
for patients who did not receive CBS treatment (p < 0.05). Recent meta-analyses show that
first-line regimens with bismuth have higher eradication rates than those without [156].
Nijevitch and colleagues [157] assessed the effectiveness of a triple therapy of nifuratel,
amoxicillin, and bismuth for pediatric H. pylori gastritis. After endoscopy for dyspeptic
symptoms, 73 children aged 9 to 14 received a 10-day course of treatment. H. pylori was
eradicated in 63 participants (86%; 95% CI: 76.6–93.2). There were no withdrawals due to
side effects, and no severe adverse reactions occurred.

The rising rates of resistance and multidrug-resistant H. pylori underscore the need
for better detection of antimicrobial susceptibility and treatment [158]. Tailored therapy
effectively increases eradication rates while reducing unnecessary antibiotic use [159].
This approach allows for drug selection based on susceptibility to antimicrobial agents
determined by drug composition. In 2022, Nyssen et al. [160] conducted a meta-analysis
examining the empirical and susceptibility-guided treatment approaches for H. pylori,
which encompassed 54 studies involving a total of 6705 patients in the empirical treatment
cohort and 7895 patients in the susceptibility-guided cohort. The results indicated that the
eradication rates of H. pylori were significantly higher in the susceptibility-guided group,
achieving an 86% success rate, in contrast to a 76% success rate observed in the empirical
treatment group. Gingold-Belfer et al. [161] performed a meta-analysis of 16 randomized
controlled trials to compare susceptibility-guided therapy and empirical therapy for H.
pylori infection. The study involved 2451 patients receiving empirical treatment and 2374 re-
ceiving susceptibility-guided therapy. The findings revealed no significant difference in
effectiveness, with a relative risk (RR) of 1.02 (95% confidence interval: 0.92–1.13; p = 0.759;
I2 = 80%). Although empirical regimens effectively eradicate H. pylori, the advantages of
tailored therapy may not be clear. Challenges include the absence of H. pylori cultures and
antibiotic susceptibility testing. More research is needed to promote the widespread use of
tailored treatments for H. pylori elimination.

While proton pump inhibitors with triple therapy are effective for acid reflux, there
is growing interest in acid-suppressing medications [162]. The dual and triple use of
potassium-competitive acid blockers (P-CABs) is an innovative and effective method for
eradicating H. pylori [163]. Acid suppression is vital in H. pylori treatment, as a higher stom-
ach pH fosters bacterial growth and increases susceptibility to antibiotics [164]. Lowering
stomach pH stabilizes medications like clarithromycin and amoxicillin, which require acid
suppression to prevent excessive acidity [165]. Vonoprazan, a P-CAB, is more effective than
proton pump inhibitors and provides longer acid suppression [166]. Elazazi et al. [167] con-
ducted a clinical investigation to evaluate the efficacy of H. pylori eradication protocols using
Vonoprazan compared to proton pump inhibitors. The study involved 232 treatment-naïve
participants, split into two groups: Arm 1 (58 patients) received clarithromycin, amoxicillin,
and vonoprazan, while Arm 2 (58 patients) received clarithromycin, amoxicillin, and es-
omeprazole. Group II included treatment-experienced patients in Arm 3 (intervention) and
Arm 4 (comparator), each with 58 participants. Arm 3 received levofloxacin, vonoprazan,
nitazoxanide, and doxycycline, while Arm 4 received levofloxacin, esomeprazole, nitazox-
anide, and doxycycline. All participants followed their treatment regimens for 14 days,
with H. pylori eradication assessed four weeks later. Arm 3 had a 50% eradication rate,
compared to 43.1% in Arm 4. Arm 1 achieved 58.6%, and Arm 2 recorded 50%. Regimens
containing P-CABs were acceptable, with few adverse events. This therapy is beneficial
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with amoxicillin or amoxicillin plus clarithromycin for eradicating H. pylori. Japan and
several other countries have approved a triple-treatment regimen including vonoprazan
for H. pylori eradication [168,169].

5.2. Adjuvant Therapies (Probiotics and Anti-Biofilm Agents)

Adjuvant medicines aim to enhance antimicrobial therapy by combating antibiotic
resistance or modifying the host response [147]. Probiotics, defined by the WHO and FAO,
are live organisms that confer health benefits when administered in adequate amounts [170].
Beneficial probiotics in clinical settings include Lactobacillus, Bifidobacterium, Bacillus, Strep-
tococcus, and Escherichia coli, which produce lactic acid [171]. Once inside the human
body, these microorganisms produce antimicrobial compounds like lactic acid, hydrogen
peroxide, and bacteriocins that kill bacteria. Lactic acid inhibits the urease activity of H.
pylori [172], and reactive oxygen species (ROS) from probiotics can damage bacterial cell
walls and membranes [173]. A recent meta-analysis found that most probiotics in triple
therapy improved outcomes with standard eradication therapy [174,175]. Mohtasham
et al. [174] conducted a double-blind, randomized controlled trial with 450 participants
to assess probiotics as an adjuvant to quadruple therapy for H. pylori eradication. Partici-
pants received a 14-day treatment of bismuth subcitrate, pantoprazole, amoxicillin, and
clarithromycin, along with either a probiotic (Lactobacillus ruteri, 100 mg) or a placebo.
After eight weeks, the urea breath test showed slightly higher eradication rates in the
probiotic group (per-protocol: 80.1% vs. 75.2%; intention-to-treat: 78.7% vs. 72%), though
not statistically significant. However, only 69.7% of the probiotic group reported side
effects, compared to 98.6% in the placebo group (p < 0.001), and they experienced fewer
gastrointestinal adverse effects, except for constipation (p < 0.001).

The application of probiotic therapy has shown greater effectiveness in eradicating
H. pylori infections [170]. Probiotics have the ability to reduce H. pylori colonization by
strengthening the stomach’s mucosal barrier and competing with pathogenic bacteria for
adherence [176]. This could potentially help manage diseases linked to H. pylori. Numerous
studies have suggested that probiotics have minimal adverse effects on patients’ digestive
systems, increasing the chances of compliance [170,177]. Probiotics may inhibit H. pylori
colonization, maintain the gastric mucosal barrier, and reduce gastric inflammation. They
can also modulate the host’s immune response to infection [147]. Probiotic supplements
can help restore intestinal microbiota balance disrupted by antibiotics [178,179]. Yuan
et al. [180] studied the effects of H. pylori eradication and probiotics on gastric microbiota
in young adults. The study included 95 H. pylori-positive participants and 56 negative
controls, aged 19 to 30, assigned to probiotics monotherapy, probiotics-supplemented
quadruple therapy, or quadruple therapy alone. Gastric mucosal samples were collected
before treatment and two months later for 16S rRNA gene sequencing. Two months post-
eradication, the gastric microbial composition differed significantly from H. pylori-negative
participants, with decreased alpha diversity in gastric juice and increased diversity in
gastric mucosa. Probiotic-assisted eradication improved microbial diversity compared
to quadruple therapy, increasing Bifidobacterium and Lactobacillus while reducing harmful
bacteria like Fusobacterium and Campylobacter. Probiotic monotherapy had limited effects
on H. pylori and beneficial bacteria but significantly altered gastric microbiota diversity,
leading to an increase in potentially harmful bacteria post-treatment.

Probiotics exert diverse molecular effects based on their characteristics and chemical
composition, leading to beneficial outcomes through various mechanisms [181]. They interact
directly with gastrointestinal cells, releasing bioactive compounds that act as signaling
molecules in the interactions among intestinal immune cells, gut microbiota, and epithelial
cells [182,183]. Key molecular effectors include proteins, low molecular weight peptides,
amino acids, bacterial DNA, and short-chain fatty acids (SHFAs) [184]. Probiotic antigens can
penetrate the intestinal barrier and trigger immune responses. They enhance intestinal barrier
selectivity by increasing mucin, immunoglobulin A (IgA), and defensins, while also boosting
the synthesis of vitamins, minerals, SCFAs, and growth regulators [176,185]. Probiotics
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further promote antiangiogenic factors, cytokines like interleukin-2 (IL-2) and interleukin-
12 (IL-12), and antioxidants, which help lower intestinal pH. Lastly, they regulate apoptosis
and cell differentiation by inhibiting harmful pathways such as tyrosine kinase [170].
Further research is needed to fully understand the mechanisms and functions of probiotics
in eradicating H. pylori.

Another treatment option targets bacterial biofilms with anti-biofilm agents, primar-
ily derived from natural products such as phytochemicals, biosurfactants, antimicrobial
peptides, and microbial enzymes [186,187]. Probiotics and quorum-sensing inhibitors
also effectively inhibit biofilm growth [188,189]. Almost all natural substances can act as
antibacterial agents against H. pylori biofilms [133]. Natural products show anti-biofilm
and antibacterial properties against H. pylori strains resistant to multiple antimicrobial
agents [190–192]. N-acetylcysteine (NAC), a dietary supplement with anti-inflammatory
and antioxidant effects, effectively treats H. pylori infections [193,194] and can reduce bacte-
rial load while enhancing eradication rates [195–197]. NAC treatment before antibiotics
improves H. pylori clearance, as shown in a clinical trial [198]. However, the exact mech-
anism of NAC’s effects on biofilm disruption and antimicrobial resistance in H. pylori is
still unknown. Moreover, combining antimicrobial agents with rhamnolipid, a glycolipid
biosurfactant that disrupts biofilms and may reduce bacterial adhesion in vitro, effectively
inhibits biofilm development [199,200].

6. Other Developing Therapies
6.1. Lactoferrin Therapy

Lactoferrin (LF) is an iron-binding protein in the transferrin family [201] with antiviral,
antibacterial, antioxidant, and anti-inflammatory properties [51]. LF levels rise significantly
during H. pylori infections, correlating with gastric mucosal inflammation [51]. It is crucial
for maintaining iron balance and aids in iron absorption in the intestinal tract [202,203].
LF inhibits bacterial growth by depriving them of essential iron and increasing membrane
permeability [50]. Yamazaki et al. [204] conducted a study on the antibacterial effects of
lactoferrin and Lactoferricin® against H. pylori in vitro. Bovine Lactoferricin® was found to
be effective at concentrations above 5.0 mg/L, while human and bovine lactoferrins had
minimum bactericidal concentrations of 1.25 to 2.50 mg/mL. Both compounds showed
dose-dependent effects during exponential growth. Bovine Lactoferricin® exhibited modest
activity in brucella broth but had rapid effects in 1% Bacto-peptone medium at concentra-
tions of 0.1 to 1.0 mg/mL. Iron-saturated lactoferrin did not inhibit growth, but bovine
Lactoferricin® reduced H. pylori urease activity. These findings suggest that H. pylori is
susceptible to both compounds, with the effectiveness of lactoferrin depending on the
bacterium’s iron status and growth phase, unlike Lactoferricin®.

Wada et al. [205] studied the effects of bovine lactoferrin (bLF) on germ-free BALB/c
mice infected with H. pylori. After oral inoculation, the mice received daily bLF for two
to four weeks. Results showed that 10 mg of bLF increased H. pylori presence tenfold
while significantly reducing its attachment to the gastric epithelium. Consequently, serum
antibody titers for H. pylori became undetectable, indicating a weakened immune response.
These findings suggest that bLF has a direct antibacterial effect and can detach H. pylori
from the stomach epithelium. Ciccaglione et al. [206] found that combining bovine LF
with levofloxacin, amoxicillin, and a proton pump inhibitor provided an additional 21%
therapeutic effect in patients from areas with high antibiotic resistance. Other studies have
shown that bovine LF inhibits H. pylori growth at pH 6, both in vivo [207] and in vitro [208].

Yuan et al. [53] examined the efficacy of goat-derived transgenic recombinant human
LF against H. pylori in vitro and in vivo. Their in vitro findings showed that recombinant
LF reduced the virulence factors cagA and vacA and inhibited H. pylori development.
Lu et al. [209] also studied the effects of H. pylori infection on host LF levels using animal
models. The study revealed that H. pylori-infected stomachs had LF levels 9.3 times higher
than healthy stomachs. More recent research by Imoto et al. [51] found that bovine LF
inhibits H. pylori growth in vitro at concentrations of 25.2 to 50.0 mg/mL. LF is often
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combined with antibiotics to treat H. pylori infections effectively [44] and has been shown
to improve treatment success rates. In the future, LF combined with antibiotics may replace
traditional triple therapy as a more effective option.

6.2. Herbal Therapy (Phytotherapy)

Herbal therapy, or phytotherapy, involves using plants and their extracts for medicinal
purposes [210,211]. Various plant parts—leaves, stems, flowers, roots, and seeds—are
used to create raw or processed herbal products [212]. Health regulations classify herbs
as nutritional additives, allowing them to be sold without prior safety or efficacy evalua-
tions [213]. The effectiveness of herbal therapies relies mainly on empirical evidence due to
limited scientific research [214]. Controlled clinical trials are vital for assessing the efficacy
of herbal medicines and improving their quality and safety [215]. Li et al. [216] examined
the effects of Banxia Xiexin Decoction (BXXXT), a traditional Chinese medicine prescription,
on drug-resistant H. pylori-induced gastritis in mice using both in vivo and in vitro meth-
ods. The aqueous extract (BXXXT) was prepared through water decoction. In vitro tests
demonstrated BXXXT’s inhibitory effects on H. pylori, while an acute gastritis model was
established in vivo. Treated mice were assessed for H. pylori colonization, gastric mucosal
repair, inflammation, and apoptosis. The minimum inhibitory concentration (MIC) of
BXXXT was found to be 256–512 µg/mL, with a dosage of 28 mg/kg proving more effective
than standard triple therapy. The extract consisted of at least 11 compounds, including
berberine and quercetin, which exhibited synergistic effects and enhanced immune function
in CD3+ and CD4+ T cells. Certain plants and fruits contain compounds such as flavonoids,
terpenoids, and alkaloids that may effectively treat H. pylori infections [217,218].

Fahmy et al. [219] found that flavonoids from Erythrina speciosa (Fabaceae) had
the lowest minimum inhibitory concentration (MIC) against H. pylori. Zardast et al. [220]
reported that raw garlic significantly reduced H. pylori growth in the stomach mucosa within
72 h. The ethyl acetate extract from this plant showed the highest antimicrobial activity, with
an MIC of 62.5 µg/mL. Ayoub et al. [221] evaluated the essential oils and methanol extracts
of Pimenta racemosa (P. racemosa) leaves and stems for their inhibitory activities against
H. pylori, both in vitro and in silico. The essential oil from the stems showed significant
antibacterial activity with a MIC of 3.9 µg/mL, comparable to clarithromycin’s MIC of
1.95 µg/mL. In silico studies suggested that compounds such as decanal, eugenol, terpineol,
delta-cadinene, and amyl vinyl may inhibit H. pylori urease, indicated by strong binding
affinity scores. These results highlight the therapeutic potential of P. racemosa, particularly
in its stems, which are often considered agro-industrial waste. Shmuely et al. [222] noted
that plant extracts inhibit urease, prevent adhesion, and permeate membranes to combat
H. pylori. Fahmy and his colleagues [219] reported significant antimicrobial activity in
plant extracts at MICs below 100 µg/mL, supporting the use of plants for treating H. pylori
infections. These agents have proven effective in eliminating H. pylori and preventing
related gastrointestinal disorders.

Herbal medicine offers numerous advantages, including widespread availability,
affordability, and a significant presence among consumers who perceive it as a safer alter-
native to synthetic pharmaceuticals, particularly in regions with a longstanding tradition
of herbal use [223]. The application of natural products may pose fewer risks compared to
conventional treatments that often involve multiple antibiotics, although it is important to
acknowledge that herbal remedies can also have side effects [224,225]. Research indicates
that the integration of conventional therapy with ethnomedicine results in higher eradica-
tion rates and a reduction in adverse effects [226]. Furthermore, combination therapy has
proven effective in alleviating symptoms of gastritis associated with Helicobacter pylori
through a holistic approach [227]. Additionally, herbal therapy may mitigate antibiotic
resistance due to its multitarget effects [227]. Patients who are unable to tolerate high doses
of antibiotics may be particularly well-suited for herbal therapy.



Diseases 2024, 12, 311 14 of 31

6.3. Photodynamic Therapy

Photodynamic therapy (PDT) is a proposed method for eliminating harmful bacte-
ria [228]. It generates ROS through the oxidation of biomolecules when a photosensitizer
(PS) is exposed to laser light [229,230]. Unlike traditional antibiotics, PDT poses no risk of
drug resistance, making it a promising alternative [231–233]. However, its application for
treating H. pylori is still in early development, necessitating a PS that specifically targets
H. pylori to protect normal cells from phototoxicity [234,235]. H. pylori produces sialic acid
binding adhesin (SabA), which binds specifically to 2,3-linked sialic acid on sialyl-dimeric
Lewis X antigens in the gastric epithelium. This binding promotes strong adhesion and
colonization of the gastric mucosa [236,237]. The presence of 2,3-linked sialic acids in
3′-sialyl lactose (3SL) suggests it may effectively target H. pylori, as human cells lack 3SL
receptors, making it highly selective for this bacterium [228,235,238].

The fundamental principle underlying PDT involves the generation of high ROS
through the interaction of a PS, molecular oxygen, and visible light at an appropriate
wavelength [239]. This process leads to the oxidation of various cellular components,
resulting in rapid cell inactivation [240]. Numerous studies have identified potential tar-
gets for ROS generated by PDT within biofilms, particularly the EPS matrix [241], which
comprises proteins [242], lipids [243], DNA [244], and extracellular polysaccharides [245].
Damage to proteins and DNA induced by PDT significantly diminishes the metabolic
activity of the biofilm and may lead to structural disruption [246]. Phototherapy can effec-
tively eliminate bacterial biofilms in the stomach, providing a therapeutic benefit against
antibiotic-resistant bacteria [247]. Qiao et al. [248] studied the antibacterial effects of pho-
totherapy on multidrug-resistant H. pylori using a near-infrared photosensitizer, T780T-Gu,
created by combining guanidinium (Gu) with T780T. The results showed that T780T-Gu
has synergistic effects in photothermal and photodynamic treatments against biofilms
and MDR strains of H. pylori, potentially enhanced by structural deficits and reduced
metabolism. Im et al. [228] developed a photomedicine called multiple 3SL-conjugated
poly-L-lysine-based photomedicine (p3SLP) for targeted PDT against H. pylori. In C57BL/6
mice, oral administration of p3SLP followed by laser irradiation effectively inactivated H.
pylori by targeting sabA on the bacteria’s membrane, without harming host cells. p3SLP
shows potential as an endoscopic antibacterial PDT method for treating H. pylori.

6.4. Phage Therapy

Phage therapy, which uses bacteriophages to treat bacterial infections, has gained
attention due to advancements in genetic engineering, metagenomics, high-throughput
genome sequencing, and biotechnology [249–251]. Bacteriophages infect and destroy bacte-
ria by attaching to specific receptors, introducing their genetic material, multiplying, and
causing the bacterial cell to rupture, releasing more phages in the lytic cycle [252,253]. The
destruction of bacterial cells helps maintain host cell health by eliminating pathogenic
bacteria. Engineered phages can enhance their ability to target specific bacteria. Phage
therapy may treat antibiotic-resistant infections in diverse patient populations and reduce
antibiotic use in livestock [251].

Interest in phage therapy for H. pylori infections has grown [232]. This method em-
ploys bacteriophages to target and eliminate H. pylori [254]. Ferreira et al. [255] isolated
the novel podovirus prophage HPy1R using H. pylori strains using UV radiation. It has a
genomic length of 31,162 base pairs and encodes 36 predicted proteins, including 17 struc-
tural proteins. Phage particles remained stable at 37 ◦C and pH 3–11 for 24 h. In an in vitro
stomach digestion model, only a slight reduction occurred during the gastric phase, indi-
cating adaptation. This phage also reduced H. pylori levels for up to 24 h post-infection at
multiplicities of infection of 0.01, 0.1, and 1 microaerophilic condition, suggesting its poten-
tial for phage therapy in the absence of exclusively lytic phages. Cuomo et al. [256] studied
the effectiveness of H. pylori-specific lytic phage (H. pylori φ) alone and with lactoferrin
adsorbed on hydroxyapatite (LF-HA) nanoparticles (H. pylori φ + LF-HA) in preventing H.
pylori infection. The bacteria were obtained from human stomach biopsies and cultured
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in brain heart infusion (BHI) broth with 10% horse serum at 37 ◦C and 5% CO2 for phage
isolation. The study found that LF-HA significantly enhances H. pylori φ activity, indicating
that phages complexed with LF can selectively eliminate H. pylori without harming host
cells, making it a promising therapeutic option. The H. pylori φ φ + LF-HA combination
showed potential efficacy when administered at the onset of infection, but the minimum
effective doses were not established.

A study examined the effects of lactoferrin on hydroxyapatite nanoparticles com-
bined with a lytic phage, showing improved antibacterial effects in human gastric cancer
cells [257]. Nonetheless, knowledge about phage-H. pylori interactions in the stomach
microenvironment are still lacking. The limited availability of sequenced phage genomes
restricts our understanding of H. pylori phages, including their pathogenicity, antimicro-
bial resistance genes, and toxins [232]. H. pylori phages lack endolysins [258], proteins
that dissolve bacterial cell walls, and could serve as alternative treatments in phage ther-
apy. Endolysins are host-specific, with no known bacterial resistance [259]. However, the
protective outer layer of Gram-negative pathogens like H. pylori complicates treatment.
Lysins can penetrate outer membranes when combined with mild acids or engineering
techniques [260,261]. Despite the potential of phage therapy, more research is needed before
it can be widely implemented for H. pylori.

