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Abstract

Background: The accurate deciphering of spatial domains, along with the identification of differentially expressed genes and the
inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our understanding
of tissue organization and biological functions. However, most of spatial clustering methods can neither decipher complex structures
in ST data nor entirely employ features embedded in different layers.

Results: This article introduces STMSGAL, a novel framework for analyzing ST data by incorporating graph attention autoencoder
and multiscale deep subspace clustering. First, STMSGAL constructs ctaSNN, a cell type-aware shared nearest neighbor graph, us-
ing Louvian clustering exclusively based on gene expression profiles. Subsequently, it integrates expression profiles and ctaSNN to
generate spot latent representations using a graph attention autoencoder and multiscale deep subspace clustering. Lastly, STMSGAL
implements spatial clustering, differential expression analysis, and trajectory inference, providing comprehensive capabilities for
thorough data exploration and interpretation. STMSGAL was evaluated against 7 methods, including SCANPY, SEDR, CCST, DeepST,
GraphST, STAGATE, and SiGra, using four 10x Genomics Visium datasets, 1 mouse visual cortex STARmap dataset, and 2 Stereo-seq
mouse embryo datasets. The comparison showcased STMSGAL's remarkable performance across Davies-Bouldin, Calinski-Harabasz,
S_Dbw, and ARI values. STMSGAL significantly enhanced the identification of layer structures across ST data with different spatial
resolutions and accurately delineated spatial domains in 2 breast cancer tissues, adult mouse brain (FFPE), and mouse embryos.

Conclusions: STMSGAL can serve as an essential tool for bridging the analysis of cellular spatial organization and disease pathology,
offering valuable insights for researchers in the field.

Keywords: spatial transcriptomics, graph attention autoencoder, deep subspace clustering, multiscale self-expression, self-supervised
learning, latent embedding feature learning, cell type-aware spatial neighbor network, differential expression analysis, trajectory in-
ference

Background
Key Points: . . . .

The tissues in the human body comprise various cell types, where
® A graph attention autoencoder is fully utilized to effec- each cell type implements a particular function [1]. The activation
tively integrate spatial locations and gene expression in- of a cell is mainly affected by its surrounding environment [2-5].
formation by collectively incorporating information be- Exploring relative positions of these cells contributes to analyz-
tween neighboring spots. ing cell-cell communication [6-9] and their spatial organization
® Amultiscale self-expression module is explored to learn and disease pathology [10-13]. The rapid advance of single-cell
the associations between node representations in all en- RNA sequencing (scRNA-seq) technologies enables us to investi-
coder layers and further obtain a more distinct self- gate the gene expression patterns of various cells within a tis-
expression coefficient matrix for mapping these features sue/organ [14-22]. However, scRNA-seq technologies fail to pro-
into a more precise subspace. vide spatial location information [23]. In contrast, spatial tran-
® A self-supervised learning method is designed to help scriptomics (ST) technologies provide a large number of gene
spot latent feature learning by utilizing the clustering expression data and cellular location information for a tissue
label as a supervisor. and have witnessed tremendous development in the past several
years [24-26]. Based on data generation methods, ST technolo-

gles mainly contain image-based methods and next-generation
sequencing (NGS)-based methods [27].
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Image-based methods use in situ sequencing or in situ hy-
bridization to retain spatial locations of cells and further ob-
tain RNA transcripts based on images from the stained tis-
sues. MERFISH (28] can detect gene expression information of
about 40,000 human cells in a single 18-hour measurement.
STARmap [29] can capture more than 1,000 genes in the mouse
cortex through an error-robust sequencing-by-ligation approach.
seqFISH+ [30] combined sequential hybridization and standard
confocal microscope-based imaging technique to obtain super-
resolution imaging and multiplexing data for 10,000 genes.

NGS-based methods depend on the number of spatial barcodes
before library preparation [31]. Slide-seq [32, 33] obtained ran-
domly barcoded positions through in situ indexing and captured
mRNAs through depositing onto a slide. High-definition ST (HDST)
[34] replaced the glass slides using beads deposited in wells. The
DBiT-seq [35] technique utilized polyT barcodes in the tissue sec-
tion based on microfluidics. Stereo-seq [36] obtained nanoscale
resolution through randomly barcoded DNA nanoballs. 10x Ge-
nomics Visium [37] demonstrated increased resolution with a di-
ameter of 55 um and a 100-pum center—center, as well as improved
sensitivity in more than 10,000 transcripts per spot. It detected
more unique molecules for each spot compared with Slide-seq
and HDST.

One main challenge in ST data analysis is to capture spatial
domains with similar expression patterns. For example, the lam-
inar organization in human cerebral cortex has a close relation-
ship with its biological functions. In this tissue, cells within dif-
ferent cortical layers have different expressions, morphology, and
physiology [38]. One efficient way to identify spatial domains is to
cluster ST data. These clustering methods mainly fall into 2 cate-
gories. The first category adopts conventional clustering methods,
for example, K-means clustering [39] and Louvain algorithms [40].
These algorithms are susceptible to the small size of spots and
sparsity data, and the detected clusters may be discontinuous in
sections. The other category uses cell-type labels obtained from
scRNA-seq data to deconvolute spots [41, 42], but these types of
methods cannot analyze ST data from the perspective of cellular
or subcellular resolution.

It is crucial to learn a discriminative representation for each
spot by combining gene expression and spatial contexts when
clustering ST data. Recently, several clustering algorithms have
been developed to identify spatial domains. For example, BayesS-
pace [43] assumed that spots belonging to the same cell type may
be closer to each other and built a Markov random field model
with Bayesian approach. stLearn [44] first proposed a spatial mor-
phological gene expression normalization algorithm to normal-
ize ST data and then employed a standard Louvain clustering ap-
proach to partition broad clusters into several subclusters. SEDR
[45] exploited a deep autoencoder network to learn gene repre-
sentations and adopted a variational graph autoencoder to em-
bed spatial information. CCST [46] explored a graph convolutional
network to transfer gene expression information as cellular em-
bedding vectors and trained a neural network to encode cell em-
bedding features for clustering. STAGATE [47] developed a adap-
tive graph attention autoencoder (GATE) [48] to accurately iden-
tify spatial domains by integrating gene expression information
and spatial neighbor network. DeepST [49] incorporated gene ex-
pression, spatial context, and histology to model spatially embed-
ded representation and further capture spatial domains. GraphST
[50] integrated graph self-supervised contrastive learning and a
graph neural network [51, 52] for spatial clustering, multisam-
ple integration, and cell-type deconvolution. ConGlI [53] adopted
gene expression with histopathological images to accurately cap-
ture spatial domains based on contrastive learning. STGIC is a

graph- and image-based spatial clustering method. It can gen-
erate pseudo-labels for spatial clustering but does not depend
on any trainable parameters. SPACEL [54] deconvoluted cell-type
composition based on a multiple-layer perceptron, identified spa-
tial domains via a graph convolutional network and adversarial
learning, and constructed a 3-dimensional architecture for each
tissue. PRECAST [55] integrated a few ST datasets that have com-
plex batch effects and biological effects. SRTsim [56] is spatially
resolved transcriptomics-specific simulator for spatial clustering
and expression pattern analysis. Tang et al. [57] developed an
image-augmented graph transformer for spatial elucidation. The
methods mentioned above have significantly promoted the stud-
ies of tissue physiology from cell centroid to structure centroid
and are state-of-the-art spatial clustering methods. In prticular,
Yuan et al. [58] considered that current computation-based ST
clustering is a lack of a comprehensive benchmark and systemat-
ically benchmarked a collection of 13 spatial clustering methods
on 7 ST datasets (34 ST data). Their work has provided guidance
for future progress in the ST data analysis field.

