Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Mar 15;154(3):735–742. doi: 10.1042/bj1540735

Respiration-dependent efflux of magnesium ions from heart mitochondria.

M Crompton, M Capano, E Carafoli
PMCID: PMC1172777  PMID: 945983

Abstract

Energy-linked respiration causes a net movement of Mg2+ between rat heart mitochondria and the ambient medium. When the extramitochondrial concontration of Mg2+ is less that about 2.5 mM the net movement of Mg2+ constitutes an efflux, whereas a net influx of Mg2+ occurs when the external concentration of Mg2+ is greater than this. Both the efflux and the influx are induced to only a very small degree by externally added ATP. Evidence suggests that Pi may be required for the respiration-induced efflux of Mg2+.

Full text

PDF
735

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIERLEY G. P., BACHMANN E., GREEN D. E. Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1928–1935. doi: 10.1073/pnas.48.11.1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRIERLEY G., MURER E., BACHMANN E., GREEN D. E. STUDIES ON ION TRANSPORT. II. THE ACCUMULATION OF INORGANIC PHOSPHATE AND MAGNESIUM IONS BY HEART MITOCHONDRIA. J Biol Chem. 1963 Oct;238:3482–3489. [PubMed] [Google Scholar]
  3. Binet A., Volfin P. ADP requirement for prevention by a cytosolic factor of Mg2+ and Ca2+ release from rat liver mitochondria. Arch Biochem Biophys. 1974 Oct;164(2):756–764. doi: 10.1016/0003-9861(74)90090-3. [DOI] [PubMed] [Google Scholar]
  4. Bogucka K., Wojtczak L. Intramitochondrial distribution of magnesium. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1330–1337. doi: 10.1016/s0006-291x(71)80231-0. [DOI] [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
  6. Crompton M., Chappell J. B. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem J. 1973 Jan;132(1):35–46. doi: 10.1042/bj1320035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crompton M., Palmieri F., Capano M., Quagliariello E. The transport of sulphate and sulphite in rat liver mitochondria. Biochem J. 1974 Jul;142(1):127–137. doi: 10.1042/bj1420127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobus W. E., Tiozzo R., Lugli G., Lehninger A. L., Carafoli E. Aspects of energy-linked calcium accumulation by rat heart mitochondria. J Biol Chem. 1975 Oct 10;250(19):7863–7870. [PubMed] [Google Scholar]
  9. Klingenberg M., Durand R., Guérin B. Analysis of the reactivity of SH-reagents with the mitochondrial phosphate carrier. Eur J Biochem. 1974 Feb 15;42(1):135–150. doi: 10.1111/j.1432-1033.1974.tb03323.x. [DOI] [PubMed] [Google Scholar]
  10. Kun E., Kearney E. B., Wiedemann I., Lee N. M. Regulation of mitochondrial metabolism by specific cellular substances. II. The nature of stimulation of mitochondrial glutamate metabolism by a cytoplasmic component. Biochemistry. 1969 Nov;8(11):4443–4449. doi: 10.1021/bi00839a033. [DOI] [PubMed] [Google Scholar]
  11. LARDY H., COPENHAVER J. H., Jr Efficiency of oxidative phosphorylation. Nature. 1954 Jul 31;174(4422):231–232. doi: 10.1038/174231b0. [DOI] [PubMed] [Google Scholar]
  12. Lee N. M., Wiedemann I., Kun E. Control of cation movements in liver mitochondria by a cytoplasmic factor. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1030–1034. doi: 10.1016/0006-291x(71)90007-6. [DOI] [PubMed] [Google Scholar]
  13. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  14. McGivan J. D., Klingenberg M. Correlation between H+ and anion movement in mitochondria and the key role of the phosphate carrier. Eur J Biochem. 1971 Jun 11;20(3):392–399. doi: 10.1111/j.1432-1033.1971.tb01405.x. [DOI] [PubMed] [Google Scholar]
  15. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  16. Pande S. V., Blanchaer M. C. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 1971 Jan 25;246(2):402–411. [PubMed] [Google Scholar]
  17. Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scarpa A. Indicators of free magnesium in biological systems. Biochemistry. 1974 Jul 2;13(14):2789–2794. doi: 10.1021/bi00711a001. [DOI] [PubMed] [Google Scholar]
  19. Schuster S. M., Olson M. S. Energy-dependent release of magnesium from beef heart submitochondrial particles. J Biol Chem. 1973 Dec 25;248(24):8370–8377. [PubMed] [Google Scholar]
  20. Schuster S. M., Olson M. S. Studies of the energy-dependent uptake of divalent metal ions by beef heart mitochondria. J Biol Chem. 1974 Nov 25;249(22):7151–7158. [PubMed] [Google Scholar]
  21. Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
  22. Stewart D. J. Sensitive automated methods for phosphate and (Na+ plus K+)-ATPase. Anal Biochem. 1974 Dec;62(2):349–364. doi: 10.1016/0003-2697(74)90167-5. [DOI] [PubMed] [Google Scholar]
  23. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
  24. Vignais P. V., Duee E. D. Translocation et compartimentation des adénine-nucléotides dans les mitochondries. Bull Soc Chim Biol (Paris) 1966;48(11):1169–1187. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES