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Abstract: To analyze the role of disulfidptosis in ulcerative colitis (UC), large-scale datasets combined
with weighted gene co-expression network analysis (WGCNA) and machine learning were utilized
and analyzed. When the hub genes that are associated with UC disease phenotypes and have
predictive performance were identified, immune cell infiltration and the CeRNA network were
constructed, the role of hub genes in UC pathogenies and biotherapy were investigated, and molecular
docking studies and mice-verified tests were carried out to further explore the potential core genes
and potential target. Finally, we found 21 DRGs involved in UC pathogenesis, including SLC3A2,
FLNA, CAPZB, TLN1, RPN1, etc. Moreover, SLC3A2, TLN1, and RPN1 show a notable correlation
with UC inflammatory state, and the expression of DRGs is closely related to the response to UC
biotherapy. Our study suggests that disulfidptosis plays a crucial role in the pathogenesis and disease
progression of UC. Higher expression of DRGs is commonly observed in moderate to severe UC
patients, which may also affect their response to biologic therapies. Among the identified genes,
SLC3A2 stands out, providing new insights into the underlying mechanisms of UC and potentially
serving as a novel therapeutic target for the treatment of UC.

Keywords: ceRNA network; disulfidptosis; integrated analysis; machine learning; ulcerative colitis;
small molecule agents prediction; SLC3A2

1. Introduction

Ulcerative colitis (UC) is an increasingly severe inflammatory bowel disease (IBD) char-
acterized by chronic idiopathic inflammation primarily affecting the colonic mucosa and
submucosa. Despite progress in diagnosis and treatment, the management of UC remains
challenging due to limited knowledge of its pathogenesis and mechanisms [1–3]. Therefore,
studying the molecular mechanisms of UC is crucial for improving prevention, diagnosis,
and treatment strategies. During the occurrence of UC, damage to the intestinal mucosa can
lead to nutrient absorption disorders and chronic diarrhea, resulting in a relative glucose
deficiency. This glucose deficiency can impair normal metabolic processes, including the
pentose phosphate pathway (PPP), which is a key pathway for NADPH production [4–6].
NADPH plays an important reducing role in cells, including participating in the formation
of disulfide bonds and maintaining cellular redox balance. Specifically, glucose is converted
into pyruvate during glycolysis, while NADPH is also produced. NADPH, as an important
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reducing agent, participates in various biosynthetic reactions, including fatty acid synthesis,
cholesterol synthesis, and protein disulfide bond formation [7]. When NADPH is depleted,
it can lead to the accumulation and stress of excessive disulfides, such as disulfides, thereby
exacerbating the occurrence of cell death [8]. This form of cell death caused by the accu-
mulation of intracellular disulfides is called disulfidoptosis. Elevated levels of cysteine
and cysteine/cysteine ratio were observed in UC tissues, indicating the accumulation of
disulfides in the intestinal mucosa [9].

Thiol antioxidants have been shown to significantly inhibit oxidative reactions induced
by TNBS/LPS, thereby preventing associated cellular damage and cytokine secretion. This
protective effect extends to reducing colonic and renal injury in mice [10]. Furthermore,
Bifidobacterium dentium can secrete γ-glutamylcysteine, an intermediate in glutathione syn-
thesis, which enhances glutathione levels, reduces reactive oxygen species (ROS) generated
by endoplasmic reticulum (ER) stress, and inhibits the activation of the NF-kB pathway.
This mechanism alleviates ER stress and increases the expression of MUC2 and IL-10 in
the colon, thereby helping to restore the intestinal mucus barrier and alleviate colitis [11].
Therefore, the symptom relief observed in UC treated with thiol antioxidants may be linked
to the oxidative stress of disulfidptosis or reducing disulfide bond formation. By lower-
ing the oxidative burden, thiol antioxidants can help restore redox balance and improve
cellular function in the intestinal mucosa, contributing to the overall management of UC
symptoms. Thus, it is essential to elucidate the relationship between disulfidoptosis and
UC and explore its role and regulatory mechanisms in UC intestinal mucosa.

In this study, we integrated large-scale datasets, weighted gene co-expression net-
work analysis (WGCNA), and machine learning to clearly define the important role of
disulfidoptosis-related genes (DRGs) in the pathogenesis of UC. We validated the identified
key genes including SLC3A2, FLNA, CAPZB, TLN1, and RPN1 through symptom-related
datasets and drug response-related datasets, elucidating the involvement of DRGs in dis-
ease progression and drug response. Our findings indicate that there are widespread
aberrant expressions of DRGs in UC, with key DRGs showing a close relationship with
immune cells. The lack of drug response in moderate to severe UC patients may be related
to the increased expression of DRGs. Additionally, small-molecule drug predictions have
provided us with new insights into the pathogenesis of ulcerative colitis, particularly target-
ing the abnormal activation of the sympathetic nervous system, with SLC3A2 potentially
serving as a new molecular target.

The datasets GSE179285 and GSE206285 were used as training sets to identify differen-
tially expressed genes (DEGs) between healthy individuals and patients with ulcerative
colitis (UC). Weighted gene co-expression network analysis (WGCNA) was performed to
construct the co-expression network and to screen for module genes. The intersection of
disulfidptosis-related genes (DRGs), DEGs, and module genes led to the identification of
characteristic genes. Least absolute shrinkage and selection operator (LASSO) and support
vector machine (SVM) algorithms were applied to pinpoint hub genes. The significance of
these hub genes in UC was validated by assessing their expression patterns, correlation
with symptoms, and responsiveness to biological agents across some external validation
sets (GSE48958, GSE47908, GSE92415, GSE75214, GSE87466, GSE92415, and GSE73661).
Immunoinfiltration and correlation analyses were subsequently conducted to explore the
relationships between hub genes and immune cells. Finally, small molecule agents were
screened, and a competing endogenous RNA (CeRNA) regulation network associated with
disulfidptosis was constructed. Notably, we used the DSS-induced colitis model to validate
our findings.