Although the aforementioned clustering methods obtained im-
pressive performance, their learned latent node representation
failed to achieve the most useful information because they did
not use current clustering labels. In addition, some methods, in-
cluding SEDR and CCST, only used the representation in the final
hidden layer of an encoder for clustering ST data, which failed to
consider helpful features in the other layers. Although graph at-
tention autoencoder-based methods [59, 60] have elucidated bet-
ter performance in integrating node attributes and graph struc-
ture information, they could not decipher the complex structures
in ST data or did not entirely employ features embedded in dif-
ferent layers. Moreover, some models did not utilize a clustering-
oriented loss function, while others did not fully use the clustering
labels for node representation learning. The problems produced
the suboptimal clustering results. Here, we introduce STMSGAL,
an ST analysis framework by combining a graph attention autoen-
coder and multiscale deep subspace clustering network.

Materials and Methods

Overview of STMSGAL

As shown in Fig. 1, STMSGAL is composed of 3 main steps: (i) Spa-
tial neighbor network construction. STMSGAL constructs a spatial
neighbor network (SNN) based on spatial contexts and obtains
a cell type-aware SNN called ctaSNN through Louvain cluster-
ing exclusively based on gene expression data. (ii) Latent embed-
ding feature learning. This mainly comprises spot embedding fea-
ture matrix construction, subspace clustering combining multi-
scale self-expression coefficient learning and affinity matrix con-
struction, and spot robust latent feature learning based on self-
supervised learning. (iii) Biological applications. ST data are clus-
tered, and differential expression analysis and trajectory infer-
ence are implemented. Similar to STAGATE [47], STMSGAL still
constructs a ctaSNN and embedding feature matrix using GATE.
However, different from STAGATE, STMSGAL adopts the multi-
scale deep subspace clustering algorithm to obtain cluster la-
bels based on multiscale information from each encoder layer for
spots and then adopts a self-supervised module to learn robust
latent features of spots with clustering information.

Datasets

Four available 10x Genomics Visium datasets, 1 mouse visual cor-
tex STARmap dataset, and 2 Stereo-seq datasets are used to eval-
uate the STMSGAL performance. The former four 10x Genomics
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Figure 1: Pipeline for clustering ST data based on GATE and deep subspace clustering network. (i) Spatial neighbor network construction. (ii) Latent

embedding feature learning. (iii) Biological applications.

datasets are from Adult Mouse Brain (FFPE) [61], Human Breast
Cancer (Block, A Section 1) [62], Human Breast Cancer (Ductal Car-
cinoma In Situ [DCIS]) [63], and Human Dorsolateral Prefrontal
Cortex (DLPFC) tissues [64]. The former 2 datasets have no clus-
tering labels, and the latter 2 datasets are known to be labeled.
The Adult Mouse Brain (FFPE) dataset contains 2,264 spots and
19,465 genes. The Human Breast Cancer (DCIS) dataset includes
3,798 spots and 36,601 genes. The Human Breast Cancer (Block
A, Section 1) dataset detects 2,518 spots and 19,743 genes. The
DLPFC dataset contains 12 tissue slices. It captures 33,538 genes
with different spot numbers ranging from 3,460 to 4,789 in each
slice. Each slice contains 5 to 7 regions by manual annotation
[38]. The mouse visual cortex STARmap dataset provides the ex-
pression information of 1,020 genes from 1,207 cells [29]. The
Stereo-seq dataset [65] from mouse embryos at E9.5 is obtained
based on high-resolution full-transcriptome coverage technolo-
gies (i.e., Stereo-seq technology). The number of spots and one of
genes are 5,913 and 25,568 (E9.5_E1S1), as well as 4,356 and 24,107
(E9.5_E2S2), respectively.

Spatial neighbor network construction
Data preprocessing

To preprocess ST data, first, spots outside main tissue regions
are removed. Next, raw gene expressions are log-transformed and

normalized based on library size through the SCANPY package
[66]. Finally, multiple highly variable genes are selected as inputs.

Cell type-aware SNN construction

To integrate the similarity between a neighboring spot and a given
spot, similar to STAGATE [47], STMSGAL constructs an undirected
neighbor network based on a predefined radius r and spatial con-
texts. Let A denote an adjacency matrix of the constructed SNN,
and A;; = 1 when the Euclidean distance between 2 spots i and
j is less than r. For 10x Genomics Visium data, an SNN where
each spot contains 6 nearest neighbors is built. Next, self-loops are
added to each spot. Finally, the SNN is pruned based on precluster-
ing and a ctaSNN is constructed. In particular, the preclustering
of spots is conducted by Louvain clustering [40] exclusively based
on gene expression profiles. The edges where 2 spots linking them
belong to different clusters are pruned.

Latent embedding feature learning

Wang et al. [67] presented a multiscale graph attention subspace
clustering model and obtained superior performance on 3 graph
datasets and 2 real-world datasets. The clustering model fully ex-
plored the associations between node representations in all en-
coder layers and obtained a more accurate self-expression coeffi-
clent matrix. To more accurately cluster spots, in this section, we
utilize the multiscale graph attention subspace clustering model
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[67] to learn latent embedding features of spots. First, a spot em-
bedding feature matrix in each encoder layer is constructed via
GATE. Second, spot cluster labels are obtained through subspace
clustering. Finally, spot robust latent features are learned by self-
supervised learning.

Embedding feature matrix construction

Similar to STAGATE [47], we use GATE to construct an embed-
ding feature matrix. For spot i, an encoder with L layers takes
its normalized gene expressions x; as inputs to generate its em-
bedding features by collectively incorporating information from
its neighbors. Taking gene expressions as initial spot embeddings,
that is, h'® = x;, Vie (1,2, .-, N}, the embedding of i in the kth
(ke{1,2,---,L —1}) encoder layer is denoted by Eq. (1):

WY = (Z att) (th?“))) o)

J€S;

where Wy, o, S;, and attf}e) denote the trainable weight matrix, non-
linear activation function, a spot set that includes neighbors of i in
SNN and i itself, and weight of the edge between spot i and spot j
in the kth graph attention layer, respectively. The output sz) = hl.(k)
of the encoder is taken as the final spot embedding in the encoder

part. The Lth layer in the encoder does not use the attention layer
by Eq. (2):
ht = o (w.h) 2
In the decoder part, a decoder transforms the learned latent
embedding back into a normalized expression profile to recon-
struct the spot features. Suppose that E@ = Czl.(L), where C denotes
a self-expression matrix, and zi(L) denotes the embedding of iin the
Lth encoder layer. Next, Czl.(L) is fed into the decoder to reconstruct
the spot embeddings. In the kth decoder layer, the embedding fea-
tures of spot 1 are constructed by Eq. (3):

. (Z - (wkﬁgk))) .

