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Abstract 

Bac kgr ound: The accur ate deciphering of spatial domains, along with the identification of differ entiall y expr essed genes and the 
inference of cellular trajectory based on spatial transcriptomic (ST) data, holds significant potential for enhancing our understanding 
of tissue organization and biological functions. However, most of spatial clustering methods can neither decipher complex structures 
in ST data nor entir el y employ features embedded in different layers. 

Results: This article introduces STMSGAL, a novel fr amew ork for analyzing ST data by incorpor ating gr aph attention autoencoder 
and m ultiscale dee p subspace clustering. First, STMSGAL constructs ctaSNN, a cell type–aw ar e shar ed near est neighbor graph, us- 
ing Louvian clustering exclusi v el y based on gene expression profiles. Subsequently, it inte gr ates expression profiles and ctaSNN to 
generate spot latent r e pr esentations using a graph attention autoencoder and multiscale deep subspace clustering. Lastly, STMSGAL 
implements spatial clustering, differential expression analysis, and trajectory inference, providing comprehensive capabilities for 
thorough data exploration and interpr etation. STMSGAL w as ev aluated a gainst 7 methods, including SCANPY, SEDR, CCST, DeepST, 
GraphST, ST AGA TE, and SiGra, using four 10x Genomics Visium datasets, 1 mouse visual cortex STARmap dataset, and 2 Stereo-seq 

mouse embryo datasets. The comparison showcased STMSGAL’s remarkable performance across Davies–Bouldin, Calinski–Harabasz, 
S_Dbw, and ARI values. STMSGAL significantly enhanced the identification of layer structures across ST data with different spatial 
resolutions and accurately delineated spatial domains in 2 breast cancer tissues, adult mouse brain (FFPE), and mouse embryos. 

Conclusions: STMSGAL can serve as an essential tool for bridging the analysis of cellular spatial organization and disease pathology, 
offering v alua b le insights for r esear c hers in the field. 

Ke yw or ds: spatial tr anscriptomics, gr aph attention autoencoder, deep subspace clustering, m ultiscale self-expr ession, self-supervised 

learning, latent embedding feature learning, cell type–aw ar e spatial neighbor network, differential expression analysis, trajectory in- 
ference 
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Key Points: 

� A gr a ph attention autoencoder is fully utilized to effec- 
tiv el y integr ate spatial locations and gene expr ession in- 
formation by collectiv el y incor por ating information be- 
tween neighboring spots. 

� A m ultiscale self-expr ession module is explor ed to learn 

the associations between node r epr esentations in all en- 
coder layers and further obtain a more distinct self- 
expression coefficient matrix for mapping these features 
into a more precise subspace. 

� A self-supervised learning method is designed to help 

spot latent feature learning by utilizing the clustering 
label as a supervisor. 
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ac kgr ound 

he tissues in the human body comprise various cell types, where
ach cell type implements a particular function [ 1 ]. The activation
f a cell is mainly affected by its surr ounding envir onment [ 2–5 ].
xploring r elativ e positions of these cells contributes to anal yz-
ng cell–cell communication [ 6–9 ] and their spatial organization
nd disease pathology [ 10–13 ]. The r a pid adv ance of single-cell
N A sequencing (scRN A-seq) technologies enables us to investi-
ate the gene expression patterns of various cells within a tis-
ue/organ [ 14–22 ]. Ho w ever, scRN A-seq technologies fail to pro-
ide spatial location information [ 23 ]. In contrast, spatial tran-
criptomics (ST) technologies provide a large number of gene 
xpression data and cellular location information for a tissue 
nd have witnessed tremendous development in the past several 
ears [ 24–26 ]. Based on data gener ation methods, ST tec hnolo-
ies mainly contain image-based methods and next-generation 

equencing (NGS)–based methods [ 27 ]. 
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 

http://orcid.org/0000-0001-5752-4436
http://orcid.org/0000-0003-4689-8672
https://orcid.org/0000-0002-2321-3901
mailto:yangjl@geneis.cn
mailto:plhhnu@163.com
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2025, Vol. 14 

 

b  

t  

s  

a  

S  

c  

s  

c  

r
 

b  

d  

m  

[  

D  

t  

r  

n  

a  

s  

m  

a
 

d  

i  

s  

f  

p  

c  

g  

f  

T  

s  

s  

s  

m  

o
 

s  

c  

b  

p  

b  

w  

p  

i  

p  

[  

s  

b  

n  

b  

b  

t  

t  

a  

p  

d  

[  

g  

p  

g  

t  

g  

e  

o  

c  

t  

l  

t  

p  

r  

a  

i  

m  

i  

a  

Y  

c  

i  

o  

f
 

p  

f  

n  

c  

h  

c  

t  

t  

t  

i  

f  

o  

l  

t  

a  

c

M
O
A  

t  

n  

a  

i  

d  

t  

s  

s  

s  

t  

e  

c  

H  

s  

b  

s  

l

D
F  

t  

u  
Image-based methods use in situ sequencing or in situ hy-
ridization to retain spatial locations of cells and further ob-
ain RNA transcripts based on images from the stained tis-
ues. MERFISH [ 28 ] can detect gene expression information of
bout 40,000 human cells in a single 18-hour measurement.
TARmap [ 29 ] can capture more than 1,000 genes in the mouse
ortex through an error-robust sequencing-by-ligation approach.
eqFISH + [ 30 ] combined sequential hybridization and standard
onfocal microscope–based imaging technique to obtain super-
 esolution ima ging and m ultiplexing data for 10,000 genes. 

NGS-based methods depend on the number of spatial barcodes
efor e libr ary pr epar ation [ 31 ]. Slide-seq [ 32 , 33 ] obtained r an-
omly barcoded positions through in situ indexing and ca ptur ed
RNAs through depositing onto a slide. High-definition ST (HDST)

 34 ] replaced the glass slides using beads deposited in wells . T he
BiT-seq [ 35 ] technique utilized polyT barcodes in the tissue sec-

ion based on micr ofluidics. Ster eo-seq [ 36 ] obtained nanoscale
 esolution thr ough r andoml y bar coded DN A nanoballs. 10x Ge-
omics Visium [ 37 ] demonstrated increased resolution with a di-
meter of 55 μm and a 100- μm center–center, as well as impr ov ed
ensitivity in more than 10,000 transcripts per spot. It detected
ore unique molecules for each spot compared with Slide-seq

nd HDST. 
One main challenge in ST data analysis is to capture spatial

omains with similar expression patterns . For example , the lam-
nar organization in human cerebral cortex has a close relation-
hip with its biological functions. In this tissue, cells within dif-
erent cortical layers hav e differ ent expr essions, mor phology, and
hysiology [ 38 ]. One efficient way to identify spatial domains is to
luster ST data. These clustering methods mainly fall into 2 cate-
ories . T he first category adopts conventional clustering methods,
or example, K-means clustering [ 39 ] and Louvain algorithms [ 40 ].
hese algorithms are susceptible to the small size of spots and
parsity data, and the detected clusters may be discontinuous in
ections . T he other category uses cell-type labels obtained from
cRNA-seq data to deconvolute spots [ 41 , 42 ], but these types of
ethods cannot analyze ST data from the perspective of cellular

r subcellular resolution. 
It is crucial to learn a discriminative representation for each

pot by combining gene expression and spatial contexts when
lustering ST data. Recentl y, se v er al clustering algorithms hav e
een de v eloped to identify spatial domains. For example, BayesS-
ace [ 43 ] assumed that spots belonging to the same cell type may
e closer to each other and built a Markov random field model
ith Bayesian a ppr oac h. stLearn [ 44 ] first proposed a spatial mor-
hological gene expression normalization algorithm to normal-