2. Results
2.1. Significant Differential Expression of DRGs in UC

The flow chart of this study is illustrated in Figure 1. To investigate the expression
of DRGs in the intestinal mucosa of UC patients, we downloaded the GSE179285 and
GSE206285 datasets from the GEO database. After performing batch effect correction, our



Int. J. Mol. Sci. 2024, 25, 13506 3 of 27

training set included 563 UC samples and 49 healthy control samples. Genes with an
adjusted p-value < 0.05 and a |log2 (fold change)| ≥ log2 (1.2) were considered statistically
significant, resulting in the identification of 3061 upregulated genes and 2303 downregu-
lated genes (Figure 2A and Table S3). Notably, we highlighted the position of DRGs within
the set of DEGs, underscoring their relevance in the context of UC.
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Figure 1. Study flowchart. The datasets GSE179285 and GSE206285 were used as training sets to
identify differentially expressed genes (DEGs) between healthy individuals and patients with ulcerative
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colitis (UC). Weighted gene co-expression network analysis (WGCNA) was performed to construct
the co-expression network and to screen for module genes. The intersection of disulfidptosis-related
genes (DRGs), DEGs, and module genes led to the identification of characteristic genes. Least absolute
shrinkage and selection operator (LASSO) and support vector machine (SVM) algorithms were
applied to pinpoint hub genes. The significance of these hub genes in UC was validated by assessing
their expression patterns, correlation with symptoms, and responsiveness to biological agents across
seven external validation sets (GSE48958, GSE47908, GSE92415, GSE75214, GSE87466, GSE92415, and
GSE73661). Immunoinfiltration and correlation analyses were subsequently conducted to explore the
relationships between hub genes and immune cells. Finally, small molecule agents were screened,
and a competing endogenous RNA (CeRNA) regulation network associated with disulfidptosis was
constructed. By the way we used the DSS-induced colitis model to validate our findings.
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Figure 2. Integrated datasets analysis and differential expression of DRGs in UC. (A) The blue dots
represent genes that are significantly downregulated in the disease state with an adjusted p-value less
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than 0.05 and a fold change (FC) less than −1.2. The red dots represent genes that are significantly
upregulated in the disease state with an adjusted p-value less than 0.05 and an FC greater than 1.2. The
gray dots represent genes with no statistically significant difference in expression between the disease
and control states. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of the top 360 DEGs. (C) Gene Ontology (GO) functional enrichment analysis, including
Biological Processes (BP), Cellular Components (CC), and Molecular Functions (MF), revealing the
underlying functions of the top 360 DEGs. (D) Box plot illustrating the expression differences in
DRGs between healthy individuals and UC patients. The boxes represent the interquartile range
(IQR), with the line inside the box indicating the median expression level. * p < 0.05, ** p < 0.01,
*** p < 0.001.

We performed KEGG and GO functional enrichment analyses to further character-
ize the biological features of the DEGs. The results of the KEGG analysis revealed sev-
eral significantly enriched pathways, including “Cytokine-cytokine receptor interaction”,
“Rheumatoid arthritis”, and “Intestinal immune network for IgA production” (Figure 2B).
These pathways are well-established in the context of UC pathogenesis, reinforcing the
robustness of our dataset integration.

In addition, the GO enrichment analysis highlighted key processes such as “main-
tenance of gastrointestinal epithelium”, “regulation of apoptotic cell clearance”, “T cell
tolerance induction”, and “interleukin-10 production” in Biological Processes (BP). In
Cellular Components (CC), there are identified terms like “NADPH oxidase complex”,
“tight junction”, and “actin cytoskeleton”. Molecular Functions (MF) identified significant
enrichments in “Toll-like receptor binding”, “glycosaminoglycan binding”, and “sulfur
compound binding” (Figure 2C), further illustrating that the pathology of UC is closely
associated with sulfur compound synthesis, cytoskeletal-related functions, and NADPH,
while also highlighting its immune-related characteristics.

Our analysis of DRG expression in UC patients compared to healthy controls re-
vealed significant differential expression of DRGs. Specifically, SLC3A2, SLC7A11, ACTN4,
CAPZB, FLNA, GYS1, NDUFA11, RPN1, and TLN1 were significantly upregulated in
the intestinal mucosa of UC patients, while CD2AP, FLNB, IQGAP1, LRPPRC, MYL6,
NCKAP1, NDUFS1, NUBPL, OXSM, and PDLIM1 were downregulated (Figure 2D). These
marked expression differences not only underscore the dysregulation of DRGs in UC but
also strongly suggest the activation of disulfidoptosis-related cell death in UC patients.

2.2. WGCNA-Based Discovery of Key DRGs Involved in UC Pathogenesis and Identification of
SLC3A2 as the Most Significant Central Hub

To explore genes associated with the pathological features of UC, we utilized WGCNA.
Additionally, we examined the prevalence of DRGs within the identified UC-associated
gene modules, aiming to uncover potential connections between disulfidoptosis and UC
pathogenesis. We clustered all samples in the training set and used the R package dplyr
(1.1.4) to exclude outlier samples, which included 21 UC cases and 9 healthy controls. The
results showed that the samples were well-clustered (Figure 3A).

We constructed a gene module clustering dendrogram by calculating gene similarity,
determining a soft threshold of 8, and setting MEDissThres to 0.25 (Figure S3). Using the
dynamic tree-cut algorithm, we identified 13 modules by merging the resulting clusters
(Figure 3B). The genes positively correlated with UC, as compared to healthy controls, were
selected as module genes, resulting in the identification of genes associated with disease
manifestation (Figure 3C). Finally, 7501 module genes were obtained. (Table S4).

By intersecting the module genes, DEGs, and the DRGs, we identified six characteristic
genes (Figure 3D; Table S5). Correlation analysis among these characteristic genes revealed
that most were strongly correlated with each other. Notably, SLC3A2 (Solute Carrier
Family 3 Member 2) exhibits significant differences from physiological to pathological
states (Figure 3E; Table S6).
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Figure 3. Screening for characteristic genes closely related to UC based on DRGs. (A) Clustering
and phenotyping of samples in the dataset. Each branch in the figure represents a sample, with
the vertical axis indicating the clustering distance. The closer two branches are, the more similar
the corresponding samples are in terms of their gene expression profiles and clinical characteristics.
The horizontal axis represents the corresponding phenotypic traits of the samples, such as disease
status, clinical subtypes, or other relevant clinical features, enabling a visual assessment of how
different sample groups cluster based on these traits. (B) Module clustering dendrogram. This graph
shows different genes along the horizontal axis and the lack of correlation between genes along the
vertical axis. The lower the branch, the stronger the correlation among the genes within the branch.
(C) Heatmap illustrating the correlation between module trait genes and clinical traits. The vertical
axis represents different modules, while the horizontal axis represents different traits. Each square in
the heatmap represents the correlation coefficient between a specific gene module and a clinical trait,
with color intensity indicating the strength of the correlation (positive or negative). The numerical
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values in each square represent the Pearson correlation coefficient and the corresponding p-value
shown in parentheses. (D) UpSet plot showing the number of characteristic genes obtained from
the intersection of the DRGs, DEGs, and the module genes identified by WGCNA. (E) The Circos
plot illustrates the associations among characteristic genes from physiological to pathological states.
Each segment represents a specific set of genes, and the connections between them indicate the
relationships or correlations in gene expression. The width of the lines reflects the strength of the
correlation, with color-coded links showing the direction of change (red for positive correlation, green
for negative correlation).

