Abstract
Energy-linked respiration causes a net movement of Mg2+ between rat heart mitochondria and the ambient medium. When the extramitochondrial concontration of Mg2+ is less that about 2.5 mM the net movement of Mg2+ constitutes an efflux, whereas a net influx of Mg2+ occurs when the external concentration of Mg2+ is greater than this. Both the efflux and the influx are induced to only a very small degree by externally added ATP. Evidence suggests that Pi may be required for the respiration-induced efflux of Mg2+.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRIERLEY G. P., BACHMANN E., GREEN D. E. Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1928–1935. doi: 10.1073/pnas.48.11.1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRIERLEY G., MURER E., BACHMANN E., GREEN D. E. STUDIES ON ION TRANSPORT. II. THE ACCUMULATION OF INORGANIC PHOSPHATE AND MAGNESIUM IONS BY HEART MITOCHONDRIA. J Biol Chem. 1963 Oct;238:3482–3489. [PubMed] [Google Scholar]
- Binet A., Volfin P. ADP requirement for prevention by a cytosolic factor of Mg2+ and Ca2+ release from rat liver mitochondria. Arch Biochem Biophys. 1974 Oct;164(2):756–764. doi: 10.1016/0003-9861(74)90090-3. [DOI] [PubMed] [Google Scholar]
- Bogucka K., Wojtczak L. Intramitochondrial distribution of magnesium. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1330–1337. doi: 10.1016/s0006-291x(71)80231-0. [DOI] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- Crompton M., Chappell J. B. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem J. 1973 Jan;132(1):35–46. doi: 10.1042/bj1320035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton M., Palmieri F., Capano M., Quagliariello E. The transport of sulphate and sulphite in rat liver mitochondria. Biochem J. 1974 Jul;142(1):127–137. doi: 10.1042/bj1420127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobus W. E., Tiozzo R., Lugli G., Lehninger A. L., Carafoli E. Aspects of energy-linked calcium accumulation by rat heart mitochondria. J Biol Chem. 1975 Oct 10;250(19):7863–7870. [PubMed] [Google Scholar]
- Klingenberg M., Durand R., Guérin B. Analysis of the reactivity of SH-reagents with the mitochondrial phosphate carrier. Eur J Biochem. 1974 Feb 15;42(1):135–150. doi: 10.1111/j.1432-1033.1974.tb03323.x. [DOI] [PubMed] [Google Scholar]
- Kun E., Kearney E. B., Wiedemann I., Lee N. M. Regulation of mitochondrial metabolism by specific cellular substances. II. The nature of stimulation of mitochondrial glutamate metabolism by a cytoplasmic component. Biochemistry. 1969 Nov;8(11):4443–4449. doi: 10.1021/bi00839a033. [DOI] [PubMed] [Google Scholar]
- LARDY H., COPENHAVER J. H., Jr Efficiency of oxidative phosphorylation. Nature. 1954 Jul 31;174(4422):231–232. doi: 10.1038/174231b0. [DOI] [PubMed] [Google Scholar]
- Lee N. M., Wiedemann I., Kun E. Control of cation movements in liver mitochondria by a cytoplasmic factor. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1030–1034. doi: 10.1016/0006-291x(71)90007-6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- McGivan J. D., Klingenberg M. Correlation between H+ and anion movement in mitochondria and the key role of the phosphate carrier. Eur J Biochem. 1971 Jun 11;20(3):392–399. doi: 10.1111/j.1432-1033.1971.tb01405.x. [DOI] [PubMed] [Google Scholar]
- Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
- Pande S. V., Blanchaer M. C. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 1971 Jan 25;246(2):402–411. [PubMed] [Google Scholar]
- Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scarpa A. Indicators of free magnesium in biological systems. Biochemistry. 1974 Jul 2;13(14):2789–2794. doi: 10.1021/bi00711a001. [DOI] [PubMed] [Google Scholar]
- Schuster S. M., Olson M. S. Energy-dependent release of magnesium from beef heart submitochondrial particles. J Biol Chem. 1973 Dec 25;248(24):8370–8377. [PubMed] [Google Scholar]
- Schuster S. M., Olson M. S. Studies of the energy-dependent uptake of divalent metal ions by beef heart mitochondria. J Biol Chem. 1974 Nov 25;249(22):7151–7158. [PubMed] [Google Scholar]
- Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
- Stewart D. J. Sensitive automated methods for phosphate and (Na+ plus K+)-ATPase. Anal Biochem. 1974 Dec;62(2):349–364. doi: 10.1016/0003-2697(74)90167-5. [DOI] [PubMed] [Google Scholar]
- Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]
- Vignais P. V., Duee E. D. Translocation et compartimentation des adénine-nucléotides dans les mitochondries. Bull Soc Chim Biol (Paris) 1966;48(11):1169–1187. [PubMed] [Google Scholar]