6.5. Vaccination Against H. pylori: Potential Uses

An effective H. pylori vaccine could transform infection control and reduce future
antibiotic use. While few candidates have shown promise in generating a protective
immune response [56,262,263], several are under evaluation. The stomach’s acidic pH and
the continuous renewal of mucosa allow H. pylori to evade the immune system. Even after
eradication, patients may not remain protected [1]. A vaccine could prevent or reduce
the frequency and severity of stomach infections [264]. To improve the effectiveness of
preventive or therapeutic vaccinations, it is crucial to select appropriate adjuvants and
immunogenic bacterial antigens [265]. Antigens such as Cytotoxin-associated gene A
(CagA), vacuolating cytotoxin A (VacA), blood group antigen-binding adhesin (BabA),
H. pylori adhesin A (HpaA), neutrophil-activating protein (NapA), outer inflammatory
protein A (OipA), gamma-glutamyl transpeptidase (GGT), heat shock protein A (HspA),
outer membrane proteins (Omp), and flagellar cap protein (FliD) have been linked to
vaccinations [266]. Vaccines targeting four virulence proteins (FVPE) [267] and the multi-
epitope vaccine (CTB-UE) [268] contain adjuvants and antigens expressed on CD4+ and
CD8+ cells. Cholera toxin and E. coli enterotoxin are used as mucosal adjuvants to boost
the immunogenicity of whole-cell and subunit vaccines. Furthermore, intramuscular H.
pylori subunit vaccines with aluminum hydroxide adjuvants and oral live vector vaccines
expressing H. pylori antigens are recommended for long-lasting protection [269].

In 2017, Guo and colleagues [270] developed the multivalent epitope-based vaccine
CFAdE, using antigenic fragments from four H. pylori adhesins: ure, Lpp20, HpaA, and cagL.
They assessed its specificity, immunogenicity, and ability to generate neutralizing antibodies
in BALB/c mice, as well as its therapeutic efficacy and protective immune responses in H.
pylori-infected Mongolian gerbils. CFAdE induces high levels of specific antibodies against
urease, Lpp20, HpaA, and cagL. Oral vaccination with CFAdE and polysaccharide adjuvant
(PA) significantly reduces H. pylori colonization compared to ure and PA immunization,
with protection linked to IgG, sIgA antibodies, and antigen-specific CD4+ T cells. A
multivalent epitope-based vaccine targeting multiple adhesins in H. pylori is more effective
than a urease-targeting single epitope vaccine, offering a promising treatment for H. pylori
infection. Adding a polysaccharide adjuvant to the multivalent vaccine dramatically
reduced H. pylori levels in mice compared to the monovalent vaccine group [268]. As a
result, multivalent vaccinations are becoming more popular. The vaccine developed by
Guo and his colleagues targets H. pylori using bacterial attachment molecules, including
urease, lipoprotein (Lpp20), H. pylori adhesins (HpaA), and CagL. Testing in experimental
models showed increased antibody production against adhesion molecules in vaccinated
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mice [270]. Reports indicate that the deactivated H. pylori whole-cell vaccine enhances
gastrointestinal immunity and reduces H. pylori severity [57].

In 2023, Katsande et al. [271] modified Bacillus subtilis spores to display H. pylori
antigens, urease subunit A (ureA), and subunit B (ureB). They evaluated immunity and
colonization in mice challenged with H. pylori after oral administration of these spores. Vac-
cination with ureA or ureB-expressing spores induced antigen-specific mucosal responses
(fecal sIgA), seroconversion, and hyperimmunization, reducing H. pylori colonization by up
to 1 log. This study highlights the potential of Bacillus spores for mucosal immunization
against H. pylori, given their thermal stability and probiotic properties. Zeng et al. [272]
conducted a Phase 3 clinical study in China to evaluate a three-dose oral recombinant H.
pylori vaccine in healthy children aged six to fifteen. Participants without prior H. pylori
infection were randomly assigned to receive the vaccine or a placebo, with the primary
outcome being the incidence of infection within one year (ClinicalTrials.gov: NCT02302170).
From 2 December 2004 to 19 March 2005, 4464 individuals were assigned to the vaccination
(n = 2232) or placebo group (n = 2232), with 4403 (99%) completing the regimen. In the first
year, 64 infections were reported: 14 in the vaccination group and 50 in the placebo group,
resulting in a vaccine effectiveness of 71.8% (95% CI: 48.2–85.6). Adverse reactions occurred
in 157 individuals (7%) in the vaccination group and 161 (7%) in the placebo group, with
major events in five (<1%) and seven (<1%) individuals, none linked to the vaccine. While
vaccination could help prevent H. pylori infections globally, no vaccine candidates have yet
proven clinically relevant [232,273].

A comprehensive summary of various therapeutic studies aimed at eradicating H.
pylori is presented in Table 1 below. This table includes detailed information regarding each
potential therapy, encompassing the type of study (preclinical, clinical, in vitro, etc.) along
with the results and outcomes associated with each investigation.

Table 1. Summary of therapeutic studies contributing to the eradication of multidrug-resistant H.
pylori infection.

Therapy Type of
Study Study Description Outcomes and Endpoints References

Triple therapy
plus colloidal

bismuth
subcitrate (CBS)

therapy

Clinical

The study included children aged 5 to 18 with
H. pylori infection identified by endoscopy in
the Spanish Registry. It analyzed patients who
received CBS treatment between 2020 and 2023,
with 38 patients (5.6%) treated out of
682 registered.

• CBS therapy has an eradication rate
of 93.8%.

• The eradication rate for patients not
receiving CBS therapy is 86.7%.

• In a subgroup of six patients on
quadruple therapy with CBS, who were
dual resistant to metronidazole and
clarithromycin, the eradication rate
was 100%.

[155]

Clinical

Seventy-three pediatric outpatients (48 males,
25 females; ages 9–14) diagnosed with H.
pylori-associated chronic gastritis and dyspeptic
symptoms participated in the study. They
underwent endoscopic evaluation and received
a 10-day treatment of bismuth subcitrate
(8 mg/kg/day), nifuratel (30 mg/kg/day), and
amoxicillin (50 mg/kg/day), given four times
daily. H. pylori infection status was evaluated
before and 4 to 6 weeks after treatment using
modified Giemsa staining.

• The study involved 73 children (48 males
and 25 females) aged 9 to 14 years.

• H. pylori was successfully eradicated in
63 patients, resulting in an efficacy rate
of 86%.

• The 95% confidence interval for the
efficacy rate was between 76.6 and 93.2.

• There were no serious adverse reactions
or withdrawals reported during
the study.

• The combination therapy used was
nifuratel, bismuth subcitrate, and
amoxicillin, which proved to be effective
and well-tolerated.

[157]

ClinicalTrials.gov
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Table 1. Cont.

Therapy Type of
Study Study Description Outcomes and Endpoints References

Tailored therapy

Clinical

A meta-analysis assessed empirical and
susceptibility-guided treatment approaches for
H. pylori, involving 54 studies with 6705
patients in the empirical cohort and 7895 in the
susceptibility-guided cohort.

• Susceptibility-guided group achieved an
86% eradication rate for H. pylori.

• This rate is significantly higher than the
76% eradication rate in the empirical
treatment group.

[160]

Clinical

This meta-analysis reviewed 16 randomized
controlled trials comparing
susceptibility-guided therapy and empirical
therapy for H. pylori infection, involving 2451
patients on empirical treatment and 2374 on
susceptibility-guided therapy.

• No significant difference in effectiveness
was found.

• Relative risk reported as 1.02.
• Confidence interval (CI) is 95%: 0.92–1.13.

[161]

Potassium-
competitive acid

blockers
(P-CABs)

Clinical

The study included 232 treatment-naïve
participants divided into two groups: Arm 1
(58 patients) received clarithromycin,
amoxicillin, and vonoprazan, while Arm 2
(58 patients) received clarithromycin,
amoxicillin, and esomeprazole.
Treatment-experienced patients were in Group
II, consisting of Arm 3 (intervention) and Arm
4 (comparator), each with 58 participants. Arm
3 received levofloxacin, vonoprazan,
nitazoxanide, and doxycycline, while Arm 4
received levofloxacin, esomeprazole,
nitazoxanide, and doxycycline. All participants
followed their treatment for 14 days, with H.
pylori eradication assessed four weeks later.

• Arm 1 had the highest eradication rate at
58.6%.

• Arm 2 and 3 recorded a 50% eradication
rate.

• Arm 4 had the lowest eradication rate at
43.1%.

• Regimens containing P-CABs were
well-tolerated by participants.

• There were few adverse events reported
in the study.

[167]

Probiotics

Clinical

This double-blind, randomized controlled trial
enrolled 450 patients with H. pylori infection.
Participants received a 14-day quadruple
treatment of bismuth subcitrate, pantoprazole,
amoxicillin, and clarithromycin, and were
randomly assigned to either a probiotic
(Lactobacillus ruteri, 100 mg) or a placebo. Eight
weeks post-therapy, a urea breath test assessed
H. pylori eradication rates, the primary
outcome, while side effects were evaluated as a
secondary outcome.

• The probiotic group showed higher H.
pylori eradication rates compared to the
placebo group.

• Eradication rates were 80.1% for
probiotics vs. 75.2% for placebo
(per-protocol) and 78.7% vs. 72%
(intention-to-treat).

• Side effects were reported by 69.7% of the
probiotic group, significantly lower than
98.6% in the placebo group (p < 0.001).

• The probiotic group experienced fewer
gastrointestinal adverse effects, with the
exception of constipation (p < 0.001).

[174]

Clinical

The study involved 95 H. pylori-positive
participants and 56 negative controls, aged 19
to 30, assigned to probiotics monotherapy,
probiotics-supplemented quadruple therapy, or
quadruple therapy alone. Gastric mucosal
samples were collected before treatment and
two months later for 16S rRNA gene
sequencing. Two months after eradication, the
gastric microbial composition significantly
differed from that of H. pylori-negative
participants, with decreased alpha diversity in
gastric juice and increased diversity in
gastric mucosa.

• Eradicating H. pylori from the stomach
microbiota in young adults disrupts the
microbial balance.

• Recovery from this disruption takes time.
• Probiotics can help correct dysbiosis

caused by eradication therapy.
• Young individuals may require additional

treatments to effectively combat H.
pylori infection.

[180]

Lactoferrin
therapy

Preclinical
in vitro

An investigation was conducted to evaluate the
antibacterial properties of lactoferrin and
Lactoferricin®, an antimicrobial peptide
derived from lactoferrin, against H. pylori.

• Bovine Lactoferricin® demonstrated
effectiveness at concentrations above
5.0 mg/L.

• Human and bovine lactoferrins had
minimum bactericidal concentrations
ranging from 1.25 to 2.50 mg/mL,
indicating a dose-dependent effect.

• Iron-saturated lactoferrin did not inhibit
bacterial growth.

• Bovine Lactoferricin® was effective in
reducing urease activity in H. pylori.

[204]
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Table 1. Cont.

Therapy Type of
Study Study Description Outcomes and Endpoints References

Preclinical
in vivo

The impact of bovine lactoferrin (bLF) on
germ-free BALB/c mice infected with H. pylori
was examined. After oral inoculation with H.
pylori, the mice were given bLF daily for either
two or four weeks. The mice were then
euthanized to evaluate serum antibody levels
and bacterial counts in the stomach. To isolate
H. pylori attached to the gastric epithelium, the
stomachs were agitated in
phosphate-buffered saline.

• Administering 10 mg of bLF over three to
four weeks resulted in a tenfold increase
in H. pylori presence in the stomach.

• There was a significant reduction in H.
pylori’s attachment to the
gastric epithelium.

• Serum antibody titers for H. pylori
dropped to undetectable levels,
indicating a weakened immune response.

• The findings suggest that bLF has a direct
antibacterial effect.

• BLF can detach H. pylori from the
stomach epithelium.