Jesi

The L layer in the decoder is denoted by Eq. (4):
~(0 o~ ~(1
=0 (W) (4)
Its output is the reconstructed normalized expressions. In ad-
dition, we set Wy, = W, T and att® = att® to avoid overfitting.
The attention mechanism is a 1-layer feed-forward neural net-
work that is parametrized by a weight vector. A self-attention
mechanism [68] is used to compute the similarity between neigh-
boring spots in an adaptive way. In the kth decoder layer, the edge
weight between spot i and its neighbor spot j is computed by
Eg. (5):

el = sigmoid (vl (W) + v (Wh)) (5)

where vl and v are 2 trainable weight vectors. Next, the similar-
ity weights between spots are normalized by a softmax function

by Eq. (6):

(k)
a2
ij k

ZjeS, exp (61(1))
The obtained weights are applied to further update the latent em-
bedding of spots in the encoder and decoder.

6)

In addition, STMSGAL adopts a self-attention mechanism and
constructs a ctaSNN. Let attff)aﬁ“] and att{*""* denote the learned
spot similarity using SNN and ctaSNN, respectively, and the final
spatial similarity is computed by combining the above 2 similari-
ties by Eq. (7):

atty; = (1 - «) attP*" + eatt?=re 7)

where « is a hyperparameter used to weigh the importance of SNN
and ctaSNN.

The reconstructed loss is minimized based on the residual sum
of squares by Eq. (8):

2
X — th)

®)

1 n
Lot = min > Z .
i=1
In particular, weight decay equally imposes a penalty to the
L, norm; thus, the regularized loss is minimized. The total loss
is represented as Eq. (9):

—

-1
1
L1=Lat+ 5 AR ©)

1

~
1

Multiscale deep subspace clustering

Different from STAGATE [47], in this section, we adopt the mul-
tiscale deep subspace clustering algorithm to obtain cluster la-
bels based on multiscale information from each encoder layer for
spots. The self-expression property of data greatly influences the
performance of subspace clustering. In a union subspace, each
datum can be represented as a linear combination of the other
data. Thus, we use a multiscale self-expressive module to obtain
the final self-expression coefficient matrix based on the spot em-
bedding feature matrix: H® = {h(lk>, ny ... h&k)}.

In deep subspace clustering network [69], a self-expression
layer is a full connection layer without bias and activation. Its ob-
jection function is represented by Eq. (10):

. 1 .
min [Cll, + 51Z - CZ| st (diag(C)=0) (10)

where C indicates a self-expression coefficient matrix used to
build an affinity matrix A for the following spectral clustering, Z
indicates the output feature matrix in the encoder, and || - ||, indi-
cates an arbitrary regularization norm.

Although deep subspace clustering obtains better clustering
performance, it fails to consider the multiscale features exist-
ing in the other encoder layers. Here, we integrate the multi-
scale features into the original self-expression module. Given
the input normalized gene expressions in the ith encoder layer
Z® (k=1,2,---,L), the self-expression coefficient matrix C® in
the kth encoder layer can be computed by Eq. (11):

1 2
in = ||z® — ckzk
min 5 |2 - <20, ay
Next, the multiscale self-expression matrix C® in different lay-
ers is fused based on an adaptive approach by Eq. (12):

L
o _Tham c®
F= L
D1 T
where 1, denotes a trainable variable used to balance the impor-
tance of each self-expression matrix.
Based on the obtained final self-expression matrix Cr, a deep
subspace clustering model builds an affinity matrix A for spectral

(12)



clustering [70] by Eq. (13):
1
A= (ic+[cE) (13)

Consequently, the clustering result Y., can be obtained by
spectral clustering based on A.

In particular, the multiscale self-expression loss is represented
as Eq. (14):

Lomss = min — XL: Hz(‘@ ¢tz H2
ST ek 2L 'k=1 B F

st (diag(c¥) =0)

Besides, a regularization loss is introduced to avoid C* being
too sparse:

(14)

N A
o =i Ll

s.t. (diag (C(k)> = O)

Thus, the total loss in the multiscale self-expression module is
denoted as Eq. (16):

(15)

£2 = [:mss + [:reg (16)

Spot robust latent feature learning
Furthermore, distinct from [47], we employ a self-supervised mod-
ule to learn spot robust latent features. First, spots are classified
based on 3 full connection layers. Let the dimensions of all full
connection layers be denoted as {d; x D1 x D, x D3 x m}, where
d;, denotes the dimension of ZU, and Dy, Dy, and D; denote the di-
mensions of 3 full connection layers, respectively. We obtain the
classification results P € R™™ of n spots based on the 3 full con-
nection layers.

Next, we use the cross-entropy loss between the classifica-
tion results P and the clustering results Y, to constrain a self-
supervised learning module by Eq. (17):

n m
L3 = Loy = min— 21: 2; P(i, j) logYau(i, j) (17)
=1 )=
where Y, (i, j) denotes the jth clustering label of spot i obtained
from spectral clustering, and P(i, j) denotes the jth classification
label of spot i based on 3 full connection layers.
Finally, by integrating Egs. (9), (14), (15), and (17), the total loss
function of multiscale GATE is denoted as Eq. (18):

Liotal = énl}% L1+ Ereg + A Lyss + Esup (18)

where 1 is a trade-off parameter used to measure the importance
of Liyss.

Biological application

STMSGAL first identifies spatial domains using Leiden cluster-
ing [71], Louvain clustering [40] or mclust clustering [72] based
on the obtained spot embedding feature matrix. Second, it im-
plements differential expression analysis using the t-test in the
Scanpy package. Finally, it conducts trajectory inference.

Spatial clustering

Based on the learned spot embedding feature matrix, we use
different strategies to identify spatial domains. For the DLPFC
dataset, mclust clustering [72] is applied to spatial clustering. For
other datesets, Louvain or Leiden clustering [40, 71] is used to im-
plement ST clustering,.
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In addition, although the spot embedding feature matrix is ob-
tained by integrating both gene expressions and spatial contexts,
several spots may be incorrectly assigned to spatially diametrical
domains, which may cause noise and influence downstream anal-
ysis. To solve this problem, an optional optimization step is used to
further optimize spatial clustering results obtained from Louvain
clustering on the DLPFC dataset: for a given spot i, its surrounding
spots within an r radius circle are taken as its neighbors. Next, we
reassign i to a spatial domain with the most frequent label of its
neighbors. In addition, the clustering results are visualized using
UMAP [73].

Differential expression analysis

Differential expression analysis is one primary downstream anal-
ysis method on transcriptomic data [74-76]. It helps identify
biomarkers for novel cell types or detect gene signatures for cellu-
lar heterogeneity, and it further provides data for other secondary
analyses (such as gene set or pathway analysis and network anal-
ysis). We use the t-test implemented in the SCANPY package [66]
to identify differentially expressed genes for spatial domains.

Trajectory inference

ST technologies help depict tissues and organisms in great de-
tail. Tracking the transcriptomic profiles of cells over time and
studying their dynamic cellular process contribute to the compu-
tational reconstruction of cellular developmental processes. Tra-
jectory inference enables us to better study the potential dynam-
ics of a query biological process, for example, cellular develop-
ment, differentiation, and immune responses [77]. It can detect
a graph-like structure existing in the dynamic process from the
sampled cells. Properties of cells are compared over pseudotime
[78] by mapping them to the captured structure. Trajectory infer-
ence allows us analyze how cells evolve from one cell state to an-
other, as well as when and how cells should make cell fate deci-
sions. In this section, the PAGA algorithm [79] in the SCANPY pack-
age [66] is employed to depict the spatial trajectory. The obtained
trajectory figures are visualized using the scanpy.pl.paga_compare()
function.

Results

Experimental setting

In STMSGAL, both the encoder and the decoder with the activa-
tion function of the exponential linear unit (ELU) [80] included
neural networks with 2 graph attention layers, where the num-
ber of neurons was 512 and 30, respectively. The Adam optimizer
[81] was employed to minimize their reconstruction loss. In the
self-supervised module, the activation function was set to recti-
fied linear units (ReLu) [82]. For Louvain clustering, the radius r
was set to 50 when STMSGAL obtained the best clustering perfor-
mance on the DLPFC dataset.

STMSGAL adopted the same data preprocessing as those of
SCANPY. Both used log-normalization and constructed the near-
est neighbor network. SCANPY obtained spatial clustering with
the scanpy.tl.louvain() function. Table 1 shows parameter settings
of STMSGAL on 5 ST datasets. For each dataset with labels, the
resolution parameter was tuned manually to ensure the cluster
number was equal to the ground truth. Thus, the cluster number
in each method was set to the same as one of ground truth layers.
For other clustering methods, we adopted their default settings.
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Table 1: Parameter settings

Datesets Parameter settings

DLPFC rad_cutoff = 150
cost_ssc =0.1
a=0

method = ‘Louvain’
rad_cutoff = 300
cost_ssc=1
a=0.7

method = ‘leiden’
rad_cutoff = 300
cost_ssc =0.1
a=0.5

method = ‘Louvain’
rad_cutoff = 300
cost_ssc=1
a=0.5

method = ‘Louvain’
rad_cutoff = 400
cost_ssc =0.1
a=0

method = ‘mclust’
rad_cutoff =3
cost_ssc =0.1
a=0

method = ‘Louvain’

Human Breast Cancer
(Block A, Section 1)

Adult Mouse Brain
(FFPE)

Human Breast Cancer
(DCIS)

Mouse visual cortex

Stereo-seq mouse embryo

Evaluation metrics

For 3 datasets with labels (Human Breast Cancer [Block A, Sec-
tion 1], DLPFC, and mouse visual cortex STARmap), we employed
adjusted Rand index (ARI) [83] to evaluate the performance of dif-
ferent spatial clustering algorithms. ARI computes the similarity
between the predicted clustering labels and reference cluster la-
bels by Eq. (19):

RI — E[R]]

AR = max(RI) — E[R]]

(19)
where the unadjusted Rand index is RI = (a + b)/C2, where a and
b indicate the number of pairs correctly labeled in the same
dataset and not in the same dataset, respectively. C2 indicates
the total number of possible pairs. E[RI] indicates the expected
RI based on random labeling. A higher ARI score denotes better
performance.

For 2 datasets whose spatial domain annotations are unavail-
able (Adult Mouse Brain [FFPE] and Human Breast Cancer [DCIS]),
we evaluated the performance of spatial clustering algorithms
based on 3 clustering metrics: Davies-Bouldin (DB) score [84],
Calinski-Harabasz (CH) score [85], and S_Dbw score [86, 87]. DB
was computed by averaging all cluster similarities, where the sim-
ilarity between each cluster and its most similar cluster was taken
as its cluster similarity. The similarity was computed by the ra-
tio of within-cluster distances to between-cluster distances. CH
is used to measure the cluster validity by averaging the squares
of within- and between-cluster distance sum of all spots. S_Dbw
evaluates intraclass compactness and interclass density of each
spot. Small DB and S_Dbw and large CH indicate the optimal clus-
ter clustering.

Performance comparison of STMSGAL with 6
other methods on 2 datasets without labels

To investigate the clustering performance of STMSGAL, we com-
pared it with 6 other clustering algorithms—that is, SCANPY [66],

Table 2: Performance comparison of STMSGAL with 6 other clus-
tering methods on Adult Mouse Brain (FFPE) and Human Breast
Cancer (Ductal Carcinoma In Situ [DCIS])

Metrics

Datasets Methods DB CH S_Dbw

Adult Mouse Brain  SCANPY 1.442 358.67 0.481

(FFPE) SEDR 1.951 84.569 0.652
CCST 1.173 507.421 0.453
DeepST 1.166 842.033 0.328
STAGATE 1.467 495.547 0.427
GraphST 1.470 310.860 0.501
STMSGAL 1.155 1,010.724 0.311

Human Breast SCANPY 2.069 379.084 0.593

Cancer

(DCIS) SEDR 2.627 54.778 0.742
CCST 1.469 507.421 0.453
DeepST 1.263 611.567 0.48
STAGATE 1.916 430.630 0.587
GraphST 1.951 369.594 0.610
STMSGAL 1.451 1,190.850 0.332

* The bold font indicates the best performance in each column. Lower Davies—
Bouldin (DB) and S_Dbw and higher Calinski-Harabasz (CH) denote better per-
formance.

SEDR [45], CCST [46], STAGATE [47], DeepST [49], and GraphST
[50]—on two 10x Genomics Visium datasets without labels (i.e.,
Adult Mouse Brain [FFPE] and Human Breast Cancer [DCIS)).
The former one method obtained broad applications in single-
cell clustering, and the remaining 5 methods were widely ap-
plied to spatial clustering. Table 2 shows the DB, CH, and S_Dbw
scores computed by STMSGAL and other methods on the above 2
datasets. The best performance in each column was denoted us-
ing the bold font. The results demonstrated that STMSGAL com-
puted the smallest DB and S_Dbw and the highest CH on Adult
Mouse Brain (FFPE) and the highest CH and the smallest S_Dbw
on Human Breast Cancer (DCIS), suggesting its optimal clustering
performance.

STMSGAL demonstrates robust clustering
performance across ST datasets with different
spatial resolutions

To evaluate the STMSGAL performance on spatial domain iden-
tification, we compared it with existing 7 state-of-the-art meth-
ods on 4 DLPFC sections. Particularly, in complex networks, nodes
are clustered into relatively dense communities through the clus-
tering algorithm. Louvain clustering is a nonspatial clustering al-
gorithm. It assigns each spot to a significantly differential com-
munity and achieves the desired clusters by iteratively merging
and splitting communities. It exhibits powerful clustering per-
formance compared with spectral clustering when clustering ST
data, such as DLPFC. Thus, we used the Louvian clustering for per-
forming clustering again on DLPFC.

Moreover, the DLPFC dataset provides high-resolution images
and satisfies the need of spatial clustering methods, including
SiGra, that must combine high-resolution images for clustering
ST data. The results elucidated that spatial domains captured
by STMSGAL were consistent with manual annotation on human
DLPFC sections and the definition of cortical stratification in neu-
roscience (Fig. 2).

In addition, STMSGAL effectively captured the expected corti-
cal layer structures and significantly improved spatial clustering
performance in comparison with SCANPY, SEDR, CCST, STAGATE,
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Figure 2: STMSGAL improves the identification of layer structures in the DLPFC tissue. (A) Ground-truth segmentation of 6 cortical layers and 1 white
matter layer in the DLPFC section 151509. (B) Boxplots of ARI computed by STMSGAL and other 7 methods in the DLPFC sections, from 151507 to
151510. (C) Cluster assignments generated by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, SiGra, and STMSGAL in the DLPFC section 151509. (D)
UMAP visualizations and PAGA graphs generated by SCANPY, GraphST, and STMSGAL embeddings in the DLPFC section 151509.
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Figure 3: Spatial domains identified by SCANPY, SEDR, CCST, GraphST, STAGATE, and STMSGAL in the mouse visual cortex STARmap dataset.

SiGra, DeepST, and GraphST (Fig. 2 and Supplementary Fig. S1). For
average ARIs, STMSGAL achieved the best performance (Fig. 2B).
In the DLPFC section 151509, STMSGAL clearly depicted the layer
borders and obtained the best average ARI of 0.511. In the sec-
tion, although the clustering results of SCANPY roughly adhered
to the expected layer structures, its cluster boundary was discon-
tinuous with many noises, which greatly influenced its clustering
accuracy. Moreover, SCANPY is a nonspatial clustering algorithm,
and SEDR, CCST, DeepST, STAGATE, SiGra, and GraphST are spa-
tial clustering algorithms. Interestingly, the performance of the
above 6 spatial clustering algorithms, especially STMSGAL, is bet-
ter than the clustering method, elucidating STMSGAL's powerful
spatial domain identification ability (Fig. 2C).

STMSGAL manifested the distance between spatial domains
and characterized the spatial trajectory in a UMAP plot [73]
by integrating spatial contexts. For example, in the DLPFC sec-
tion 151509, the UMAP plots delineated by STMSGAL embeddings
elucidated well-organized cortical layers and consistent spatial
trajectories, which was in accord with functional similarity be-
tween adjacent cortical layers and the chronological order [88].
Furthermore, in the UMAP plots delineated by SCANPY embed-
dings, spots that belong to different layers were not clearly di-
vided while GraphST and STMSGAL could well divide most spots
into different layers (Fig. 2D). Finally, we used a trajectory in-
ference approach named PAGA [79] to verify the inferred trajec-
tory. The PAGA graphs depicted by both STMSGAL and GraphST
embeddings had a approximately linear development trajectory
from layer 1 to layer 6. In addition, the identified adjacent lay-
ers by STMSGAL and GraphST showed similarity while ones from
SCANPY embeddings were mixed (Fig. 2D).

We further evaluated the performance STMSGAL on the mouse
visual cortex STARmap dataset, which is an image-based ST
dataset at single-cell resolution and is generated by the STARmap
technique [29]. mclust is a widely used R package applied to
model-based clustering through finite Gaussian mixture model-
ing. It is more suitable to single-cell resolution data with fewer
samples, such as mouse visual cortex STARmap dataset. Thus,
we used mclust for performing clustering again on STARmap. Us-
ing the gold standard annotated by experts, as shown in Fig. 3,
STMSGAL obtained the best ST clustering performance with an
ARI of 0.568 compared to SCANPY, SEDR, CCST, STAGATE, and
GraphST, while STAGATE achieved the second-best ranking with
ARI of 0.563 (Fig. 3).

We also validated the performance of STMSGAL for identifying
tissue structures on the Stereo-seq dataset from mouse embryos
at E9.5. Tissue domain annotations of mouse embryos were ob-
tained from [65].

We investigated the clustering results of STAGATE, GraphST,
and STMSGAL on the E9.5_E1S1 embryo. As shown in Fig. 4A, al-
though the original annotation had 12 reference clusters, we set
the number of clusters in our testing to 20 to acquire a higher
resolution of tissue segmentation. The clusters identified by both
STAGATE and STMSGAL matched the annotation well (Fig. 4B). As
shown in Table 3, however, compared to STAGATE, STMSGAL com-
puted the smallest DB and S_Dbw and the highest CH.

Moreover, we compared the clustering results of STAGATE,
GraphST, and STMSGAL on the E9.5_E2S2 mouse embryo. Here, we
set the number of clusters to 13, matching the original annotation
(Fig. 4C). The results demonstrated that STMSGAL computed the
smallest DB and S_Dbw and the highest CH (Table 3). STAGATE
produced more smoother clusters but failed to reveal any fine-
grained tissue complexity (Fig. 4D). For example, STAGATE failed
to identify cavity in the brain (domain 2). In contrast, STMSGAL's
clusters better matched the annotated regions.

STMSGAL can accurately dissect spatial domains
on 2 breast cancer tissues

Differed from the cerebral cortex with clear and known morpho-
logical boundaries, breast cancer tissues are remarkably heteroge-
neous and consist of a complex tumor microenvironment. Conse-
quently, manually labeling cancer data only via tumor morphol-
ogy cannot fully depict the complexity. Thus, we utilized STMS-
GAL to find spatial domains on two 10x Genomics Visium datasets
with respect to Human Breast Cancer (Block A, Section 1) and Hu-
man Breast Cancer (DCIS).

Particularly, Louvain clustering may produce arbitrarily badly
connected communities. In the worst case, the obtained commu-
nities may even be discontinuous, especially when performing
clustering iteratively. Moreover, due to the limitation of resolution,
smaller communities may be clustered into larger communities.
Thatis, smaller communities may be hidden, resulting in obtained
communities containing significant substructures.

Leiden clustering is a modified version of Louvain clustering
and can yield well-connected communities based on the smart
local move strategy. Cancer tissues with tumor heterogeneity con-
tain many small substructures. Thus, we used the Leiden cluster-
ing for cancer tissues with tumor heterogeneity, such as human
breast cancer.

Human Breast Cancer (Block A, Section 1) data have obvious
intratumoral and intertumoral differences. It was manually an-
notated by SEDR [45] (Fig. 5A) and divided into 20 regions. It con-
tains 4 main morphotypes: ductal carcinoma in situ/lobular carci-
noma in situ (DCIS/LCIS), invasive ductal carcinoma (IDC), tumor
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Figure 4: STMSGAL improves accurately identification of different organs in the Stereo-seq mouse embryo. (A) Tissue domain annotations of the
E9.5_E1S1 mouse embryo data. (B) Cluster assignments generated by STAGATE, GraphST, and STMSGAL on E9.5_E1S1 mouse embryo data. (C) Tissue
domain annotations of the E9.5_E252 mouse embryo data. (D) Cluster assignments generated by STAGATE, GraphST, and STMSGAL on the E9.5_E2S2

mouse embryo data.

Table 3: Performance comparison of STMSGAL with STAGATE and
GraphST on the Stereo-seq mouse embryos

Metrics
Datasets Methods DB CH S_Dbw
E9.5_E1S1 STAGATE 1.579 582.733 0.585
GraphST 1.396 686.177 0.549
STMSGAL 1.957 1,915.695 0.355
E9.5_E2S2 STAGATE 1.708 603.290 0.608
GraphST 1.686 563.371 0.632
STMSGAL 1.861 1,171.402 0.488

* The bold font indicates the best performance in each column. Lower Davies—
Bouldin (DB) and S_Dbw and higher Calinski-Harabasz (CH) denote better per-
formance.

surrounding regions with low features of malignancy (tumor
edge), and healthy tissue (healthy).

We compared the clustering accuracy of STMSGAL with
SCANPY [66], SEDR [45], CCST [46], STAGATE [47], DeepST [49], and
GraphST [50] in terms of average ARI. The results show that STMS-
GAL computed the best ARI, significantly outperforming 5 other
clustering methods (Fig. 5B).

Figure 5C shows spatial domains identified by SCANPY, SEDR,
CCST, STAGATE, DeepST, GraphST, and STMSGAL. The results
demonstrate that the identified domains by STMSGAL were highly
consistent with manual annotations in Fig. 5A and had more
regional continuity. In addition, compared with other methods,
STMSGAL obtained the best clustering accuracy with an ARI
of 0.606. Furthermore, STMSGAL identified several subclusters
within the tumor regions, such as spatial domains 4 and 13
(Fig. 5D). Furthermore, STMSGAL identified some spatial domains
with low heterogeneity (i.e., healthy regions) that were remarkably
consistent with the manual annotations in Fig. 5A.

We also analyzed intratumoral transcriptional differences
among domains 1 (DCIS/LCIS), 4, and 13 (IDC) based on differen-
tial expression analysis (Fig. 44E). In domain 1, we identified 3 dif-

ferentially expressed genes, that is, CPB1, COX6X, and IL6ST. CPB1
can obviously differentiate DCIS from the other subtypes of breast
cancer [89]. COX6X may help the differentiation between estrogen
receptor-positive and estrogen receptor-negative subtypes [90].
The expression of IL6ST is closely associated with a lower risk of
invasion, metastasis, and recurrence [91]. In domains 4 and 13,
2 differentially expressed genes, IGFBP5 and CRISP3, have dense
linkages with the treatment of mammary carcinoma [92, 93]. The
knockdown of CRISP3 can greatly inhibit the migration and inva-
sion of mammary carcinoma cells and the ERK1/2 MAPK signaling
pathway. CRISP3 was also considered a marker for clinical out-
comes in patients with mammary carcinoma [92]. IGFBP5 helps
manage tamoxifen resistance in breast cancer [93]. The above re-
sults suggested that STMSGAL can accurately identify spatial re-
gions with different biological functions.

We further investigated ST data on Human Breast Cancer
(DCIS). Figure 6A gives its manually annotated areas. STMS-
GAL identified more fluent and continuous regions than other
algorithms and better matched the annotated areas (Fig. 6B,
Supplementary Fig. S2, and Table 2). Figure 6D lists the top 3 dif-
ferentially expressed genes (i.e., AZGP1, CD24, and ERBB2) in do-
main O (Fig. 6C). The expression of AZGP1 determines the histo-
logic grade of tumors in breast cancer [94]. CD24 is a key indicator
of triple-negative breast cancer [95-97]. In particular, the overex-
pression of ERBB2 categorizes ERBB2/HER2-positive, a subclass of
breast cancer. The subclass accounts for about 20-30% among all
types of breast malignancies and is usually linked to poor prog-
nosis [98]. Targeting ERBB2 contributes to the treatment of ERBB2-
positive breast cancers [99].

STMSGAL helps to better delineate the similarity
between neighboring spots on Adult Mouse
Brain (FFPE)

STMSGAL was still applied to provide insights into more com-
plex tissues on a 10x Genomics Visium dataset from Adult Mouse
Brain (FFPE) (Fig. 7 and Supplementary Fig. S3). Figure 7A shows
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Figure 5: STMSGAL can accurately dissect spatial domains on Human Breast Cancer (Block A, Section 1). (A) Manual pathology labeling via
hematoxylin and eosin staining. (B) The average ARI values computed by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL on Human
Breast Cancer (Block A, Section 1). (C) Cluster assignments generated by SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL on Human
Breast Cancer (Block A, Section 1). (D) Spatial domains identified by STMSGAL. (E) Heatmap of the top 5 differentially expressed genes of domains 1, 4,
and 13 on Human Breast Cancer (Block A, Section 1).
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Figure 6: STMSGAL can accurately dissect spatial domains on Human Breast Cancer (DCIS). (A) Hematoxylin and eosin staining figures annotated by
Agoko’s telepathology platform on Human Breast Cancer (DCIS). (B) Spatial domains identified by SCANPY, GraphST, STAGATE, and STMSGAL on
Human Breast Cancer (DCIS). (C) Spatial domains 0, 4, and 9 identified by STMSGAL. (D) Stacked violin plots illustrate the top 3 differentially expressed
genes on spatial domains 0, 4, and 9 and their expressions on all spatial domains.

spatial domains identified by SCANPY, DeepST, STAGATE, and
STMSGAL. In the hippocampal region, the clustering results gen-
erated by SCANPY roughly separated the brain tissue structures
composed of different cell types but failed to capture small spatial
domains. SCANPY did not observe the “cord-like” structure (i.e.,
Ammon’s horn) and the “arrow-like” structure (i.e., dentate gyrus)
within the hippocampus. DeepST only smoothed the spatial do-
main boundaries but failed to delineate small spatial domains.
STMSGAL without ctaSNN captured Ammon’s horn but did not
characterize smaller spatial domains. However, STMSGAL with
ctaSNN clearly identified both Ammon’s horn and dentate gyrus
structures in the hippocampus, in accord with annotations about
the hippocampus structures from the Allen Reference Atlas [100]
(Fig. 7B). The above results suggested that STMSGAL significantly
improved spatial domain identification. Furthermore, even for ST
data composed of heterogeneous cell types with low spatial res-
olution, STMSGAL with ctaSNN can still accurately decipher the
spatial similarity.

Additionally, the expressions of multiple known gene mark-
ers validated the cluster partitions of STMSGAL (Fig. 7C and
Supplementary Fig. S4). For example, Clql2 was highly ex-
pressed on the identified DG-sg region [101]. Hpca, which medi-
ates calcium-dependent translocation of brain-type creatine ki-
nase in hippocampal neurons, was highly expressed in Ammon’s

horn region [102]. Notably, STMSGAL also captured several well-
separated spatial domains and deciphered their spatial expres-
sion patterns based on differential expression analysis. Domain
15 within the hippocampus, except for the “cord-like” and “arrow-
like” structures, delineated high expressions of 2 astrocyte gene
markers Mt2 and Gfap [103]. The spatial domain 14 surround-
ing the hippocampus expressed multiple oligodendrocyte-related
gene markers, including Tr f and Mbp [104] (Supplementary Fig.
S4). The above results elucidated that STMSGAL can efficiently
detect spatial heterogeneity and further decompose spatial ex-
pression patterns. Notably, the cell type-aware module obviously
boosted the partition of tissue structures on Adult Mouse Brain
(FFPE) based on its UMAP plot [73], while those of DeepST were
more like a smooth version of the nonspatial method SCANPY
(Fig. 7D).