ze ST data and then emplo y ed a standard Louvain clustering ap-
r oac h to partition broad clusters into several subclusters. SEDR
 45 ] exploited a deep autoencoder network to learn gene r epr e-
entations and adopted a variational graph autoencoder to em-
ed spatial information. CCST [ 46 ] explored a graph convolutional
etwork to transfer gene expression information as cellular em-
edding vectors and trained a neural network to encode cell em-
edding features for clustering. ST AGA TE [ 47 ] developed a adap-
iv e gr a ph attention autoencoder (GATE) [ 48 ] to accur atel y iden-
ify spatial domains by integrating gene expression information
nd spatial neighbor network. DeepST [ 49 ] incor por ated gene ex-
ression, spatial context, and histology to model spatially embed-
ed r epr esentation and further ca ptur e spatial domains. Gr a phST
 50 ] integr ated gr a ph self-supervised contr astiv e learning and a
r a ph neur al network [ 51 , 52 ] for spatial clustering, m ultisam-
le integration, and cell-type deconvolution. ConGI [ 53 ] adopted
ene expression with histopathological images to accurately cap-
ure spatial domains based on contr astiv e learning. STGIC is a
r a ph- and ima ge-based spatial clustering method. It can gen-
rate pseudo-labels for spatial clustering but does not depend
n any trainable parameters. SPACEL [ 54 ] deconvoluted cell-type
omposition based on a multiple-layer perceptron, identified spa-
ial domains via a gr a ph convolutional network and adversarial
earning, and constructed a 3-dimensional arc hitectur e for each
issue . PREC AST [ 55 ] integrated a few ST datasets that have com-
lex batch effects and biological effects. SRTsim [ 56 ] is spatially
 esolv ed tr anscriptomics-specific sim ulator for spatial clustering
nd expression pattern analysis. Tang et al. [ 57 ] de v eloped an
ma ge-augmented gr a ph tr ansformer for spatial elucidation. The

ethods mentioned above hav e significantl y pr omoted the stud-
es of tissue physiology from cell centroid to structure centroid
nd are state-of-the-art spatial clustering methods. In prticular,
uan et al. [ 58 ] considered that current computation-based ST
lustering is a lack of a comprehensive benchmark and systemat-
call y benc hmarked a collection of 13 spatial clustering methods
n 7 ST datasets (34 ST data). Their work has provided guidance
or future progress in the ST data analysis field. 

Although the aforementioned clustering methods obtained im-
r essiv e performance, their learned latent node r epr esentation
ailed to ac hie v e the most useful information because they did
ot use current clustering labels. In addition, some methods, in-
luding SEDR and CCST, only used the representation in the final
idden layer of an encoder for clustering ST data, which failed to
onsider helpful features in the other la yers . Although gr a ph at-
ention autoencoder-based methods [ 59 , 60 ] have elucidated bet-
er performance in integrating node attributes and gr a ph struc-
ure information, they could not decipher the complex structures
n ST data or did not entir el y employ featur es embedded in dif-
erent la yers . Moreo ver, some models did not utilize a clustering-
riented loss function, while others did not fully use the clustering
abels for node r epr esentation learning. The pr oblems pr oduced
he suboptimal clustering r esults. Her e, we intr oduce STMSGAL,
n ST analysis framework by combining a gr a ph attention autoen-
oder and multiscale deep subspace clustering network. 

aterials and Methods 

verview of STMSGAL 

s shown in Fig. 1 , STMSGAL is composed of 3 main steps: (i) Spa-
ial neighbor network construction. STMSGAL constructs a spatial
eighbor network (SNN) based on spatial contexts and obtains
 cell type–aware SNN called ctaSNN through Louvain cluster-
ng exclusiv el y based on gene expr ession data. (ii) Latent embed-
ing feature learning. This mainly comprises spot embedding fea-
ure matrix construction, subspace clustering combining multi-
cale self-expression coefficient learning and affinity matrix con-
truction, and spot robust latent feature learning based on self-
upervised learning. (iii) Biological applications. ST data are clus-
er ed, and differ ential expr ession anal ysis and tr ajectory infer-
nce are implemented. Similar to ST AGA TE [ 47 ], STMSGAL still
onstructs a ctaSNN and embedding feature matrix using GATE.
o w e v er, differ ent fr om ST AGA TE, STMSGAL adopts the multi-

cale deep subspace clustering algorithm to obtain cluster la-
els based on multiscale information from each encoder layer for
pots and then adopts a self-supervised module to learn robust
atent features of spots with clustering information. 

atasets 

our available 10x Genomics Visium datasets, 1 mouse visual cor-
ex STARmap dataset, and 2 Stereo-seq datasets are used to e v al-
ate the STMSGAL performance . T he former four 10x Genomics
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Figure 1: Pipeline for clustering ST data based on GATE and deep subspace clustering network. (i) Spatial neighbor network construction. (ii) Latent 
embedding feature learning. (iii) Biological applications. 
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datasets ar e fr om Adult Mouse Br ain (FFPE) [ 61 ], Human Br east 
Cancer (Block, A Section 1) [ 62 ], Human Breast Cancer (Ductal Car- 
cinoma In Situ [DCIS]) [ 63 ], and Human Dorsolateral Prefrontal 
Cortex (DLPFC) tissues [ 64 ]. The former 2 datasets have no clus- 
tering labels, and the latter 2 datasets are known to be labeled.
The Adult Mouse Brain (FFPE) dataset contains 2,264 spots and 

19,465 genes . T he Human Breast Cancer (DCIS) dataset includes 
3,798 spots and 36,601 genes . T he Human Breast Cancer (Block 
A, Section 1) dataset detects 2,518 spots and 19,743 genes . T he 
DLPFC dataset contains 12 tissue slices. It ca ptur es 33,538 genes 
with different spot numbers ranging from 3,460 to 4,789 in each 

slice. Each slice contains 5 to 7 regions by manual annotation 

[ 38 ]. The mouse visual cortex STARmap dataset provides the ex- 
pression information of 1,020 genes from 1,207 cells [ 29 ]. The 
Stereo-seq dataset [ 65 ] from mouse embryos at E9.5 is obtained 

based on high-r esolution full-tr anscriptome cov er a ge tec hnolo- 
gies (i.e., Stereo-seq technology). The number of spots and one of 
genes are 5,913 and 25,568 (E9.5_E1S1), as well as 4,356 and 24,107 
(E9.5_E2S2), r espectiv el y. 

Spatial neighbor network construction 

Data pr epr ocessing 

To pr epr ocess ST data, first, spots outside main tissue regions 
ar e r emov ed. Next, r aw gene expr essions ar e log-tr ansformed and 
ormalized based on library size through the SCANPY package 
 66 ]. Finall y, m ultiple highl y v ariable genes ar e selected as inputs.

ell type–a w are SNN construction 

o integrate the similarity between a neighboring spot and a given
pot, similar to ST AGA TE [ 47 ], STMSGAL constructs an undirected
eighbor network based on a predefined radius r and spatial con-
exts. Let A denote an adjacency matrix of the constructed SNN,
nd A i j = 1 when the Euclidean distance between 2 spots i and

j is less than r. For 10x Genomics Visium data, an SNN where
ach spot contains 6 nearest neighbors is built. Next, self-loops are
dded to eac h spot. Finall y, the SNN is pruned based on precluster-
ng and a ctaSNN is constructed. In particular, the preclustering
f spots is conducted by Louvain clustering [ 40 ] exclusiv el y based
n gene expression profiles . T he edges where 2 spots linking them
elong to different clusters are pruned. 

atent embedding feature learning 

ang et al. [ 67 ] pr esented a m ultiscale gr a ph attention subspace
lustering model and obtained superior performance on 3 gr a ph
atasets and 2 real-world datasets . T he clustering model fully ex-
lored the associations between node r epr esentations in all en-
oder layers and obtained a more accurate self-expression coeffi- 
ient matrix. To more accurately cluster spots, in this section, we
tilize the multiscale graph attention subspace clustering model 
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 67 ] to learn latent embedding features of spots. First, a spot em-
edding feature matrix in each encoder layer is constructed via
ATE. Second, spot cluster labels are obtained through subspace
lustering. Finall y, spot r obust latent featur es ar e learned by self-
upervised learning. 

mbedding feature matrix construction 

imilar to ST AGA TE [ 47 ], we use GA TE to construct an embed-
ing feature matrix. For spot i , an encoder with L layers takes

ts normalized gene expressions x i as inputs to generate its em-
edding features by collectiv el y incor por ating information fr om

ts neighbors. Taking gene expressions as initial spot embeddings,
hat is, h 

(0) 
i = x i , ∀ i ∈ { 1 , 2 , · · · , N } , the embedding of i in the k th

 k ∈ { 1 , 2 , · · · , L − 1 } ) encoder layer is denoted by Eq. ( 1 ): 

h 

(k ) 
i = σ

⎛ 

⎝ 

∑ 

j∈ S i 
att (k ) i j 

(
W k h 

(k −1) 
j 

)⎞ 

⎠ (1) 

here W k , σ , S i , and att (k ) i j denote the trainable weight matrix, non-
inear activation function, a spot set that includes neighbors of i in
NN and i itself, and weight of the edge between spot i and spot j
n the k th gr a ph attention layer, r espectiv el y. The output z (k ) i = h 