[205]

Phytotherapy

Preclinical
in vitro

and
in vivo

This study examines the effects of Banxia
Xiexin Decoction (BXXXT), a traditional
Chinese medicine prescription, on
drug-resistant H. pylori-induced gastritis in
mice using in vivo and in vitro methods. The
aqueous extract of BXXXT was prepared by
water decoction. In vitro tests indicated that
BXXXT inhibits H. pylori. An acute gastritis
model was established in vivo to assess H.
pylori colonization, gastric mucosal repair,
inflammation, and apoptosis in treated mice.

• The BXXXT aqueous extract has a
minimum inhibitory concentration of
256–512 µg/mL against H. pylori.

• This concentration is higher than the
standard triple therapy dosage of
28 mg/kg.

• The extract contains at least
11 compounds, including berberine and
quercetin, which may have
synergistic effects.

• It significantly enhances CD3+ and CD4+
T cell expression in gastritis mice.

• The extract improves the CD4+/CD8+ T
cell ratio in gastric mice.

• It targets CFAs related to urea enzymes,
cagA, and vacA.

[216]

Preclinical
In vitro
and in
silico

The essential oils and methanol extracts of
Pimenta racemosa (P. racemosa) leaves and stems
were studied for their potential inhibitory
activities against H. pylori both in vitro and in
silico. The antibacterial activity of the essential
oils and methanol extracts against H. pylori was
evaluated using the micro-well
dilution technique.

• Essential oil from stems shows inhibition
of H. pylori with an MIC value of
3.9 µg/mL.

• This MIC value is comparable to
clarithromycin, which has an MIC value
of 1.95 µg/mL.

• Molecular modeling studies indicate
potential inhibitory effects on H. pylori
urease from compounds such as decanal,
eugenol, terpineol, delta-cadinene, and
amyl vinyl.

[221]

Phototherapy

Preclinical
In vitro

A bacteria-targeted near-infrared (NIR)
photosensitizer, designated T780T-Gu, has been
developed through the combination of
positively charged guanidinium (Gu) and the
effective phototherapeutic agent T780T.

• T780T-Gu is effective in both
photothermal and
photodynamic treatments.

• It targets biofilms and multidrug-resistant
(MDR) strains of H. pylori.

• The treatment’s effectiveness may be
enhanced by structural deficits and
reduced metabolism in the bacteria.

[248]

Preclinical
In vivo

The authors have developed a
poly-L-lysine-based photomedicine conjugated
with multiple 3SL (p3SLP). They proposed a
targeted PDT strategy utilizing an endoscopic
laser system for the treatment of H. pylori. The
antibacterial efficacy of p3SLP was evaluated in
C57BL/6 mice infected with H. pylori.

• P3SLP is administered orally and
exposed to laser irradiation.

• It effectively inactivates H. pylori by
targeting the sabA protein on the
bacterial membrane.

• The treatment does not harm host
mammalian cells.

• P3SLP shows potential as an endoscopic
antibacterial PDT method for treating
H. pylori.

[228]
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Table 1. Cont.

Therapy Type of
Study Study Description Outcomes and Endpoints References

Phage therapy

Preclinical
In vitro

Prophage isolation using H. pylori strains and
UV radiation led to the identification of HPy1R,
a new podovirus with a genome of 31,162 bp
and a GC content of 37.1%. It encodes
36 predicted proteins, 17 of which are
structural. The phage remains stable at 37 ◦C
and pH levels from 3 to 11 for 24 h.

• HPy1R demonstrated a slight decrease in
viability in an in vitro gastric digestion
model, indicating adaptation to
gastric conditions.

• It effectively suppressed H. pylori
populations for up to 24 h after infection.

• HPy1R is considered a promising
candidate for phage therapy, especially in
the absence of strictly lytic phages.

[255]

Preclinical
In vitro

The effectiveness of H. pylori-specific lytic
phage (H. pylori φ) alone and with lactoferrin
adsorbed on hydroxyapatite (LF-HA)
nanoparticles (H. pylori φ + LF-HA) in
preventing H. pylori infection. The bacteria
were obtained from human stomach biopsies
and cultured in brain heart infusion (BHI)
broth with 10% horse serum at 37 ◦C and 5%
CO2 for phage isolation.

• LF-HA significantly enhances the activity
of H. pylori phages.

• Phages complexed with LF can selectively
target and eliminate H. pylori while
preserving host cells.

• This combination presents a promising
therapeutic option for H. pylori infections.

• The H. pylori φ + LF-HA combination
shows potential efficacy when given at
the onset of infection.

• Minimum effective doses for the
treatment have not yet been established.

[256]

Vaccine
development

Preclinical
in vivo

The multivalent epitope-based vaccine CFAdE
was developed from antigenic fragments of
four Helicobacter pylori adhesins: urease,
Lpp20, HpaA, and cagL. Its specificity,
immunogenicity, and ability to generate
neutralizing antibodies were tested in BALB/c
mice, followed by evaluations in H.
pylori-infected Mongolian gerbils.

• CFAdE induces antibodies against several
targets: urease, Lpp20, HpaA, and cagL.

• Oral vaccination with CFAdE combined
with a polysaccharide adjuvant (PA)
significantly decreased H. pylori
colonization.

• The reduction in colonization was
associated with increased levels of IgG,
sIgA antibodies, and antigen-specific
CD4+ T cells.

• A multivalent vaccine that targets
multiple adhesins demonstrated greater
efficacy compared to a vaccine focused
solely on urease.

• The findings suggest the potential of
multivalent vaccines in combating H.
pylori infection.

[270]

Preclinical
In vivo

Bacillus subtilis spores were engineered to
display potential H. pylori protective antigens,
urease subunit A (ureA), and subunit B (ureB),
on the spore surface. Immunity and
colonization in mice challenged with H. pylori
after orally administering these spores
were tested.

• The vaccination reduces H. pylori
colonization by up to 1 log.