2.3. Machine Learning Identification of Key DRGs as Robust Diagnostic Biomarkers for UC

We employed LASSO and SVM algorithms to accurately identify the UC disulfidopto-
sis signature genes from the six characteristic genes. The application of these machine learn-
ing methods aimed to enhance the precision of feature selection, reduce model overfitting,
and ensure robust identification of key genes linked to disulfidoptosis in UC. The LASSO
logistic regression analysis pinpointed five hub genes: SLC3A2, FLNA, CAPZB, TLN1, and
RPN1 (Figure 4A,B; Table S7). Subsequently, the SVM algorithm identified six hub genes:
SLC7A11, SLC3A2, FLNA, CAPZB, TLN1, and RPN1 (Figure 4C; Supplementary Table S8).
The intersection of the results from both algorithms yielded five common hub genes:
SLC3A2, FLNA, CAPZB, TLN1, and RPN1 (Figure 4D).
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Figure 4. Machine learning-based screening for hub genes. (A,B) LASSO logistic regression analysis
for screening hub genes. (A) Plot showing the changes in gene coefficients. The LASSO coefficient
path plots for the six characteristic genes are displayed. Each curve represents the trajectory of a
characteristic gene, with the vertical axis showing the gene value, the lower horizontal axis indicating
log (λ), and the upper horizontal axis representing the number of nonzero hub genes in the model at
that point. (B) LASSO regression cross-validation curves using a 70% training and 30% validation
split to determine the optimal λ value. The two vertical lines in the plot represent key λ values.
The first vertical line marks the λ value that corresponds to the point where the model begins to
exhibit the least cross-validation error or where the optimal λ value is selected. The second vertical
line indicates a threshold value of λ, beyond which the coefficients of some genes shrink to zero,
effectively removing them from the model. (C) SVM analysis for screening hub genes. The plot on
the left shows the accuracy of different feature combination models using fivefold cross-validation,
with the horizontal axis representing the different feature combinations and the vertical axis showing
the accuracy of each model. The plot on the right shows the error rate for the same models, with the
horizontal axis representing the feature combinations and the vertical axis showing the error rate.
Lower error rates indicate better model performance. (D) Venn diagram showing the intersection
of hub genes identified by the two algorithms, LASSO logistic regression and SVM. (E,F) Violin
plot and ROC curves revealing the expression differences and predictive power of hub genes in the
30% validation set. (E) The plot shows the distribution of gene expression, including the median
and quartiles, providing insight into the differential expression of key genes in different conditions.
(F) ROC curves reveal the predictive power of these hub genes in distinguishing between disease
and control groups. The area under the curve (AUC) quantifies the model’s predictive accuracy, with
higher AUC values indicating better predictive power. (G–L) Violin plots and ROC curves from
three external datasets. (G) Violin plot showing expression differences in GSE48958 (CON [n = 8]
vs. UC [n = 13]). (H) Violin plot showing expression differences in GSE47908 (CON [n = 15] vs. UC
[n = 39]). (I) Violin plot showing expression differences in GSE92415 (CON [n = 21] vs. UC [n = 87]).
(J) ROC curve for joint diagnostic analysis in GSE48958. (K) ROC curve for joint diagnostic analysis in
GSE47908. (L) ROC curve for joint diagnostic analysis in GSE92415. * p < 0.05, ** p < 0.01, *** p < 0.001.

To evaluate the diagnostic potential of these hub genes for UC, we analyzed their
sensitivity and specificity using ROC curves in the training set. The results revealed that
the area under the curve (AUC) values for all five hub genes were 0.9 or higher, indicating
their strong diagnostic ability to differentiate between UC patients and healthy controls
(Figure 4E,F; Table S9).
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Further validation was conducted through ROC joint diagnostic analysis using three
external datasets: GSE48958 (CON (n = 8) vs. UC (n = 13)), GSE47908 (CON (n = 15) vs. UC
(n = 39)), and GSE92415 (CON (n = 21) vs. UC (n = 87)). The expression levels of the hub
genes were significantly higher in the colon tissues of UC patients compared to healthy
controls. The joint diagnostic analysis across different datasets demonstrated that these hub
genes had robust diagnostic values, with AUC values exceeding 0.85, further confirming
their potential as diagnostic biomarkers (Figure 4G–L; Table S10).

2.4. The Strong Correlation Between Key DRGs and Clinical Symptoms of UC, as Well as Their
Response to UC Biotherapy

To investigate the correlation between disulfidoptosis-related hub genes with the
varying symptoms found in UC disease, we then conducted validation studies using
four external datasets, GSE47908, GSE179285, GSE75214, and GSE87466, which represent
different clinical manifestations of UC patients. Additionally, we explored the potential
role of these genes in predicting and modulating patient response to biologic therapies,
specifically monoclonal antibodies. By examining differential gene expression in responders
versus non-responders, we sought to elucidate the potential involvement of DRGs in UC
pathogenesis, disease progression, and therapeutic outcomes.

Firstly, the GSE47908 dataset revealed that patients with intestinal content proliferation
exhibited downregulation of all five characteristic hub genes. ROC analysis showed that the
multigene combination of these hubs achieved an AUC of 0.872, highlighting a significant
association between these genes and intestinal content proliferation, with SLC3A2, TLN1,
and RPN1 showing notable performance in single-gene ROC analysis (Figure 5A). In
the GSE75214 dataset, which differentiates active and inactive disease phases, significant
differences in key gene expression were observed, with an AUC of 0.847, further supporting
the correlation between these hub genes and UC’s clinical manifestations. SLC3A2 and
RPN1 once again showed significant results in the single-gene ROC analysis (Figure 5B).
For the GSE179285 dataset, our analysis demonstrated a marked increase in hub gene
expression under inflammatory conditions, with an AUC of 0.840, underscoring a strong
association between these key genes and intestinal inflammation. RPN1 stood out in
the single-gene ROC analysis (Figure 5D). In contrast, the GSE87466 dataset showed no
significant differences in hub gene expression between localized and diffuse ulcerative
lesions (Figure 5C). DRGs show a significant upregulation in the inflammatory and acute
phases of UC, but an abnormal downregulation in expression associated with the presence
of intestinal content proliferation, compared to the pathological state. This suggests that
disulfidoptosis plays a crucial role in the acute and inflammatory phases of ulcerative
colitis, with its expression being altered during intestinal proliferation.
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Figure 5. Hub genes correlate with symptoms and biologics response in UC patients. (A) Violin plot
and ROC curves showing the expression differences and correlation of hub genes between UC (n = 39)
and UC-associated dysplasia (UC-D, n = 6) in the GSE47908 validation set. The biopsy samples of
UC-D were taken from areas with inflammation and dysplasia but without ulceration. (B) Violin plot
and ROC curves showing the expression differences and correlation of hub genes between inactive
UC (n = 23) and active UC (n = 74) in the GSE75214 validation set. Active disease is defined as
Mayo endoscopic subscore 2 for UC patients, based on endoscopic findings. (C) Violin plot and ROC
curves showing the expression differences and correlation of hub genes between UC with limited
disease extent (n = 60) and UC with extensive disease extent (n = 27) in the GSE87466 validation
set. Extensive UC refers to inflammation involving the entire colon. (D) Violin plot and ROC curves
showing the expression differences and correlation of hub genes between non-inflammatory tissues
(n = 48) and inflammatory tissues (n = 46) in the GSE179285 validation set. Biopsy samples were taken
from areas of endoscopically visible mucosal inflammation, confirmed by histology. (E) Relative
expression levels of hub genes in the colonic mucosa of healthy controls, UC patients in responding
and non-responding groups before and after golimumab (GLM) therapy in the GSE92415 dataset.
(F) Relative expression levels of hub genes in the colonic mucosa of healthy controls, UC patients in
responding and non-responding groups before and after infliximab (IFX) therapy in the GSE73661
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dataset. (G) Relative expression levels of hub genes in the colonic mucosa of healthy controls, UC
patients in responding and non-responding groups before and after vedolizumab (VDZ) therapy in
the GSE73661 dataset. * p < 0.05, ** p < 0.01, *** p < 0.001.

To explore the response of DRGs to biologic therapies, such as TNF-α inhibitors
golimumab (GLM), infliximab (IFX), and vedolizumab (VDZ), we analyzed the GSE92415
and GSE73661 datasets, which include colon biopsy samples from patients with moderate
to severe colitis. In the GSE92415 dataset, which includes UC patients treated with GLM,
hub gene expression was elevated before treatment (Figure 5E). Following GLM therapy,
CAPZB and TLN1 were significantly downregulated, with RPN1 also showing a downward
trend. Similarly, the GSE73661 dataset, comprising UC patients treated with IFX, revealed
higher pre-treatment expression of hub genes compared to healthy controls. (Figure 5F).
Post-IFX treatment, SLC3A2, CAPZB, TLN1, and RPN1 showed notable downregulation.
The same dataset for VDZ treatment also demonstrated significant downregulation of
SLC3A2, TLN1, and RPN1 after therapy (Figure 5G). Interestingly, patients who did not
respond to these treatments generally had higher baseline levels of DRGs. These findings
suggest that DRGs are associated with the severity of the disease and in patients who
respond to biologic therapies, including GLM, IFX, and VDZ; this treatment may alleviate
colonic damage in UC patients by modulating disulfidoptosis-related pathways.

2.5. Significant Correlation of Disulfidoptosis-Related Hub Genes with Immune Cell Infiltration
in UC

Previous findings have shown that disulfidoptosis signaling is significantly activated
in inflammatory colonic tissue. To further investigate this, we analyzed the immune
landscape of the training sets using CIBERSORTx, visualizing the abundance of 22 immune
cell types with bar plots. As illustrated in the figure, the main immune cell composition of
the colon consists of plasma cells, B cells, mast cells, T cells, macrophages, and neutrophils,
along with a small proportion of NK cells and dendritic cells (Figure 6A).

Our analysis revealed significant differences in nine immune cell types between UC
samples and control samples (p < 0.05) (Table S11). Specifically, plasma cells, activated CD4
memory T cells, monocytes, M1 macrophages, resting dendritic cells, and neutrophils were
significantly more prevalent in UC tissues. In contrast, activated NK cells, M0 macrophages,
and resting mast cells were found to be significantly less abundant in UC patients compared
to healthy controls (Figure 6B).

We further conducted a correlation analysis on the expression data from the training
set, identifying that hub genes were positively correlated with most pro-inflammatory
factors (Figure 7A, Table S12), immunoinhibitors (Figure 7B,C, Table S13), and receptors
(Figure 7D, Table S14). Additionally, the relationship between hub genes and immune cells
was explored, revealing that most hub genes positively correlated with pro-inflammatory
cells, including neutrophils, M1 macrophages, monocytes, activated CD4 memory T cells,
and activated dendritic cells, while showing negative correlations with anti-inflammatory
cells such as M2 macrophages (Figure 6C). The strong correlations indicate that DRGs
play pivotal roles in modulating immune responses, maintaining immune balance, and
influencing inflammatory processes.

These analyses highlight the changes in immune cells in UC and underscore the
close relationship between disulfidoptosis-related hub genes, immune cells, and immune
regulatory factors, emphasizing the need for further investigation into their mechanisms
of action.
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responds to the relative abundance of each subset within the sample population. (B) Box plots illus-
trate the differences in the proportion of immune cells between the control (CON) and UC groups. 
Each box plot displays the distribution of immune cell proportions within each group, with the 
boxes representing the IQR and the whiskers showing the range of values. (C) Correlation analysis 
of hub genes with the 22 immune cell types. Data were assessed using the Benjamini and Hochberg 
(BH) method. * p < 0.05, ** p < 0.01, *** p < 0.001. 

Figure 6. Estimation of infiltrating immune cell types and correlation analysis with hub genes.
(A) Bar plots showing the relative composition of 22 immune cell subsets in the training sets. Each
bar represents the proportion of a specific immune cell subset across the samples in the training set.
The immune cell types are categorized based on immune classification, and the height of each bar
corresponds to the relative abundance of each subset within the sample population. (B) Box plots
illustrate the differences in the proportion of immune cells between the control (CON) and UC groups.
Each box plot displays the distribution of immune cell proportions within each group, with the boxes
representing the IQR and the whiskers showing the range of values. (C) Correlation analysis of hub
genes with the 22 immune cell types. Data were assessed using the Benjamini and Hochberg (BH)
method. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 7. Correlation Analysis of Hub Genes and Immunostimulatory Factors. (A) Correlation analy-
sis of hub genes with chemokines. (B,C) Correlation analysis of hub genes with immunoinhibitors.
(D) Correlation analysis of hub genes with receptors. (D) The protein expression levels of Slc3a2
(n = 3), * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.6. Construction of a CeRNA Network Reveals Regulatory Mechanisms of Key
Disulfidoptosis-Related Hub Genes in UC

Having identified key hub genes with disulfide bond formation and confirmed their
critical roles in disease progression, drug response, and immune-related mechanisms, we
next sought to understand the regulatory pathways governing these hub genes. To this end,
we conducted a comprehensive RNA analysis to further elucidate their underlying regula-
tory mechanisms. The competing endogenous RNA (ceRNA) hypothesis [12] proposes a
regulatory mechanism in which microRNAs (miRNAs) not only regulate messenger RNA
(mRNA) but also compete with long non-coding RNAs (lncRNAs) for binding, thereby in-
fluencing mRNA expression levels [13]. To elucidate the molecular mechanisms underlying
disulfidptosis in UC patients, we aimed to construct a ceRNA network based on significant
changes in hub genes.

Using multiMiR prediction, we identified 373 experimentally validated miRNAs
targeting the hub genes (Table S15). After analyzing their expression in the GSE48957
dataset, we focused on downregulated miRNAs (logFC < −0.05) to construct a reliable
hub gene–miRNA network (Figure 8A). We then predicted 27 experimentally verified
lncRNAs interacting with these miRNAs using the ENCORI database. Following expression
screening in the GSE77013 dataset, we retained two of four detectable miRNAs in colon
tissues (Figure 8B).

Ultimately, we constructed a credible ceRNA network comprising 3 mRNAs, 4 miR-
NAs, and 27 lncRNAs (Figure 8C), providing valuable insights into the regulatory mecha-
nisms of disulfidptosis in UC (Figure 8D).
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Figure 8. Reliable CeRNA Network Construction. (A) miRNA–mRNA network including 3 hub
genes and 3 regulatory miRNAs. (B) Prediction of 27 experimentally verified (AGO-CLIP > 1 and
degradome-seq > 1) lncRNAs from 2 out of the 3 validated miRNAs using the ENCORI database.
(C) Construction of the reliable lncRNA–miRNA–mRNA network, featuring 3 hub genes, 4 miRNAs,
and 27 lncRNAs. Light orange nodes represent hub genes, light pink nodes represent miRNAs,
and light blue nodes represent lncRNAs. (D) Sankey diagram of the final CeRNA network, where
the squareness represents lncRNAs, miRNAs, and mRNAs, and the size indicates their degree
of connection.

2.7. Adrenergic Receptor Compound Identification and Molecular Docking Studies Highlight
Clonidine’s Interaction with SLC3A2 in UC Management

We submitted the up-regulated DRGs to the Connectivity Map (CMap) database to
identify potential small molecule compounds for managing UC. Using a false discovery
rate (FDR) cutoff of q_nlog10 > 15, we identified the top 31 small molecules (normal-
ized connectivity score, ncs < −1.8) that exhibited reverse perturbations to the hub genes
(Table S16). Adrenergic receptor agonists and antagonists were the most relevant com-
pounds (Figure 9A). The compound with the lowest ncs was further analyzed, and its
structure was retrieved from the PubChem database (Figure 9B). To investigate its potential
interaction with the key hub gene SLC3A2 (Figure 9C), molecular docking studies were
performed (Figure 9D). Molecular docking, a key technique for structure-based drug design,
aims to identify the optimal conformation of small molecules bound to their target proteins.

For this study, we used high-resolution structural data (3.4 Å) for SLC3A2 (PDB ID:
7CMH) from the RCSB Protein Data Bank and conducted docking with clonidine. The
binding energy between the clonidine and SLC3A2 was calculated to be below −5 kcal/mol
(Figure 9E), indicating a relatively strong interaction. This suggests that the drug may bind
to the protein with significant affinity, potentially resulting in stable complex formation.
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Figure 9. Prediction of potential drugs targeting disulfidptosis signaling. (A) Identification of
potential small molecule compounds for managing UC using the Connectivity Map (CMap) database.
The top 31 small molecules (normalized connectivity score, ncs < −1.8) were identified by submitting
the up-regulated DRGs to CMap. A false discovery rate (FDR) cutoff of q_nlog10 > 15 was applied to
filter the compounds that exhibited reverse perturbations to the hub genes. (B) Three-dimensional
structure of clonidine from the PubChem database. (C) Three-dimensional structure of SLC3A2
(PDB ID: 7CMH) with high-resolution data (3.4 Å) obtained from the RCSB Protein Data Bank.
(D) Docking model of the Clonidine-SLC3A2 protein–ligand complex. The protein (SLC3A2) and
ligand (Clonidine) files were converted to PDBQT format, excluding water molecules and adding
polar hydrogens. The docking grid box was set to 30 Å × 30 Å × 30 Å with a 0.05 nm grid point
spacing centered on the protein’s domain to allow free movement of the ligand. All docking studies
were performed using AutoDock Vina 1.2.2 to calculate binding affinities and predict the most
likely binding conformations of Clonidine with the SLC3A2 protein. (E) Binding energy analysis
between Clonidine and SLC3A2. The top 9 binding poses with the lowest binding energies are shown,
calculated using AutoDock Vina 1.2.2. The binding energies (in kcal/mol) for each pose are indicated,
with more negative values representing stronger binding interactions.
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2.8. DSS-Induced Mouse Colitis Reveals Upregulation of Key Hub Genes, Supporting the SLC3A2
as a Disulfidoptosis-Related Signaling in UC

To further validate the important role of hub genes in UC, we employed the DSS-
induced mouse colitis model. Compared with the CON group, mice in the DSS group
showed obvious weight loss (Figure 10A), decreased colon length (Figure 10B), and bloody
stools (Figure 10C). The histopathological examination showed severe inflammatory in-
filtrates and disruption of the intestinal mucosa in the DSS group (Figure 10D). Then, we
detected the expression levels of hub genes using RT-qPCR. Compared with the normal
group, the expression levels of Slc3a2, Tln1, Capzb, Flna, and Rpn1 in the UC group were
significantly increased, with Flna showing an upward trend (Figure 10E–I). The proteomics
study found that SLC3A2 is upregulated in the intestines of UC patients (Figure 10J), and
the consistency between protein and RNA changes indicates that the key disulfidoptosis
gene SLC3A2 plays an important role in UC. These results provide cross-species evidence
supporting the function and regulation of disulfidptosis signaling in UC.
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occult blood test (FOBT) results in CON and DSS groups. (D) Representative images of HE staining
in the colon tissues (magnification ×100) and arrows represents inflammation. (E–I) The mRNA
expression levels of Slc3a2 (E), Tln1 (F), Capzb (G), Flna (H), and RPN1 (I) in UC and CON samples
by RT-qPCR (n = 3). (J) The protein expression level of Slc3a2. Data are shown as mean ± SD. ns, not
significant, * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Discussion

Ulcerative colitis is a complex disease characterized by intricate pathogenesis and
limited treatment efficacy; patients often experience malnutrition in the later stages of the
disease. Disulfidptosis, a newly discovered form of cell death, is characterized by the abnor-
mal accumulation of disulfide bonds in cytoskeletal proteins and dysregulated oxidative
stress under glucose deprivation, ultimately leading to cell death. Studies have shown
that cytoskeletal proteins in the intestine play a crucial role in coordinating endocytosis
and exocytosis, thereby contributing significantly to nutrient absorption and intercellular
material exchange [14,15].

In this study, we integrated large-scale datasets, removing batch effects and outliers to
investigate the general expression patterns of DRGs in UC. This approach enhanced the
reliability of our data. The integration results showed that our large dataset aligned with
common UC characteristics, with significant differences in the expression of DRGs between
UC patients and healthy controls. Currently, 28 DRGs have been reported, including
17 actin-associated genes, 4 inhibitory factors, glycogen synthase 1 (GYS1), and several
genes involved in mitochondrial oxidative phosphorylation (e.g., NDUFS1, NDUFA11,
NUBPL, and LRPPRC), as well as MYH9 and MYH10. Among these, 21 DRGs were
found to be differentially expressed in UC, encompassing all inhibitory factors, DRGs
related to oxidative phosphorylation and glucose metabolism, and more than half of the
17 actin-associated genes.

Genes such as GYS1 have been shown to play a role in cellular survival during glu-
cose deprivation by promoting a shift toward oxidative phosphorylation and glycogen
metabolism [16]. This phenomenon aligns with the observed increase in oxidative phos-
phorylation and enhanced oxidative stress responses seen in UC. The cytoskeleton plays
various roles in the intestine, such as providing structural support to cells by linking mi-
crotubules and microfilaments, thereby maintaining the shape and integrity of intestinal
epithelial cells and facilitating cell migration and motility, especially during intestinal
repair [17–19]. Moreover, cytoskeletal proteins interact with signal transduction pathways
to regulate cellular physiological responses and metabolic activities [20,21]. Filamin A
(FLNA), a cytoskeletal protein connecting the cell membrane and cytoskeleton, plays a
critical role in cell migration, shape maintenance, and signal transduction, influencing in-
flammatory diseases through its regulation of cell adhesion and migration [22–24]. Ge Gen
Qin Lian Decoction (GGQLT) has been found to have a clear effect in alleviating intestinal
inflammation in UC, and this effect is specifically mediated through the modulation of
Talin 1 (TLN1) [25]; recent findings suggest that puerarin may also act on intestinal villi to
enhance metabolic capacity in the gut [26]. These findings indicate a potential link between
DRGs and intestinal absorption and metabolism.

Using WGCNA, we identified gene modules in UC that were associated with disease
phenotypes compared to healthy individuals. By intersecting the module genes, DEGs,
and the DRGs, we identified six characteristic genes. These six genes are DRGs that
exhibit significant expression differences in UC and are related to UC disease phenotypes.
Further validation using machine learning refined these findings, identifying five hub
genes. We validated these five genes across three external datasets of varying sample sizes
and found that they had strong predictive and diagnostic value for UC. At the same time,
we validated the expression of the hub genes in four clinical symptom-related datasets and
two biologic-related datasets. The results suggest that disulfidoptosis plays a crucial role in
the acute and inflammatory phases of UC. These analyses demonstrate that disulfidptosis
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is significantly expressed in UC and is strongly associated with disease characteristics; the
more pronounced the inflammation, the more prominently DRGs are expressed in UC.

Through immune infiltration analysis and the correlation analysis between DRGs and
immune cells, we found that the key DRGs have a strong correlation with both innate and
adaptive immune responses. Notably, there is a significant association with monocytes, such
as macrophages and neutrophils. Additionally, studies have reported aberrant expression
of cytoskeletal protein-associated factors in UC [20], which are closely linked to immune
cell interactions [27–31]. TLN1, as an integrin-activating protein, mediates interactions
between cells and the extracellular matrix (ECM). The components of the ECM can induce
macrophage differentiation into different phenotypes, and abnormal TLN1 expression
may lead to ECM dysfunction and promote inflammatory macrophage differentiation [32].
Therefore, investigating the role of disulfidptosis in UC may provide crucial insights into
the disease’s underlying mechanisms.

We also analyzed the correlation between the expression of DRGs and UC patients’
responses to TNF-α inhibitors. The results revealed that patients who did not respond to
TNF-α inhibitors exhibited higher expression levels of DRGs in the early stages of treatment
(which may have caused irreversible damage to the intestine’s self-repair functions). In
contrast, patients who responded to the treatment showed partial downregulation of DRGs
pre- and post-treatment. However, current biologics do not specifically target the regulation
of DRGs, indicating the necessity to develop drugs targeting disulfidptosis to alleviate
inflammation and slow disease progression in UC.

The current study also successfully screened SLC3A2 as a potential small molecular
target, which should be investigated in the future. Firstly, we found that SLC3A2 showed a
strong positive correlation with plasma cells, memory T cells, monocytes, M0 macrophages,
activated dendritic cells, and neutrophils while displaying a negative correlation with
regulatory T cells, M2 macrophages, resting dendritic cells, mast cells, and eosinophils.
Next, through small molecule drug screening, we found that the upregulation of DRGs
could be suppressed by clonidine, which reduces sympathetic activity.

Interestingly, the following study demonstrated a relatively strong interaction between
SLC3A2 and clonidine, indicating that SLC3A2 may be a potential small molecule that
regulates or influences sympathetic activity. Previous studies have shown that UC patients
frequently exhibit autonomic nervous dysfunction [33], characterized by increased sym-
pathetic tone and decreased norepinephrine release [34]. In UC models, the sympathetic
nervous system, primarily via the splenic nerve pathway, is involved in the inflammatory
immune response. Both vagotomy and splenic nerve transection have been shown to
exacerbate inflammation [35]. Last but not least, higher Slc3a2 expression was found in the
DSS mice colon. Given that SLC3A2 is a member of the solute carrier family, it has been
implicated in tumorigenesis, metabolic diseases, and inflammatory responses. Additionally,
SLC3A2 encodes the molecular chaperone of SLC7A11 and high SLC7A11 expression, po-
tentially leading to F-actin contraction and detachment from the plasma membrane [36,37].
Therefore, our findings highlight the importance of exploring the mechanisms by which
disulfidptosis contributes to UC pathology and suggest that targeting sympathetic activity
by SLC3A2 may be a potential pathway in treating UC.

Our study primarily relied on big data mining; however, the lack of detailed demo-
graphic information (such as age, sex, and disease duration) in the datasets limited the
depth of our analysis. For instance, we were unable to investigate whether there are gender
differences or age-related susceptibility to disulfidoptosis in UC, or whether disulfidoptosis
varies at different stages of disease progression. This limitation may hinder the ability
to conduct a more detailed analysis of the pathophysiology of the disease. Additionally,
in the drug response analysis, we focused on studying the expression of disulfidoptosis-
related genes in patients with moderate to severe UC. Although this approach is consistent
with our hypothesis that more severe disease may cause irreversible damage, thereby
affecting the response to biologics, the lack of comprehensive demographic data in the
dataset hinders further exploration of these relationships. Transcriptome research in the
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future should include more comprehensive demographic data to facilitate more thorough
analysis. Moreover, further research is needed on the interaction between SLC3A2 and
the sympathetic nervous system in order to deepen our understanding of how SLC3A2
is involved in the pathogenesis of UC and potentially reveal new therapeutic targets for
regulating immune responses.