(k ) 
i 

f the encoder is taken as the final spot embedding in the encoder
art. T he L th la yer in the encoder does not use the attention layer
y Eq. ( 2 ): 

h 

(L ) 
i = σ

(
W L h 

(L −1) 
i 

)
(2) 

In the decoder part, a decoder transforms the learned latent
mbedding back into a normalized expression profile to recon-

truct the spot features. Suppose that ̂  h 

(L ) 
i = C z (L ) i , where C denotes

 self-expression matrix, and z (L ) i denotes the embedding of i in the

 th encoder layer. Next, C z (L ) i is fed into the decoder to reconstruct
he spot embeddings. In the k th decoder layer, the embedding fea-
ures of spot i are constructed by Eq. ( 3 ): 

̂ h 

(k −1) 
i = σ

⎛ 

⎝ 

∑ 

j∈ S i 

̂ att 
(k −1) 
i j 

( ̂ W k ̂
 h 

(k ) 
j 

)⎞ 

⎠ (3) 

The L layer in the decoder is denoted by Eq. ( 4 ): 

̂ h 

(0) 
i = σ

( ̂ W 1 ̂
 h 

(1) 
i 

)
(4) 

Its output is the reconstructed normalized expressions. In ad-
ition, we set ̂ W k = W k 

T and 

̂ att 
(k ) = att (k ) to avoid overfitting. 

The attention mechanism is a 1-layer feed-forward neural net-
ork that is parametrized by a weight vector. A self-attention
echanism [ 68 ] is used to compute the similarity between neigh-

oring spots in an ada ptiv e way. In the k th decoder layer, the edge
 eight betw een spot i and its neighbor spot j is computed by
q. ( 5 ): 

e (k ) i j = Sigmoid ( v (k ) 
T 

s ( W k h 

(k −1) 
i ) + v (k ) 

T 

r ( W k h 

(k −1) 
j )) (5) 

here v (k ) s and v (k ) r are 2 trainable weight vectors. Next, the similar-
ty weights between spots are normalized by a softmax function
y Eq. ( 6 ): 

at t (k ) i j = 

exp 

(
e (k ) i j 

)
∑ 

j∈ S i exp 

(
e (k ) i j 

) (6) 

he obtained weights ar e a pplied to further update the latent em-
edding of spots in the encoder and decoder. 
In addition, STMSGAL adopts a self-attention mechanism and
onstructs a ctaSNN. Let att spatial 

i j and att aware 
i j denote the learned

pot similarity using SNN and ctaSNN, r espectiv el y, and the final
patial similarity is computed by combining the above 2 similari-
ies by Eq. ( 7 ): 

att i j = ( 1 − α) att spatial 
i j + αatt aware 

i j (7)

here α is a hyperparameter used to weigh the importance of SNN
nd ctaSNN. 

The reconstructed loss is minimized based on the residual sum
f squares by Eq. ( 8 ): 

L att = min 

1 
2 

n ∑ 

i =1 

∥∥∥∥x i − ˆ h 

(0) 
i 

∥∥∥∥
2 

F 
(8)

In particular, weight decay equally imposes a penalty to the
 2 norm; thus, the regularized loss is minimized. The total loss
s r epr esented as Eq. ( 9 ): 

L 1 = L att + 

1 
2 

·
L −1 ∑ 

k =1 

‖ W k ‖ 2 F (9)

ultiscale deep subspace clustering 

iffer ent fr om ST AGA TE [ 47 ], in this section, we adopt the mul-
iscale deep subspace clustering algorithm to obtain cluster la-
els based on multiscale information from each encoder layer for
pots . T he self-expr ession pr operty of data gr eatl y influences the
erformance of subspace clustering. In a union subspace, each
atum can be r epr esented as a linear combination of the other
ata. T hus , we use a multiscale self-expressive module to obtain
he final self-expression coefficient matrix based on the spot em-
edding feature matrix: H 

(k ) = 

{ 
h 

(k ) 
1 , h 

(k ) 
2 , · · · , h 

(k ) 
n 

} 
. 

In deep subspace clustering network [ 69 ], a self-expression
ayer is a full connection layer without bias and activation. Its ob-
ection function is r epr esented by Eq. ( 10 ): 

min 

C 
‖ C ‖ p + 

1 
2 

‖ Z − CZ ‖ 2 F s.t. ( diag ( C ) = 0) (10)

here C indicates a self-expression coefficient matrix used to
uild an affinity matrix Λ for the following spectral clustering, Z

ndicates the output feature matrix in the encoder, and ‖ · ‖ p indi-
ates an arbitrary regularization norm. 

Although deep subspace clustering obtains better clustering
erformance, it fails to consider the m ultiscale featur es exist-

ng in the other encoder la yers . Here , we integrate the multi-
cale features into the original self-expression module. Given
he input normalized gene expressions in the i th encoder layer
 

(k ) ( k = 1 , 2 , · · · , L ) , the self-expression coefficient matrix C (k ) in
he k th encoder layer can be computed by Eq. ( 11 ): 

min 

C (k ) 

1 
2 

∥∥∥Z 

(k ) − C (k ) Z 

(k ) 
∥∥∥2 

F 
(11)

Next, the m ultiscale self-expr ession matrix C (k ) in differ ent lay-
rs is fused based on an ada ptiv e a ppr oac h by Eq. ( 12 ): 

C F = 

∑ L 
k =1 τk · C (k ) ∑ L 

k =1 τk 

(12)

here τk denotes a trainable variable used to balance the impor-
ance of each self-expression matrix. 

Based on the obtained final self-expression matrix C F , a deep
ubspace clustering model builds an affinity matrix Λ for spectral
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clustering [ 70 ] by Eq. ( 13 ): 

Λ = 

1 
2 

(| C F | + 

∣∣C T F 

∣∣) (13) 

Consequently, the clustering result Y clu can be obtained by 
spectral clustering based on Λ. 

In particular, the m ultiscale self-expr ession loss is r epr esented 

as Eq. ( 14 ): 

L mss = min 

C (k ) 

1 
2 L 

·
L ∑ 

k =1 

∥∥∥Z 

(k ) − C (k ) Z 

(k ) 
∥∥∥2 

F 

s.t. 
(
diag 

(
C (k ) 

)
= 0 

) (14) 

Besides, a regularization loss is introduced to avoid C (k ) being 
too sparse: 

L reg = min 

C (k ) 

1 
L 

·
L ∑ 

k =1 

∥∥∥C (k ) 
∥∥∥

p 

s.t. 
(
diag 

(
C (k ) 

)
= 0 

) (15) 

T hus , the total loss in the m ultiscale self-expr ession module is 
denoted as Eq. ( 16 ): 

L 2 = L mss + L reg (16) 

Spot robust latent feature learning 

Furthermor e, distinct fr om [ 47 ], w e emplo y a self-supervised mod- 
ule to learn spot robust latent features. First, spots are classified 

based on 3 full connection la yers . Let the dimensions of all full 
connection layers be denoted as 

{
d L × D 1 × D 2 × D 3 × m 

}
, where 

d L denotes the dimension of Z 

(L ) , and D 1 , D 2 , and D 3 denote the di- 
mensions of 3 full connection la yers , r espectiv el y. We obtain the 
classification results P ∈ R 

n ×m of n spots based on the 3 full con- 
nection la yers . 

Next, we use the cr oss-entr opy loss between the classifica- 
tion results P and the clustering results Y clu to constrain a self- 
supervised learning module by Eq. ( 17 ): 

L 3 = L sup = min 

P 
−

n ∑ 

i =1 

m ∑ 

j=1 

P (i, j) log Y clu (i, j) (17) 

where Y clu (i, j) denotes the jth clustering label of spot i obtained 

fr om spectr al clustering, and P (i, j ) denotes the j th classification 

label of spot i based on 3 full connection la yers . 
Finall y, by integr ating Eqs. ( 9 ), ( 14 ), ( 15 ), and ( 17 ), the total loss

function of multiscale GATE is denoted as Eq. ( 18 ): 

L t ot al = min 

( C , P , Z ) 
L 1 + L reg + λ · L mss + L sup (18) 

where λ is a trade-off parameter used to measure the importance 
of L mss . 

Biological application 

STMSGAL first identifies spatial domains using Leiden cluster- 
ing [ 71 ], Louvain clustering [ 40 ] or mclust clustering [ 72 ] based 

on the obtained spot embedding feature matrix. Second, it im- 
plements differ ential expr ession anal ysis using the t -test in the 
Scanpy pac ka ge. Finall y, it conducts trajectory inference. 

Spatial clustering 

Based on the learned spot embedding feature matrix, we use 
differ ent str ategies to identify spatial domains. For the DLPFC 

dataset, mclust clustering [ 72 ] is applied to spatial clustering. For 
other datesets, Louvain or Leiden clustering [ 40 , 71 ] is used to im- 
plement ST clustering. 
F
In addition, although the spot embedding feature matrix is ob-
ained by integrating both gene expressions and spatial contexts,
e v er al spots may be incorr ectl y assigned to spatially diametrical
omains , which ma y cause noise and influence downstream anal-
sis. To solve this problem, an optional optimization step is used to
urther optimize spatial clustering results obtained from Louvain 

lustering on the DLPFC dataset: for a given spot i , its surrounding
pots within an r radius circle are taken as its neighbors. Next, we
eassign i to a spatial domain with the most frequent label of its
eighbors. In addition, the clustering results are visualized using 
MAP [ 73 ]. 

iffer ential expr ession analysis 
iffer ential expr ession anal ysis is one primary downstream anal-
sis method on transcriptomic data [ 74–76 ]. It helps identify
iomarkers for novel cell types or detect gene signatures for cellu-
ar heterogeneity, and it further provides data for other secondary
nal yses (suc h as gene set or pathway anal ysis and network anal-
sis). We use the t -test implemented in the SCANPY pac ka ge [ 66 ]
o identify differ entiall y expr essed genes for spatial domains. 

rajector y infer ence 
T technologies help depict tissues and organisms in great de-
ail. Tr ac king the transcriptomic profiles of cells over time and
tud ying their d ynamic cellular process contribute to the compu-
ational reconstruction of cellular developmental processes. Tra- 
ectory inference enables us to better study the potential dynam-
cs of a query biological process , for example , cellular de v elop-

ent, differentiation, and immune responses [ 77 ]. It can detect
 gr a ph-like structur e existing in the dynamic process from the
ampled cells. Properties of cells are compared over pseudotime 
 78 ] by mapping them to the captured structure. Trajectory infer-
nce allows us analyze how cells e volv e fr om one cell state to an-
ther, as well as when and how cells should make cell fate deci-
ions. In this section, the PAGA algorithm [ 79 ] in the SCANPY pack-
ge [ 66 ] is emplo y ed to depict the spatial trajectory. The obtained
r ajectory figur es ar e visualized using the scanpy.pl.paga_compare ()
unction. 

esults 

xperimental setting 

n STMSGAL, both the encoder and the decoder with the activa-
ion function of the exponential linear unit (ELU) [ 80 ] included
eural networks with 2 graph attention la yers , where the num-
er of neurons was 512 and 30, r espectiv el y. The Adam optimizer
 81 ] w as emplo y ed to minimize their reconstruction loss. In the
elf-supervised module, the activation function was set to recti- 
ed linear units (ReLu) [ 82 ]. For Louvain clustering, the radius r
as set to 50 when STMSGAL obtained the best clustering perfor-
ance on the DLPFC dataset. 
STMSGAL adopted the same data pr epr ocessing as those of

CANPY. Both used log-normalization and constructed the near- 
st neighbor network. SCANPY obtained spatial clustering with 

he scanpy.tl.louvain () function. Table 1 shows parameter settings 
f STMSGAL on 5 ST datasets. For each dataset with labels, the
 esolution par ameter was tuned manuall y to ensur e the cluster
umber was equal to the ground truth. T hus , the cluster number

n each method was set to the same as one of ground truth la yers .
or other clustering methods, we adopted their default settings. 



6 | GigaScience , 2025, Vol. 14 

Table 1: P ar ameter settings 

Datesets Parameter settings 

DLPFC rad_cutoff = 150 
cost_ssc = 0.1 
α = 0 
method = ‘Louvain’ 

Human Breast Cancer rad_cutoff = 300 
(Block A, Section 1) cost_ssc = 1 

α = 0.7 
method = ‘leiden’ 

Adult Mouse Brain rad_cutoff = 300 
(FFPE) cost_ssc = 0.1 

α = 0.5 
method = ‘Louvain’ 

Human Breast Cancer rad_cutoff = 300 
(DCIS) cost_ssc = 1 

α = 0.5 
method = ‘Louvain’ 

Mouse visual cortex rad_cutoff = 400 
cost_ssc = 0.1 
α = 0 
method = ‘mclust’ 

Stereo-seq mouse embryo rad_cutoff = 3 
cost_ssc = 0.1 
α = 0 
method = ‘Louvain’ 
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Ta ble 2: P erformance comparison of STMSGAL with 6 other clus- 
tering methods on Adult Mouse Brain (FFPE) and Human Breast 
Cancer (Ductal Carcinoma In Situ [DCIS]) 

Metrics 

Datasets Methods DB CH S_Dbw 

Adult Mouse Brain SCANPY 1.442 358.67 0.481 
(FFPE) SEDR 1.951 84.569 0.652 

CCST 1.173 507.421 0.453 
DeepST 1.166 842.033 0.328 
ST AGA TE 1.467 495.547 0.427 
Gr a phST 1.470 310.860 0.501 
STMSGAL 1.155 1,010.724 0.311 

Human Breast 
Cancer 

SCANPY 2.069 379.084 0.593 

(DCIS) SEDR 2.627 54.778 0.742 
CCST 1.469 507.421 0.453 
DeepST 1.263 611.567 0.48 
ST AGA TE 1.916 430.630 0.587 
Gr a phST 1.951 369.594 0.610 
STMSGAL 1.451 1,190.850 0.332 

∗ The bold font indicates the best performance in each column. Lo w er Davies–
Bouldin (DB) and S_Dbw and higher Calinski–Harabasz (CH) denote better per- 
formance. 
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v alua tion metrics 

or 3 datasets with labels (Human Breast Cancer [Block A, Sec-
ion 1], DLPFC, and mouse visual cortex STARmap), we employed
djusted Rand index (ARI) [ 83 ] to e v aluate the performance of dif-
erent spatial clustering algorithms. ARI computes the similarity
etween the predicted clustering labels and r efer ence cluster la-
els by Eq. ( 19 ): 

ARI = 

RI − E[ RI] 
max (RI) − E[ RI] 

(19) 

here the unadjusted Rand index is RI = (a + b) /C 

2 
n , where a and

indicate the number of pairs corr ectl y labeled in the same
ataset and not in the same dataset, r espectiv el y. C 

2 
n indicates

he total number of possible pairs. E[ RI] indicates the expected
I based on random labeling. A higher ARI score denotes better
erformance. 

For 2 datasets whose spatial domain annotations ar e unav ail-
ble (Adult Mouse Brain [FFPE] and Human Breast Cancer [DCIS]),
e e v aluated the performance of spatial clustering algorithms
ased on 3 clustering metrics: Davies–Bouldin (DB) score [ 84 ],
alinski–Har abasz (CH) scor e [ 85 ], and S_Dbw scor e [ 86 , 87 ]. DB
as computed by av er a ging all cluster similarities, where the sim-

larity between each cluster and its most similar cluster was taken
s its cluster similarity. The similarity was computed by the ra-
io of within-cluster distances to between-cluster distances. CH
s used to measure the cluster validity by averaging the squares
f within- and between-cluster distance sum of all spots. S_Dbw
 v aluates intr aclass compactness and interclass density of each
pot. Small DB and S_Dbw and large CH indicate the optimal clus-
er clustering. 

erformance comparison of STMSGAL with 6 

ther methods on 2 datasets without labels 

o investigate the clustering performance of STMSGAL, we com-
ared it with 6 other clustering algorithms—that is , SC ANPY [ 66 ],
EDR [ 45 ], CCST [ 46 ], ST AGA TE [ 47 ], DeepST [ 49 ], and Gr a phST
 50 ]—on two 10x Genomics Visium datasets without labels (i.e.,
dult Mouse Brain [FFPE] and Human Breast Cancer [DCIS]).
he former one method obtained broad applications in single-
ell clustering, and the remaining 5 methods were widely ap-
lied to spatial clustering. Table 2 shows the DB, CH, and S_Dbw
cores computed by STMSGAL and other methods on the above 2
atasets . T he best performance in each column was denoted us-

ng the bold font. The results demonstrated that STMSGAL com-
uted the smallest DB and S_Dbw and the highest CH on Adult
ouse Brain (FFPE) and the highest CH and the smallest S_Dbw

n Human Breast Cancer (DCIS), suggesting its optimal clustering
erformance. 