Finally, all attention layers of STMSGAL with ctaSNN were vi-
sualized. In each layer, nodes were arranged based on spot spatial
locations, and edges were colored by corresponding weights. The
results demonstrated that the combination of attention mecha-
nism and ctaSNN boosted the characterization of the boundaries
of main tissue structures on Adult Mouse Brain (FFPE) (such as the
cortex, hippocampus, and midbrain) (Fig. 7E). Collectively, atten-
tion mechanism and ctaSNN contributed to delineating the simi-
larity between neighboring spots (Fig. 7E).
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Figure 7: STMSGAL reveals spatial domains on Adult Mouse Brain (FFPE). (A) Spatial domains identified by SCANPY, DeepST, STAGATE, and STMSGAL.
(B) The annotation of hippocampus structures from the Allen Reference Atlas on mouse brain. (C) Visualization of domains identified by STMSGAL
and the corresponding marker genes. (D) UMAP visualization generated by SCANPY, DeepST, STAGATE, and STMSGAL embeddings, respectively. (E)
Visualization of all attention layers of STMSGAL with the ctaSNN module. In each attention layer, nodes were arranged based on spatial contexts of

spots, and edges were colored by corresponding weights.

Ablation Study

In our STMSGAL method, the combination of a graph atten-
tion autoencoder (GATE) and multiscale deep subspace cluster-
ing aims to obtain multiscale feature information of spots. The
self-supervised module aims to learn robust latent features with
clustering information for each spot.

To justify the contribution and necessity of these components,
we conducted the ablation study to further investigate the ef-
fects of GATE, multiscale deep subspace clustering, and the self-

supervised module on spatial clustering performance on the
DLPFC sections from 151507 to 151510. As shown in Table 4, £4 de-
notes the reconstruction loss of normalized expressions based on
GATE. £, denotes the loss of the multiscale deep subspace cluster-
ing module, which contains regularization loss £, and multiscale
self-expression loss Lyss, and L3 is the loss of the self-supervised
module.

From Table 4, we found that both the multiscale deep subspace
clustering module and the self-supervised module cooperated
well with GATE and greatly improved the clustering performance.



Table 4: Ablation study on different loss terms

Unveiling patterns in spatial transcriptomics data | 13

Table 6: Ablation study on the additional optimization step

Loss function

Datasets L1 Ly L3 ARI
151507 o X X 0.508
o o X 0.518
o o o 0.533
151508 o X X 0.405
o o X 0.444
o o o 0.473
151509 o X X 0.392
o o X 0.447
o o o 0.511
151510 o X X 0.437
o o X 0.442
o o o 0.452

* The bold type indicates the best performance in each column.

Table 5: Ablation study on the multiscale strategy

Datasets Strategy ARI
151507 Without the multiscale strategy 0.485
With the multiscale strategy 0.533
151508 Without the multiscale strategy 0.394
With the multiscale strategy 0.473
151509 Without the multiscale strategy 0.437
With the multiscale strategy 0.511
151510 Without the multiscale strategy 0.407

With the multiscale strategy 0.452

* The bold type indicates the best performance in each column.

The results demonstrated that the self-supervised module, which
utilized the clustering labels to self-supervise the learning of spot
embeddings, obtained more accurate clustering ability. The mul-
tiscale deep subspace clustering module fully utilized the em-
bedded multiscale information and manifested an obvious effect
on spatial clustering, suggesting that a proper clustering-oriented
loss function can efficiently enhance the clustering performance.

Moreover, to analyze the effect of the multiscale strategy
on spatial clustering performance, we compared the difference
between individual self-expression layers and multiscale self-
expression layers. Table 5 gives the ARI values of STMSGAL with
or without the multiscale strategy for the DLPFC sections from
151507 to 151510. We applied a controlled variable approach to
make the rest of the modules the same. The results indicated that
the performance of STMSGAL with the multiscale strategy was
better than one from a single self-expression layer on the 4 DLPFC
sections, verifying that the multiscale strategy fully utilized the
embedding features in different layers. In addition, the adaptive
fusion method still significantly improved the spatial clustering
performance.

Since some spots could be erroneously assigned to spatially di-
ametrical domains and cause noise during spot embedding fea-
ture learning, we used an additional optimization step to further
optimize spatial clustering results obtained from Louvain cluster-
ing on the DLPFC dataset.

To further investigate the effect of the additional optimization
step on the spatial clustering performance, we compared the per-
formance of STMSGAL with or without the additional optimiza-
tion step for sections 151507 to 151510 of DLPFC. Table 6 gives
the ARI values of STMSGAL with or without the additional opti-

Datasets Strategy ARI
151507 Without the additional optimization step 0.509
With the additional optimization step 0.533
151508 Without the additional optimization step 0.450
With the additional optimization step 0.473
151509 Without the additional optimization step 0.484
With the additional optimization step 0.511
151510 Without the additional optimization step 0.430

With the additional optimization step 0.452

* The bold type indicates the best performance in each column.

Table 7: Ablation analysis under different clustering methods on
DLPFC 10x Genomics Visium datasets

Datasets
Methods 151507 151508 151509 151510  Average ARI
Louvain clustering  0.533 0473 0.511  0.452 0.492
mclust 0.520 0.475 0.354 0.403 0.438
Leiden clustering 0.511 0.489 0471 0.393 0.469
Subspace clustering 0.216  0.325  0.395 0.284 0.294

* The bold type indicates the best performance in each column.

Table 8: Ablation analysis under different clustering methods on
STARmap and Human Breast Cancer (Block A, Section 1)

Datasets Methods ARI
STARmap Louvain clustering 0.282
mclust 0.568
Leiden clustering 0.273
Subspace clustering 0.067
Human Breast Cancer Louvain clustering 0.534
(Block A, Section 1) mclust 0.512
Leiden clustering 0.606
Subspace clustering 0.588

* The bold type indicates the best performance in each column.

mization step for DLPFC. The results demonstrated that STMSGAL
with the additional optimization step significantly outperformed
STMSGAL without the step. Thus, the additional optimization step
could help spatial clustering.

When performing clustering again, we used Louvian clustering
on DLPFC, Leiden clustering on Human Breast Cancer, and mclust
on STARmap. To analyze why different clustering algorithms were
used on different datasets, we conducted ablation experiments
on the above 3 datasets. Tables 7 and 8 demonstrated ablation
analysis results based on different clustering methods when per-
forming clustering again on DLPFC 10x Genomics Visium datasets,
STARmap, and Human Breast Cancer (Block A, Section 1), respec-
tively. The results demonstrated that STMSGAL significantly im-
proved ST clustering accuracy when using Louvian clustering on
DLPFC, Leiden clustering on Human Breast Cancer, and mclust on
STARmap.