4. Materials and Methods
4.1. Datasets and Sample Selection

We searched GEO databases using the keyword “ulcerative colitis”, and the filter
criteria were as follows: 1⃝ human; 2⃝ UC patients with an established diagnosis; and
3⃝ the dataset had at least five healthy control and five UC samples. Finally, seven mRNA

datasets (GSE193677, GSE206285, GSE87466, GSE66407, GSE128682, GSE73661, GSE92415),
one miRNA dataset (GSE48957), and one lncRNA dataset (GSE77013) were included
(Table 1) [38–45].

Table 1. The information of all the datasets in the study.

GEO ID RNA Type Platform Tissues Attribute

GSE179285 mRNA GPL6480 Colonic mucosal Training set

GSE206285 mRNA GPL13158 Colonic mucosal Training set

GSE48958 mRNA GPL6244 Colonic mucosal Validation set

GSE92415 mRNA GPL13158 Colonic mucosal Validation set

GSE47908 mRNA GPL570 Colonic mucosal Validation set

GSE75214 mRNA GPL6244 Colonic mucosal Validation set

GSE87466 mRNA GPL13158 Colonic mucosal Validation set

GSE73661 mRNA GPL6244 Colonic mucosal Validation set

GSE48957 miRNA GPL14613 Colonic mucosal Validation set

GSE77013 lncRNA GPL16956 Colonic mucosal Validation set

The GSE179285 dataset contained colon tissue biopsy samples, which included
31 healthy control samples and 23 UC samples, and the GSE206285 dataset contained colon
tissue biopsy samples from 18 healthy individuals and 550 UC patients. The GSE179285
dataset was annotated by the GPL6480 Agilent-014850 Whole Human Genome Microarray
4 × 44K G4112F (Probe Name version) platform, while the GSE206286 dataset was anno-
tated by the GPL13158[HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate.
merged by batch-effects processing and used as a training set, which contained 49 healthy
control samples and 573 UC samples for subsequent analysis (Figure S1). Relevant details
of the validation sets are summarized in Tables S1 and S2, Figure S2.

DRGs were obtained according to the published literature (PMID: 36747082), specif-
ically SLC7A11, SLC3A2, NCKAP1, WASF2, CYFIP1, ABI2, BRK1, NUBPL, NDUFA11,
LRPPRC, OXSM, NDUFS1, GYS1, FLNA, FLNB, MYL6, MYH9, MYH10, ACTB, ACTN4,
CAPZB, CD2AP, DSTN, TLN1, INF2, PDLIM1, IQGAP1, and RPN1 [4].

4.2. Identification of Differentially Expressed Genes (DEGs)

The Limma (3.58.1) R package was used to obtain the genes expressed differently
between UC samples and healthy control samples from microarray datasets. The adjusted
p-value < 0.05 and a |log2 (fold change)| ≥ log2 (1.2) were considered to be statistically
significant [46–48]. Volcano plots of the results were drawn through the R package ggplot
(3.5.1). Box line plots of the results were drawn through xiantaozi (https://www.xiantaozi.
com/, accessed on 20 August 2024), a comprehensive web service for biomedical data
analysis and visualization.

https://www.xiantaozi.com/
https://www.xiantaozi.com/
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4.3. Biological Function and Pathway Enrichment Analysis

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were performed using the xiantaozi and visualization by
weishengxin (http://www.bioinformatics.com.cn/, accessed on 20 August 2024).

4.4. Construction of the Coexpression Network and Screening of the Module Genes

To find modular genes in the training set that are highly correlated with the phenotype,
WGCNA was performed on all genes using the UC and healthy controls as phenotypes. The
samples were first clustered, and outliers were removed. The soft threshold for the data was
determined (power = 8, −R2 = 0.85) to ensure that gene interactions maximally conformed
to a scale-free distribution (Figure S3A,B). Then, we constructed a coexpression matrix,
calculated the proximity and similarity between genes to construct a systematic clustering
tree of genes, and identified gene modules by hierarchical clustering. MEDissThres was set
to 0.25 to merge similar modules analyzed by the dynamic shear tree algorithm, and the
relevant modules were screened with UC and healthy controls as key modules (Figure S3C).
The module genes were obtained by combining the genes of the key modules.

4.5. Screening of Characteristic Genes and Their Correlation Analysis

The intersection of DEGs, module genes, and DRGs was taken to obtain characteristic
genes using the R package UpSetR (1.4.0). The correlation between the intersected genes
was calculated in the training set by the Pearson algorithm to obtain the corresponding
p-value and correlation coefficients.

4.6. Screening of Hub Genes and Evaluation of Diagnostic Performance

The LASSO algorithm and SVM algorithm were used to identify the candidate genes
in the training set. The R package Venn Diagram (1.7.3) was used to intersect the genes
identified by the two algorithms to obtain the hub genes, and then the R package p ROC
(0.7.0) was used to analyze the ROC curves of the genes and to verify their diagnostic value.

4.7. Evaluation of Tissue Infiltrating Immune Cells

Immune cell infiltration analysis was carried out using the Cibersort (https://cibersortx.
stanford.edu/, accessed on 21 August 2024), which can predict the immune cell composition
of tissues, deconvolution algorithm based on input gene expression profiles, and the
builtin reference set LM22. Permutation (PERM) was established to 100 for more stable
results [49–51].

4.8. Correction Analysis

The Hmisc (5.1-0) package was used to complete the correlation analysis between genes
and the correlation analysis between genes and immune cells, genes, and immunostimula-
tory factors. The immunostimulatory factors were downloaded from the organized gene
list of “Immunomodulator” of TISIDB (http://cis.hku.hk/TISIDB/index.php, accessed
on 21 August 2024). Additionally, all correlation heatmap visualizations are performed
with xiantaozi.

4.9. CeRNA Network Construction

The multiMiR (1.20.0) package was used to predict interactions between hub genes and
miRNAs, which compiled nearly 50 million records in humans and mice from
14 databases [52]. Choose all miRNAs experimentally validated from the list of predicted
records. ENCORI (https://rnasysu.com/encori/, accessed on 21 August 2024) was used
to predict miRNA–lncRNA interactions with the screening conditions AGO-CLIP and
degradome-seq both at >1. The interaction networks were constructed and visualized using
Cytoscape, and weishengxin drew a Sankey diagram.

http://www.bioinformatics.com.cn/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
http://cis.hku.hk/TISIDB/index.php
https://rnasysu.com/encori/
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4.10. Small Molecule Agent Screening and Molecular Docking Analysis

The Connectivity Map database (CMap, https://clue.io/, accessed on 31 August
2024) is a drug prediction database based on differential gene expression, primarily
used to explore functional relationships among genes, small molecule compounds, and
diseases [53–56].