• The study emphasizes the potential of
Bacillus spores for mucosal immunization
against H. pylori.

• Bacillus spores are noted for their thermal
stability and probiotic properties.

[271]

Clinical
Phase
3 trial)

A phase 3 clinical study in China evaluated a
three-dose oral recombinant H. pylori vaccine’s
effectiveness, safety, and immunogenicity in
healthy children aged six to fifteen.
Participants without prior infection were
randomly assigned to receive the vaccine or a
placebo, with the primary outcome being the
incidence of infection within one year.
Registered with ClinicalTrials.gov
(NCT02302170), the trial enrolled 4464
individuals from 2 December 2004, to 19 March
2005, with 4403 (99%) completing the regimen.

• A total of 64 H. pylori infection cases were
reported in the first year.

• Breakdown of cases: 14 in the vaccination
group and 50 in the placebo group.

• Vaccine effectiveness was calculated at
71.8% with a 95% confidence interval
of 48.2–85.6.

• Adverse reactions occurred in 157 (7%) of
the vaccinated group and 161 (7%) of the
placebo group.

• Major adverse events were reported in
five (<1%) individuals in the vaccinated
group and seven (<1%) in the
placebo group.

• None of the major adverse events were
linked to the vaccine.

[272]

7. Conclusions

H. pylori infection poses a significant global health challenge, with gastric cancer
as a common complication. Rising antibiotic resistance has led to interest in alternative

ClinicalTrials.gov
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treatments. This review clarifies transmission pathways, treatment failure, antimicrobial
resistance, and emerging therapies. H. pylori is primarily transmitted through saliva and
contaminated food or water. Developing countries are especially susceptible due to poor
water treatment and hygiene. The infection spreads mainly among family members, partic-
ularly affecting children. Triple therapy with amoxicillin, clarithromycin, and a PPI like
omeprazole has been the first-line treatment for H. pylori. Due to multidrug resistance,
quadruple therapy with metronidazole, tetracycline, omeprazole, and bismuth is now
recommended as a second-line option. Clarithromycin, metronidazole, levofloxacin, and
amoxicillin are often linked to H. pylori drug resistance in developing countries due to
altered membrane permeability, biofilm formation, and efflux pump activity. Alternative
therapies, such as adjuvant therapy (probiotics and antibiofilm agents), phage therapy,
phototherapy, phytotherapy, lactoferrin therapy, and vaccine development, are essential
for treating H. pylori infection. Probiotics fight H. pylori by competing for attachment
sites, inducing cell death, and regulating inflammatory cytokines. Phytotherapy inhibits
urease activity and improves membrane permeability, though it is still in early develop-
ment. Both probiotics and herbal therapies are effective second-line treatments due to
their safety and lack of resistance. Phage therapy uses bacteriophages to lyse host cells.
Photodynamic therapy generates ROS to eliminate H. pylori. Lactoferrin therapy sequesters
iron and disrupts bacterial cell walls, making it a safe alternative. The development of
vaccines targeting virulence antigens, such as cagA and vacA, is crucial for reducing H.
pylori colonization and enhancing eradication strategies. However, further clinical evidence
is needed to validate their practical implementation. Although vaccines, probiotics, and
phages offer promising therapeutic alternatives, additional research is necessary to clarify
the underlying mechanisms and assess their efficacy through rigorous clinical trials.
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136. Krzyżek, P.; Grande, R. Transformation of Helicobacter pylori into coccoid forms as a challenge for research determining activity of
antimicrobial substances. Pathogens 2020, 9, 184. [CrossRef] [PubMed]

137. Inamasu, Y.; Ogawa, M.; Saito, M.; Harada, M.; Fukuda, K. Helicobacter pylori results in lysis and death after exposure to water.
Helicobacter 2022, 27, e12921. [CrossRef] [PubMed]

138. Chaput, C.; Ecobichon, C.; Cayet, N.; E Girardin, S.; Werts, C.; Guadagnini, S.; Prévost, M.-C.; Mengin-Lecreulx, D.; Labigne, A.;
Boneca, I.G. Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS Pathog. 2006, 2, e97.
[CrossRef]

139. Wang, K.-X.; Wang, X.-F. Cloning and sequencing of cagA gene fragment of Helicobacter pylori with coccoid form. World J.
Gastroenterol. WJG 2004, 10, 3511. [CrossRef]

140. Bessa, L.J.; Grande, R.; Iorio, D.D.; Giulio, M.D.; Campli, E.D.; Cellini, L. Helicobacter pylori free-living and biofilm modes of
growth: Behavior in response to different culture media. Apmis 2013, 121, 549–560. [CrossRef]

141. Gong, Y.; Yuan, Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit. Rev. Microbiol. 2018, 44,
371–392. [CrossRef]

142. Liu, Y.; Wang, S.; Yang, F.; Chi, W.; Ding, L.; Liu, T.; Zhu, F.; Ji, D.; Zhou, J.; Fang, Y.; et al. Antimicrobial resistance patterns and
genetic elements associated with the antibiotic resistance of Helicobacter pylori strains from Shanghai. Gut Pathog. 2022, 14, 14.
[CrossRef] [PubMed]

143. Raj, D.S.; Kesavan, D.K.; Muthusamy, N.; Umamaheswari, S. Efflux pumps potential drug targets to circumvent drug Resistance–
Multi drug efflux pumps of Helicobacter pylori. Mater. Today Proc. 2021, 45, 2976–2981. [CrossRef]

144. Yonezawa, H.; Osaki, T.; Hojo, F.; Kamiya, S. Effect of Helicobacter pylori biofilm formation on susceptibility to amoxicillin,
metronidazole and clarithromycin. Microb. Pathog. 2019, 132, 100–108. [CrossRef]
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