Discussion

Accurately detecting spatial domains and identifying differen-
tially expressed genes can greatly boost our understanding about
tissue organization and biological functions. In this article, we
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developed a spatial domain identification framework called
STMSGAL based on GATE and multiscale deep subspace cluster-
ing. STMSGAL can been accurately incorporated to the standard
analysis pipeline by using the “anndata” object in the SCANPY
package [66] as inputs.

Different from classical autoencoders, STMSGAL utilized an
attention mechanism in multiple hidden layers of the encoder
and decoder. First, it constructed ctaSNN through Louvain clus-
tering exclusively based on gene expression profiles. The weights
of edges in the ctaSNN depicted the similarity between neigh-
boring spots and were adaptively learned. Next, it integrated ex-
pression profiles and the constructed ctaSNN to form spot la-
tent embedding representation based on GATE. It mainly includes
spot embedding feature matrix construction, subspace clustering
combining self-expression coefficient learning and affinity matrix
construction, and spot robust latent feature learning based on
self-supervised learning. Finally, it implemented biological appli-
cations, including spot clustering, differential expression analysis,
and trajectory inference.

In the STMSGAL method, the multiscale self-expression mod-
ule was used to fully explore the associations between spot rep-
resentations in all encoder layers. The deep subspace clustering
module was utilized to obtain the clustering labels for each spot
through a clustering-oriented loss function. The self-supervised
module was introduced to effectively learn spot latent represen-
tation. The combination of the above 3 modules helps to learn
more discriminative features with clustering information for each
spot. The more discriminative features obtained with clustering
information were used as the input of spectral clustering and con-
ducted the final clustering.

Traditional subspace clustering mainly contains 2 procedures:
constructing an affinity matrix through representation learn-
ing and spectral clustering. However, spectral clustering is sen-
sitive to the construction of a similarity matrix and the selec-
tion of various parameters, but the Leiden/Louvain/mclust clus-
tering methods are more appropriate to biological data and ex-
hibit a powerful spatial clustering performance. Consequently,
Leiden/Louvain/mclust clustering has been widely used in the
field of spatial clustering. Thus, our proposed STMSGAL frame-
work used Leiden/Louvain/mclust for performing clustering again
to identify spatial domains after obtaining more discriminative
features with clustering information based on multiscale deep
subspace clustering.

We compared the performance of STMSGAL with 7 other clus-
tering methods on four 10x Genomics Visium datasets from Adult
Mouse Brain (FFPE), Human Breast Cancer (DCIS), Human Breast
Cancer (Block A, Section 1), and the DLPFC tissues, as well as 1
mouse visual cortex STARmap dataset. The 7 comparison meth-
ods include SCANPY, GraphST, SEDR, CCST, STAGATE, DeepST,
and SiGra. The SCANPY has been widely applied to single-cell
clustering. The remaining are state-of-the-art spatial clustering
methods. The results demonstrated that our proposed STMSGAL
method obtained impressive performance over other competing
methods in terms of 4 evaluation metrics (i.e., DB, CH, S_Dbw, and
ARI). STMSGAL significantly improved the identification of layer
structures in 4 DLPFC sections, mouse visual cortex STARmap
data, and mouse embryo data; accurately dissected spatial do-
mains on 2 breast cancer tissues; and efficiently depicted the
similarity between neighboring spots on Adult Mouse Brain
(FFPE).

STMSGAL greatly boosted ST data analysis. It may be mainly
attributed to the following features: first, although existing meth-
ods (such as stLearn) took histological images as inputs, they

achieved limited performance. For example, stLearn adopted
a pretrained neural network to obtain spot features from im-
ages and further computed their morphological distances via co-
sine distance. However, the predefined strategy in stLearn was
not flexible and resulted in its poor spatial clustering perfor-
mance. In contrast, STMSGAL adopted an attention mechanism
to adaptively integrate spatial locations and gene expression
profiles.

Second, a multiscale self-expression module was designed to
train a self-expression coefficient matrix in different encoder lay-
ers. SEDR and CCST merely adopted the representations in the en-
coder final hidden layer for spatial clustering tasks, wasting much
useful information embedded in its other layers. Comparatively,
the multiscale self-expression module fully explored the associa-
tions between node representations in all encoder layers. Thus, it
fully adopted the embedded multiscale information and obtained
a more distinct self-expression coefficient matrix. Furthermore, it
mapped these features into a more precise subspace for spatial
clustering.

Finally, a deep subspace clustering module was proposed to ob-
tain the clustering labels with a clustering-oriented loss function,
and a self-supervised module was introduced to effectively guide
spot latent representation learning. Thus, the learned spot latent
embedding representation greatly improved the clustering perfor-
mance.

In summary, STMSGAL is a powerful spatial clustering frame-
work that constructs an integrated representation for spots by ag-
gregating both transcriptomic data and spatial context. STMSGAL
derived low-dimensional embedding, enabling to conduct spa-
tial clustering and trajectory inference more accurately. Moreover,
STMSGAL facilitates deciphering new principles in a spatially or-
ganized context.

Although STMSGAL achieved accurate spatial clustering per-
formance, the deep subspace clustering algorithm can be further
developed. In the near future, motivated by the linkages between
spatial domain identification and single-cell segmentation used
to image-based ST data, we anticipate that STMSGAL can be fur-
ther extended to a single-cell segmentation task applied to the
subcellular resolution technologies. We also hope to enhance its
applicability on other datasets generated by new sequencing tech-
nologies.

Moreover, self-supervised learning can effectively learn spot
representations, but optimizing the spot representations by com-
bining the pseudo labels can affect the convergence of the model.
The contrastive learning algorithm is a promising paradigm of the
self-supervised learning model. In the future, we will introduce
contrastive learning to facilitate spot representation learning and
spatial clustering.

Finally, the accumulation of ST data generates spatial omics big
data, which pose many technical challenges to data integration
and analysis. To enable STMSGAL to deal with larger datasets, we
will further alleviate the computational burden of STMSGAL using
a graph convolutional network mini-batch or parallel techniques
to construct large-scale graphs for spatial omics data.

Availability of Source Code and
Requirements

® Project name: STMSGAL

® Project homepage: https://github.com/plhhnu/STMSGAL
® Operating system(s): Platform independent

® Programming language: Python


https://github.com/plhhnu/STMSGAL

® License: MIT license for the code, Creative Commons CCO 1.0
Public Domain Dedication for the filtered spatial transcrip-
tomic data

® RRID: SCR_025422

® biotools: stmsgal
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Supplementary Fig. S1. Comparison of spatial domains identified
by SCANPY, SEDR, CCST, DeepST, STAGATE, SiGra, GraphST, and
STMSGAL and manual annotations in 3 sections of human DLPFC
tissues.

Supplementary Fig. S2. Cluster assignments generated by
SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL
on Human Breast Cancer (Ductal Carcinoma In Situ [DCIS]).
Supplementary Fig. S3. Cluster assignments generated by
SCANPY, SEDR, CCST, STAGATE, DeepST, GraphST, and STMSGAL
on Adult Mouse Brain (FFPE).

Supplementary Fig. S4. Visualizations of spatial domains and ex-
pressions of the corresponding marker genes identified by STMS-
GAL with Louvain clustering on adult mouse hippocampus tissue.
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