TMSGAL demonstr a tes robust clustering 

erformance across ST datasets with different 
patial resolutions 

o e v aluate the STMSGAL performance on spatial domain iden-
ification, we compared it with existing 7 state-of-the-art meth-
ds on 4 DLPFC sections. P articularl y, in complex networks, nodes
r e cluster ed into r elativ el y dense comm unities thr ough the clus-
ering algorithm. Louvain clustering is a nonspatial clustering al-
orithm. It assigns each spot to a significantly differential com-
unity and achieves the desired clusters by iteratively merging

nd splitting communities. It exhibits po w erful clustering per-
ormance compared with spectral clustering when clustering ST
ata, such as DLPFC. T hus , we used the Louvian clustering for per-
orming clustering again on DLPFC. 

Mor eov er, the DLPFC dataset pr ovides high-r esolution ima ges
nd satisfies the need of spatial clustering methods, including
iGr a, that m ust combine high-r esolution ima ges for clustering
T data. The results elucidated that spatial domains ca ptur ed
 y STMSGAL w ere consistent with manual annotation on human
LPFC sections and the definition of cortical stratification in neu-

oscience (Fig. 2 ). 
In ad dition, STMSGAL effecti v el y ca ptur ed the expected corti-

al layer structures and significantly improved spatial clustering
erformance in comparison with SCANPY, SEDR, CCST, ST AGA TE,
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D

Figure 2: STMSGAL impr ov es the identification of layer structures in the DLPFC tissue. (A) Ground-truth segmentation of 6 cortical layers and 1 white 
matter layer in the DLPFC section 151509. (B) Boxplots of ARI computed by STMSGAL and other 7 methods in the DLPFC sections, from 151507 to 
151510. (C) Cluster assignments generated by SCANPY, SEDR, CCST, ST AGA TE, DeepST, Gr a phST, SiGr a, and STMSGAL in the DLPFC section 151509. (D) 
UMAP visualizations and PAGA gr a phs gener ated by SCANPY, Gr a phST, and STMSGAL embeddings in the DLPFC section 151509. 
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Figure 3: Spatial domains identified by SCANPY, SEDR, CCST, Gr a phST, ST AGA TE, and STMSGAL in the mouse visual cortex STARmap dataset. 
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iGr a, DeepST, and Gr a phST (Fig. 2 and Supplementary Fig. S1 ). For
v er a ge ARIs, STMSGAL ac hie v ed the best performance (Fig. 2 B).
n the DLPFC section 151509, STMSGAL clearly depicted the layer
orders and obtained the best av er a ge ARI of 0.511. In the sec-
ion, although the clustering results of SCANPY r oughl y adher ed
o the expected la yer structures , its cluster boundary was discon-
inuous with many noises, which greatly influenced its clustering
ccur acy. Mor eov er, SCANPY is a nonspatial clustering algorithm,
nd SEDR, CCST , DeepST , ST AGA TE, SiGr a, and Gr a phST ar e spa-
ial clustering algorithms. Inter estingl y, the performance of the
bove 6 spatial clustering algorithms, especially STMSGAL, is bet-
er than the clustering method, elucidating STMSGAL’s po w erful
patial domain identification ability (Fig. 2 C). 

STMSGAL manifested the distance between spatial domains
nd c har acterized the spatial tr ajectory in a UMAP plot [ 73 ]
y integrating spatial contexts. For example, in the DLPFC sec-
ion 151509, the UMAP plots delineated by STMSGAL embeddings
lucidated well-organized cortical layers and consistent spatial
r ajectories, whic h was in accord with functional similarity be-
ween adjacent cortical layers and the c hr onological order [ 88 ].
urthermore, in the UMAP plots delineated by SCANPY embed-
ings, spots that belong to different layers were not clearly di-
ided while Gr a phST and STMSGAL could well divide most spots
nto different layers (Fig. 2 D). Finally, we used a trajectory in-
er ence a ppr oac h named PAGA [ 79 ] to v erify the inferr ed tr ajec-
ory. The PAGA gr a phs depicted by both STMSGAL and Gr a phST
mbeddings had a a ppr oximatel y linear de v elopment tr ajectory
rom layer 1 to layer 6. In addition, the identified adjacent lay-
rs by STMSGAL and Gr a phST sho w ed similarity while ones from
CANPY embeddings were mixed (Fig. 2 D). 

We further e v aluated the performance STMSGAL on the mouse
isual cortex STARmap dataset, which is an image-based ST
ataset at single-cell resolution and is generated by the STARmap
echnique [ 29 ]. mclust is a widely used R package applied to

odel-based clustering through finite Gaussian mixture model-
ng. It is more suitable to single-cell resolution data with fewer
amples, such as mouse visual cortex STARmap dataset. T hus ,
e used mclust for performing clustering again on STARmap. Us-

ng the gold standard annotated by experts, as shown in Fig. 3 ,
TMSGAL obtained the best ST clustering performance with an
RI of 0.568 compared to SCANPY, SEDR, CCST, ST AGA TE, and
r a phST, while ST AGA TE ac hie v ed the second-best r anking with
RI of 0.563 (Fig. 3 ). 
We also validated the performance of STMSGAL for identifying

issue structures on the Stereo-seq dataset from mouse embryos
t E9.5. Tissue domain annotations of mouse embry os w ere ob-
ained from [ 65 ]. 
We investigated the clustering results of ST AGA TE, Gr a phST,
nd STMSGAL on the E9.5_E1S1 embry o. As sho wn in Fig. 4 A, al-
hough the original annotation had 12 r efer ence clusters, we set
he number of clusters in our testing to 20 to acquire a higher
esolution of tissue segmentation. The clusters identified by both
T AGA TE and STMSGAL matched the annotation well (Fig. 4 B). As
hown in Table 3 , howe v er, compar ed to STAGATE, STMSGAL com-
uted the smallest DB and S_Dbw and the highest CH. 

Mor eov er, we compar ed the clustering r esults of ST AGA TE,
r a phST, and STMSGAL on the E9.5_E2S2 mouse embry o. Here, w e
et the number of clusters to 13, matching the original annotation
Fig. 4 C). The r esults demonstr ated that STMSGAL computed the
mallest DB and S_Dbw and the highest CH (Table 3 ). ST AGA TE
r oduced mor e smoother clusters but failed to r e v eal an y fine-
rained tissue complexity (Fig. 4 D). For example, ST AGA TE failed
o identify cavity in the brain (domain 2). In contrast, STMSGAL’s
lusters better matched the annotated regions. 

TMSGAL can accur a tel y dissect spatial domains 

n 2 breast cancer tissues 

iffer ed fr om the cer ebr al cortex with clear and known mor pho-
ogical boundaries, breast cancer tissues are remarkably heteroge-
eous and consist of a complex tumor micr oenvir onment. Conse-
uentl y, manuall y labeling cancer data only via tumor morphol-
gy cannot fully depict the complexity. T hus , we utilized STMS-
AL to find spatial domains on two 10x Genomics Visium datasets
ith respect to Human Breast Cancer (Block A, Section 1) and Hu-
an Breast Cancer (DCIS). 
P articularl y, Louv ain clustering may produce arbitrarily badly

onnected communities. In the worst case, the obtained commu-
ities may e v en be discontinuous, especially when performing
lustering iter ativ el y. Mor eov er, due to the limitation of resolution,
maller communities may be clustered into larger communities.
 hat is , smaller communities ma y be hidden, resulting in obtained
ommunities containing significant substructures. 

Leiden clustering is a modified version of Louvain clustering
nd can yield well-connected communities based on the smart
ocal mov e str ategy. Cancer tissues with tumor heterogeneity con-
ain many small substructures . T hus , we used the Leiden cluster-
ng for cancer tissues with tumor heter ogeneity, suc h as human
reast cancer. 