Home for Researchers (www.home-for-researchers.com, accessed on 31 August 2024)
was used to perform molecular docking of the key targets with small molecule compounds.
To analyze the binding affinities and modes of interaction between the drug candidates
and their targets, Autodock Vina 1.2.2, a computational protein–ligand docking software,
was employed [57]. The molecular structure of clonidine was retrieved from PubChem
Compound (https:/pubchem.ncbi.nlm.nih.gov/, accessed on 30 August 2024) [58]. The
3D coordinates of SLC3A2 (PDB ID: 7CMH; resolution: 3.4 Å) were downloaded from
The Protein Data Bank (http://www.rcsb.org, PDB, accessed on 31 August 2024). For the
docking analysis, all protein and molecular files were converted to the PDBQT format, with
all water molecules excluded and polar hydrogen atoms added. The grid box was centered
to encompass the protein’s domain and to allow free movement of the molecules. The
grid box was set to 30 Å × 30 Å × 30 Å, with a grid point spacing of 0.05 nm. Molecular
docking studies were conducted using Autodock Vina 1.2.2 (http://autodock.scripps.edu/,
accessed on 30 August 2024).

4.11. Animal Model of Colitis

Male C57BL/6J mice (~25 g) were obtained from Gempharmatech (Chengdu, China).
This study was performed in accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National Institutes of Health. The
protocol was approved by the Committee on the Ethics of Animal Experiments of Chengdu
University of Traditional Chinese Medicine. Mice were randomized into the control group
and DSS group. Mice in the DSS group were provided with 2.5% DSS (MP Biomedicals,
Shanghai, China) in their drinking water for 7 days [59], and the control group was only
administered distilled water. Body weight was measured daily, and fecal occult blood was
assessed on day 7.

4.12. H&E Staining

Entire colons were excised postmortem. Colon tissues were fixed with 4% paraformalde-
hyde (PFA) overnight and were then embedded in paraffin. Colonic sections of 5 mm
were obtained and laid flat on a glass slide for H&E staining. The results were imaged by
Pannoramic 250FLASH (3DHISTECH, Budapest, Hungary).

4.13. RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

RNA was extracted from the intestinal tissues using the Animal Total RNA Isolation
Kit (Foregene Biotechnology, Co., Ltd., Chengdu, China) and reverse-transcribed to cDNA
using the RT Easy TM II (Foregene Biotechnology, Co., Ltd., Chengdu, Sichuan, China).
Primer sequences were shown in Table 2 and synthesized at Tsingke (Beijing Tsingke
Biotech Co., Ltd., Beijing, China). RT-PCR was performed using the Real-Time PCR Easy
TM-SYBR Green I (Foregene Biotechnology, Co., Ltd., Chengdu, China) on a QuantGene
9600 (Bioer Technology, Hangzhou, China). PCR amplification was conducted in triplicate
for each sample, and the expression of target genes was normalized to β-actin. Relative
expression was determined using the 2−∆∆Ct method.

Table 2. The primer sequence used in this study.

Genes Organisms Forward Primer Reverse Primer

Slc3a2 Mus musculus TGATGAATGCACCCTTGTACTTG GCTCCCCAGTGAAAGTGGA

Tln1 Mus musculus CCTGCCGCATGATTCGTGA TCGGAGCATGTAGTAGTCCAAA
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www.home-for-researchers.com
http://www.rcsb.org
http://autodock.scripps.edu/


Int. J. Mol. Sci. 2024, 25, 13506 23 of 27

Table 2. Cont.

Genes Organisms Forward Primer Reverse Primer

Capzb Mus musculus CTGTGAGTGACTGTTCCCCAC GATTTGTCTGCAAACGTCTGC

Flna Mus musculus GGCTACGGTGGGCTTAGTC GTGGGACAGTAGGTGACCCT

Rpn1 Mus musculus GCTCCACATCACGAGCCAG CAGTTTCCACAACGACCGAGA

β-actin Mus musculus CCACCATGTACCCAGGCATT GATTTGTCTGCAAACGTCTGC

4.14. Protein Extraction and Mass Spectrometry Analysis

Samples were ground into cell powder using liquid nitrogen and lysed in a buffer
containing urea (Sigma-Aldrich, St. Louis, MO, USA), protease inhibitors (Calbiochem,
San Diego, CA, USA), TSA (Sigma-Aldrich, St. Louis, MO, USA), and NAM (Sigma-Aldrich,
St. Louis, MO, USA). After sonication and centrifugation, the supernatant was collected,
and protein concentration was determined using a BCA kit (Beyotime Biotechnology,
Co., Ltd., Shanghai, China). Proteins were reduced with dithiothreitol (Sigma-Aldrich,
St. Louis, MO, USA), alkylated with iodoacetamide (Sigma-Aldrich, St. Louis, MO, USA),
and digested with trypsin (Sigma-Aldrich, St. Louis, MO, USA). Peptides were desalted,
vacuum-dried, and labeled with a TMT kit (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s protocol. The labeled peptides were separated on a
reversed-phase column using an EASY-nLC 1000 UPLC system and analyzed by tandem
mass spectrometry (MS/MS) on a Q Exactive Plus instrument. MS/MS data were ac-
quired using a data-dependent method, and peptides were identified and quantified in the
Orbitrap at high resolution.

4.15. Statistical Analysis

All data analyses were conducted with GraphPad Prism V8.0 software. Data are pre-
sented as mean ± SD. Student’s t-tests were applied for comparisons between two groups,
and repeatedly measured data were analyzed by repeated measurement analysis of vari-
ance. All statistical analyses were two-sided, and p < 0.05 was considered to be significant.

5. Conclusions

Our study identified key genes that establish a link between disulfidptosis and UC, and
we constructed a corresponding ceRNA network for further analysis. We also investigated
the association between these key genes and potential therapeutic agents. Disulfidptosis
is highly expressed during the inflammatory phase of UC and is closely linked to patient
responses to biologic therapies. It is valuable for understanding UC inflammation, disease
progression, and prognosis. Overall, our study underscores the pivotal role of disulfidptosis
in UC pathogenesis, with the expression of related genes serving as potential targets for
disease prediction and therapy. Notably, SLC3A2 emerges as a promising candidate for
future investigation.
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CeRNA Competing endogenous RNA
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FDR False discovery rate
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PCA Principal component analysis
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TLN1 Talin 1
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VDZ Vedolizumab
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