Human Breast Cancer (Block A, Section 1) data have obvious
ntr atumor al and intertumor al differ ences. It was manuall y an-
otated by SEDR [ 45 ] (Fig. 5 A) and divided into 20 regions. It con-
ains 4 main morphotypes: ductal carcinoma in situ/lobular carci-
oma in situ (DCIS/LCIS), inv asiv e ductal carcinoma (IDC), tumor

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae103#supplementary-data
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A B
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Figure 4: STMSGAL impr ov es accur atel y identification of differ ent or gans in the Ster eo-seq mouse embryo. (A) Tissue domain annotations of the 
E9.5_E1S1 mouse embryo data. (B) Cluster assignments generated by ST AGA TE, Gr a phST, and STMSGAL on E9.5_E1S1 mouse embryo data. (C) Tissue 
domain annotations of the E9.5_E2S2 mouse embryo data. (D) Cluster assignments generated by ST AGA TE, Gr a phST, and STMSGAL on the E9.5_E2S2 
mouse embryo data. 

Ta ble 3: P erformance comparison of STMSGAL with STAGATE and 

Gr a phST on the Stereo-seq mouse embryos 

Metrics 

Datasets Methods DB CH S_Dbw 

E9.5_E1S1 ST AGA TE 1.579 582.733 0.585 
Gr a phST 1.396 686.177 0.549 
STMSGAL 1.957 1,915.695 0.355 

E9.5_E2S2 ST AGA TE 1.708 603.290 0.608 
Gr a phST 1.686 563.371 0.632 
STMSGAL 1.861 1,171.402 0.488 

∗ The bold font indicates the best performance in each column. Lo w er Davies–
Bouldin (DB) and S_Dbw and higher Calinski–Harabasz (CH) denote better per- 
formance. 
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surr ounding r egions with low featur es of malignancy (tumor 
edge), and healthy tissue (healthy). 

We compared the clustering accuracy of STMSGAL with 

SCANPY [ 66 ], SEDR [ 45 ], CCST [ 46 ], ST AGA TE [ 47 ], DeepST [ 49 ], and
Gr a phST [ 50 ] in terms of av er a ge ARI. The results show that STMS- 
GAL computed the best ARI, significantly outperforming 5 other 
clustering methods (Fig. 5 B). 

Figure 5 C shows spatial domains identified by SCANPY, SEDR,
CCST, ST AGA TE, DeepST, Gr a phST, and STMSGAL. The results 
demonstrate that the identified domains by STMSGAL were highly 
consistent with manual annotations in Fig. 5 A and had more 
regional contin uity. In ad dition, compared with other methods,
STMSGAL obtained the best clustering accuracy with an ARI 
of 0.606. Furthermore, STMSGAL identified several subclusters 
within the tumor r egions, suc h as spatial domains 4 and 13 
(Fig. 5 D). Furthermore, STMSGAL identified some spatial domains 
with low heterogeneity (i.e., healthy regions) that were remarkably 
consistent with the manual annotations in Fig. 5 A. 

We also anal yzed intr atumor al tr anscriptional differ ences 
among domains 1 (DCIS/LCIS), 4, and 13 (IDC) based on differen- 
tial expr ession anal ysis (Fig. 4 4E). In domain 1, we identified 3 dif- 
er entiall y expr essed genes, that is, CPB1 , COX6X , and IL6ST . CPB1
an ob viousl y differ entiate DCIS fr om the other subtypes of br east
ancer [ 89 ]. COX6X may help the differentiation between estrogen
ece ptor–positi ve and estrogen rece ptor–negati ve subtypes [ 90 ].
he expression of IL6ST is closely associated with a lo w er risk of

n vasion, metastasis , and r ecurr ence [ 91 ]. In domains 4 and 13,
 differ entiall y expr essed genes, IGFBP5 and CRISP3 , have dense
inkages with the treatment of mammary carcinoma [ 92 , 93 ]. The
nockdown of CRISP3 can greatly inhibit the migration and inva-
ion of mammary carcinoma cells and the ERK1/2 MAPK signaling
athw ay. CRISP3 w as also considered a marker for clinical out-
omes in patients with mammary carcinoma [ 92 ]. IGFBP5 helps
anage tamoxifen resistance in breast cancer [ 93 ]. The above re-

ults suggested that STMSGAL can accur atel y identify spatial re-
ions with different biological functions. 

We further investigated ST data on Human Breast Cancer 
DCIS). Figur e 6 A giv es its manuall y annotated ar eas. STMS-
AL identified more fluent and continuous regions than other 
lgorithms and better matched the annotated areas (Fig. 6 B,
upplementary Fig. S2 , and Table 2 ). Figure 6 D lists the top 3 dif-
er entiall y expr essed genes (i.e., AZGP1 , CD24 , and ERBB2 ) in do-

ain 0 (Fig. 6 C). The expression of AZGP1 determines the histo-
ogic grade of tumors in breast cancer [ 94 ]. CD24 is a k e y indicator
f triple-negativ e br east cancer [ 95–97 ]. In particular, the ov er ex-
ression of ERBB2 categorizes ERBB2/HER2 -positive, a subclass of 
reast cancer. The subclass accounts for about 20–30% among all
ypes of breast malignancies and is usually linked to poor prog-
osis [ 98 ]. Targeting ERBB2 contributes to the treatment of ERBB2 -
ositiv e br east cancers [ 99 ]. 

TMSGAL helps to better delineate the similarity 

etween neighboring spots on Adult Mouse 

rain (FFPE) 
TMSGAL was still applied to provide insights into more com-
lex tissues on a 10x Genomics Visium dataset from Adult Mouse
rain (FFPE) (Fig. 7 and Supplementary Fig. S3 ). Figure 7 A shows

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae103#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae103#supplementary-data
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Figure 5: STMSGAL can accur atel y dissect spatial domains on Human Breast Cancer (Block A, Section 1). (A) Manual pathology labeling via 
hematoxylin and eosin staining. (B) The av er a ge ARI values computed by SCANPY, SEDR, CCST, ST AGA TE, DeepST, Gr a phST, and STMSGAL on Human 
Breast Cancer (Block A, Section 1). (C) Cluster assignments generated by SCANPY, SEDR, CCST, ST AGA TE, DeepST, Gr a phST, and STMSGAL on Human 
Breast Cancer (Block A, Section 1). (D) Spatial domains identified by STMSGAL. (E) Heatmap of the top 5 differentially expressed genes of domains 1, 4, 
and 13 on Human Breast Cancer (Block A, Section 1). 
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DB

Figure 6: STMSGAL can accur atel y dissect spatial domains on Human Breast Cancer (DCIS). (A) Hematoxylin and eosin staining figures annotated by 
Agoko’s telepathology platform on Human Breast Cancer (DCIS). (B) Spatial domains identified by SCANPY, Gr a phST, ST AGA TE, and STMSGAL on 
Human Breast Cancer (DCIS). (C) Spatial domains 0, 4, and 9 identified by STMSGAL. (D) Stacked violin plots illustrate the top 3 differentially expressed 
genes on spatial domains 0, 4, and 9 and their expressions on all spatial domains. 
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spatial domains identified by SCANPY, DeepST, ST AGA TE, and 

STMSGAL. In the hippocampal region, the clustering results gen- 
erated by SCANPY roughly separated the brain tissue structures 
composed of different cell types but failed to ca ptur e small spatial 
domains . SC ANPY did not observe the “cord-like” structure (i.e.,
Ammon’s horn) and the “arr ow-like” structur e (i.e., dentate gyrus) 
within the hippocampus. DeepST only smoothed the spatial do- 
main boundaries but failed to delineate small spatial domains.
STMSGAL without ctaSNN ca ptur ed Ammon’s horn but did not 
c har acterize smaller spatial domains. Ho w e v er, STMSGAL with 

ctaSNN clearly identified both Ammon’s horn and dentate gyrus 
structures in the hippocampus, in accord with annotations about 
the hippocampus structur es fr om the Allen Reference Atlas [ 100 ] 
(Fig. 7 B). T he abo v e r esults suggested that STMSGAL significantl y 
impr ov ed spatial domain identification. Furthermor e, e v en for ST 

data composed of heterogeneous cell types with low spatial res- 
olution, STMSGAL with ctaSNN can still accur atel y decipher the 
spatial similarity. 

Additionall y, the expr essions of m ultiple known gene mark- 
ers validated the cluster partitions of STMSGAL (Fig. 7 C and 

Supplementary Fig. S4 ). For example, C1ql2 was highly ex- 
pressed on the identified DG-sg region [ 101 ]. Hpca , which medi- 
ates calcium-dependent translocation of brain-type creatine ki- 
nase in hippocampal neur ons, was highl y expr essed in Ammon’s 
orn r egion [ 102 ]. Notabl y, STMSGAL also ca ptur ed se v er al well-
eparated spatial domains and deciphered their spatial expres- 
ion patterns based on differential expression analysis. Domain 

5 within the hippocampus, except for the “cord-like” and “arrow- 
ike” structur es, delineated high expr essions of 2 astr ocyte gene

arkers Mt2 and G fap [ 103 ]. The spatial domain 14 surround-
ng the hippocampus expr essed m ultiple oligodendr ocyte-r elated 

ene markers, including Tr f and Mbp [ 104 ] ( Supplementary Fig.
4 ). T he abo v e r esults elucidated that STMSGAL can efficientl y
etect spatial heterogeneity and further decompose spatial ex- 
r ession patterns. Notabl y, the cell type–awar e module ob viousl y
oosted the partition of tissue structures on Adult Mouse Brain
FFPE) based on its UMAP plot [ 73 ], while those of DeepST were

ore like a smooth version of the nonspatial method SCANPY
Fig. 7 D). 

Finally, all attention layers of STMSGAL with ctaSNN were vi-
ualized. In each layer, nodes were arranged based on spot spatial
ocations, and edges were colored by corresponding weights . T he
 esults demonstr ated that the combination of attention mecha-
ism and ctaSNN boosted the c har acterization of the boundaries
f main tissue structures on Adult Mouse Brain (FFPE) (such as the
ortex, hippocampus, and midbr ain) (Fig. 7 E). Collectiv el y, atten-
ion mechanism and ctaSNN contributed to delineating the simi- 
arity between neighboring spots (Fig. 7 E). 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae103#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae103#supplementary-data
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Figure 7: STMSGAL r e v eals spatial domains on Adult Mouse Brain (FFPE). (A) Spatial domains identified by SCANPY, DeepST, ST AGA TE, and STMSGAL. 
(B) The annotation of hippocampus structures from the Allen Reference Atlas on mouse brain. (C) Visualization of domains identified by STMSGAL 
and the corresponding marker genes. (D) UMAP visualization generated by SCANPY, DeepST, ST AGA TE, and STMSGAL embeddings, r espectiv el y. (E) 
Visualization of all attention layers of STMSGAL with the ctaSNN module. In each attention layer, nodes were arranged based on spatial contexts of 
spots, and edges were colored by corresponding weights. 
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blation Study 

n our STMSGAL method, the combination of a gr a ph atten-

ion autoencoder (GATE) and multiscale deep subspace cluster-
ng aims to obtain multiscale feature information of spots . T he

elf-supervised module aims to learn robust latent features with

lustering information for each spot. 
To justify the contribution and necessity of these components,

e conducted the ablation study to further investigate the ef-

ects of GATE, multiscale deep subspace clustering, and the self-
upervised module on spatial clustering performance on the
LPFC sections from 151507 to 151510. As shown in Table 4 , L 1 de-
otes the reconstruction loss of normalized expressions based on
ATE. L 2 denotes the loss of the multiscale deep subspace cluster-

ng module, which contains regularization loss L reg and multiscale
elf-expression loss L mss , and L 3 is the loss of the self-supervised
odule. 
F rom Table 4 , w e found that both the multiscale deep subspace

lustering module and the self-supervised module cooperated
ell with GATE and gr eatl y impr ov ed the clustering performance.
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Table 4: Ablation study on different loss terms 

Loss function 

Datasets L 1 L 2 L 3 ARI 

151507 ◦ × × 0.508 
◦ ◦ × 0.518 
◦ ◦ ◦ 0.533 

151508 ◦ × × 0.405 
◦ ◦ × 0.444 
◦ ◦ ◦ 0.473 

151509 ◦ × × 0.392 
◦ ◦ × 0.447 
◦ ◦ ◦ 0.511 

151510 ◦ × × 0.437 
◦ ◦ × 0.442 
◦ ◦ ◦ 0.452 

∗ The bold type indicates the best performance in each column. 

Table 5: Ablation study on the multiscale strategy 

Datasets Str a tegy ARI 

151507 Without the multiscale strategy 0.485 
With the multiscale strategy 0.533 

151508 Without the multiscale strategy 0.394 
With the multiscale strategy 0.473 

151509 Without the multiscale strategy 0.437 
With the multiscale strategy 0.511 

151510 Without the multiscale strategy 0.407 
With the multiscale strategy 0.452 

∗ The bold type indicates the best performance in each column. 

Table 6: Ablation study on the additional optimization step 

Datasets Str a tegy ARI 

151507 Without the additional optimization step 0.509 
With the additional optimization step 0.533 

151508 Without the additional optimization step 0.450 
With the additional optimization step 0.473 

151509 Without the additional optimization step 0.484 
With the additional optimization step 0.511 

151510 Without the additional optimization step 0.430 
With the additional optimization step 0.452 

∗ The bold type indicates the best performance in each column. 

Table 7: Ablation analysis under different clustering methods on 

DLPFC 10x Genomics Visium datasets 

Datasets 

Methods 151507 151508 151509 151510 Average ARI 

Louvain clustering 0.533 0.473 0.511 0.452 0.492 
mclust 0.520 0.475 0.354 0.403 0.438 
Leiden clustering 0.511 0.489 0.471 0.393 0.469 
Subspace clustering 0.216 0.325 0.395 0.284 0.294 

∗ The bold type indicates the best performance in each column. 

Table 8: Ablation analysis under different clustering methods on 

STARmap and Human Breast Cancer (Block A, Section 1) 

Datasets Methods ARI 

STARmap Louvain clustering 0.282 
mclust 0.568 
Leiden clustering 0.273 
Subspace clustering 0.067 

Human Breast Cancer Louvain clustering 0.534 
(Block A, Section 1) mclust 0.512 

Leiden clustering 0.606 
Subspace clustering 0.588 

∗ The bold type indicates the best performance in each column. 
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The r esults demonstr ated that the self-supervised module, whic h 

utilized the clustering labels to self-supervise the learning of spot 
embeddings, obtained mor e accur ate clustering ability. The mul- 
tiscale deep subspace clustering module fully utilized the em- 
bedded multiscale information and manifested an obvious effect 
on spatial clustering, suggesting that a proper clustering-oriented 

loss function can efficiently enhance the clustering performance. 
Mor eov er, to anal yze the effect of the m ultiscale str ategy 

on spatial clustering performance, we compared the difference 
between individual self-expression layers and multiscale self- 
expression la yers . Table 5 giv es the ARI v alues of STMSGAL with 

or without the m ultiscale str ategy for the DLPFC sections from 

151507 to 151510. We applied a controlled variable approach to 
make the rest of the modules the same . T he results indicated that 
the performance of STMSGAL with the m ultiscale str ategy was 
better than one from a single self-expression layer on the 4 DLPFC 

sections, verifying that the multiscale strategy fully utilized the 
embedding features in different la yers . In addition, the adaptive 
fusion method still significantl y impr ov ed the spatial clustering 
performance. 

Since some spots could be err oneousl y assigned to spatially di- 
ametrical domains and cause noise during spot embedding fea- 
ture learning, we used an additional optimization step to further 
optimize spatial clustering results obtained from Louvain cluster- 
ing on the DLPFC dataset. 

To further investigate the effect of the additional optimization 

step on the spatial clustering performance, we compared the per- 
formance of STMSGAL with or without the additional optimiza- 
tion step for sections 151507 to 151510 of DLPFC. Table 6 gives 
the ARI values of STMSGAL with or without the additional opti- 
ization step for DLPFC. The r esults demonstr ated that STMSGAL
ith the additional optimization step significantly outperformed 

TMSGAL without the step. T hus , the additional optimization step
ould help spatial clustering. 

When performing clustering again, we used Louvian clustering 
n DLPFC, Leiden clustering on Human Breast Cancer, and mclust
n STARma p. To anal yze why differ ent clustering algorithms wer e
sed on different datasets, we conducted ablation experiments 
n the above 3 datasets. Tables 7 and 8 demonstrated ablation
nal ysis r esults based on differ ent clustering methods when per-
orming clustering again on DLPFC 10x Genomics Visium datasets,
TARma p, and Human Br east Cancer (Bloc k A, Section 1), r espec-
iv el y. The r esults demonstr ated that STMSGAL significantl y im-
r ov ed ST clustering accur acy when using Louvian clustering on
LPFC, Leiden clustering on Human Breast Cancer, and mclust on
TARmap. 

iscussion 

ccur atel y detecting spatial domains and identifying differen- 
iall y expr essed genes can gr eatl y boost our understanding about
issue organization and biological functions. In this article, we 
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e v eloped a spatial domain identification fr ame work called
TMSGAL based on GATE and multiscale deep subspace cluster-
ng. STMSGAL can been accur atel y incor por ated to the standard
nalysis pipeline by using the “anndata” object in the SCANPY
ac ka ge [ 66 ] as inputs. 

Differ ent fr om classical autoencoders, STMSGAL utilized an
ttention mechanism in multiple hidden layers of the encoder
nd decoder. First, it constructed ctaSNN through Louvain clus-
ering exclusiv el y based on gene expr ession pr ofiles . T he weights
f edges in the ctaSNN depicted the similarity between neigh-
oring spots and were adaptively learned. Next, it integrated ex-
r ession pr ofiles and the constructed ctaSNN to form spot la-
ent embedding r epr esentation based on GATE. It mainly includes
pot embedding feature matrix construction, subspace clustering
ombining self-expression coefficient learning and affinity matrix
onstruction, and spot robust latent feature learning based on
elf-supervised learning. Finally, it implemented biological appli-
ations, including spot clustering, differential expression analysis,
nd trajectory inference. 

In the STMSGAL method, the m ultiscale self-expr ession mod-
le was used to full y explor e the associations between spot rep-
esentations in all encoder la yers . T he deep subspace clustering

odule was utilized to obtain the clustering labels for each spot
hrough a clustering-oriented loss function. The self-supervised

odule was introduced to effectively learn spot latent represen-
ation. The combination of the above 3 modules helps to learn

or e discriminativ e featur es with clustering information for each
pot. The mor e discriminativ e featur es obtained with clustering
nformation were used as the input of spectral clustering and con-
ucted the final clustering. 

Traditional subspace clustering mainly contains 2 procedures:
onstructing an affinity matrix thr ough r epr esentation learn-
ng and spectral clustering. Ho w ever, spectral clustering is sen-
itive to the construction of a similarity matrix and the selec-
ion of various parameters, but the Leiden/Louvain/mclust clus-
ering methods ar e mor e a ppr opriate to biological data and ex-
ibit a po w erful spatial clustering performance. Consequently,
eiden/Louvain/mclust clustering has been widely used in the
eld of spatial clustering. T hus , our pr oposed STMSGAL fr ame-
ork used Leiden/Louvain/mclust for performing clustering again

o identify spatial domains after obtaining more discriminative
eatures with clustering information based on multiscale deep
ubspace clustering. 

We compared the performance of STMSGAL with 7 other clus-
ering methods on four 10x Genomics Visium datasets from Adult
ouse Brain (FFPE), Human Breast Cancer (DCIS), Human Breast
ancer (Block A, Section 1), and the DLPFC tissues, as well as 1
ouse visual cortex STARmap dataset. The 7 comparison meth-

ds include SCANPY, Gr a phST , SEDR, CCST , ST AGA TE, DeepST,
nd SiGra. T he SC ANPY has been widel y a pplied to single-cell
lustering. The r emaining ar e state-of-the-art spatial clustering
ethods . T he results demonstrated that our proposed STMSGAL
ethod obtained impr essiv e performance ov er other competing
ethods in terms of 4 e v aluation metrics (i.e., DB, CH, S_Dbw, and
RI). STMSGAL significantl y impr ov ed the identification of layer
tructures in 4 DLPFC sections, mouse visual cortex STARmap
ata, and mouse embryo data; accur atel y dissected spatial do-
ains on 2 breast cancer tissues; and efficiently depicted the

imilarity between neighboring spots on Adult Mouse Brain
FFPE). 

STMSGAL gr eatl y boosted ST data analysis. It may be mainly
ttributed to the following features: first, although existing meth-
ds (such as stLearn) took histological images as inputs, they
c hie v ed limited performance. For example, stLearn adopted
 pr etr ained neur al network to obtain spot features from im-
ges and further computed their morphological distances via co-
ine distance. Ho w e v er, the pr edefined str ategy in stLearn was
ot flexible and resulted in its poor spatial clustering perfor-
ance. In contrast, STMSGAL adopted an attention mechanism

o ada ptiv el y integr ate spatial locations and gene expr ession
rofiles. 

Second, a m ultiscale self-expr ession module was designed to
rain a self-expression coefficient matrix in different encoder lay-
rs. SEDR and CCST mer el y adopted the r epr esentations in the en-
oder final hidden layer for spatial clustering tasks, wasting m uc h
seful information embedded in its other la yers . Compar ativ el y,
he multiscale self-expression module fully explored the associa-
ions between node r epr esentations in all encoder la yers . T hus , it
ully adopted the embedded multiscale information and obtained
 more distinct self-expression coefficient matrix. Furthermore, it
apped these features into a more precise subspace for spatial

lustering. 
Finally, a deep subspace clustering module was proposed to ob-

ain the clustering labels with a clustering-oriented loss function,
nd a self-supervised module was introduced to effectively guide
pot latent r epr esentation learning. T hus , the learned spot latent
mbed ding re presentation greatly improved the clustering perfor-
ance. 
In summary, STMSGAL is a po w erful spatial clustering frame-

ork that constructs an integrated representation for spots by ag-
regating both transcriptomic data and spatial context. STMSGAL
erived low-dimensional embedding, enabling to conduct spa-
ial clustering and trajectory inference more accurately. Moreover,
TMSGAL facilitates deciphering new principles in a spatially or-
anized context. 

Although STMSGAL ac hie v ed accur ate spatial clustering per-
ormance, the deep subspace clustering algorithm can be further
e v eloped. In the near futur e, motiv ated by the linkages between
patial domain identification and single-cell segmentation used
o image-based ST data, we anticipate that STMSGAL can be fur-
her extended to a single-cell segmentation task applied to the
ubcellular resolution technologies. We also hope to enhance its
pplicability on other datasets generated by new sequencing tech-
ologies. 

Mor eov er, self-supervised learning can effectiv el y learn spot
 epr esentations, but optimizing the spot r epr esentations by com-
ining the pseudo labels can affect the conv er gence of the model.
he contr astiv e learning algorithm is a pr omising par adigm of the
elf-supervised learning model. In the future, we will introduce
ontr astiv e learning to facilitate spot r epr esentation learning and
patial clustering. 

Finall y, the accum ulation of ST data gener ates spatial omics big
ata, which pose many technical challenges to data integration
nd analysis. To enable STMSGAL to deal with larger datasets, we
ill further alleviate the computational burden of STMSGAL using
 gr a ph conv olutional netw ork mini-batc h or par allel tec hniques
o construct large-scale graphs for spatial omics data. 

vailability of Source Code and 

equirements 

� Project name: STMSGAL 
� Pr oject homepa ge: https:// github.com/ plhhnu/ STMSGAL 
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: Python 

https://github.com/plhhnu/STMSGAL
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� License: MIT license for the code, Cr eativ e Commons CC0 1.0 
Public Domain Dedication for the filtered spatial transcrip- 
tomic data 

� RRID: SCR_025422 
� biotools: stmsgal 

Additional Files 

Supplementary Fig. S1. Comparison of spatial domains identified 

by SCANPY, SEDR, CCST, DeepST, ST AGA TE, SiGr a, Gr a phST, and 

STMSGAL and manual annotations in 3 sections of human DLPFC 

tissues. 
Supplementary Fig. S2. Cluster assignments generated by 
SCANPY, SEDR, CCST, ST AGA TE, DeepST, Gr a phST, and STMSGAL 
on Human Breast Cancer (Ductal Carcinoma In Situ [DCIS]). 
Supplementary Fig. S3. Cluster assignments generated by 
SCANPY, SEDR, CCST, ST AGA TE, DeepST, Gr a phST, and STMSGAL 
on Adult Mouse Brain (FFPE). 
Supplementary Fig. S4. Visualizations of spatial domains and ex- 
pressions of the corresponding marker genes identified by STMS- 
GAL with Louvain clustering on adult mouse hippocampus tissue.
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ARI: adjusted Rand index; CH: Calinski–Harabasz; DB: Davies–
Bouldin; DCIS: ductal carcinoma in situ; DCIS/LCIS: ductal carci- 
noma in situ/lobular carcinoma in situ; ELU: exponential linear 
unit; GATE: gr a ph attention autoencoder; HDST: high-definition 

spatial tr anscriptomics; IDC: inv asiv e ductal carcinoma; NGS: 
next-gener ation sequencing; ReLu: r ectified linear units; scRNA- 
seq: single-cell RNA sequencing; SNN: spatial neighbor network; 
ST: spatial transcriptomics. 
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