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Abstract: Malaria continues to be a significant public health burden in many tropical and subtropical
regions. Mozambique ranks among the top countries affected by malaria, where it is a leading cause
of morbidity and mortality, accounting for 29% of all hospital deaths in the general population and
42% of deaths amongst children under five. This review presents a comparative analysis of data
on five critical genes associated with antimalarial drug resistance: pfmdr1, pfcrt, pfk13, pfdhfr, and
pfdhps, along with the copy number variation (CNV) in genes pfmdr1 and pfpm2/3. These are genes
associated with parasite response to antimalarials currently used to treat uncomplicated P. falciparum
malaria in Mozambique. The review synthesizes data collected from published studies conducted in
Mozambique after the introduction of artemisinin-based combination therapies (ACTs) (2006) up to
June 2024, highlighting the presence or absence of mutations in these genes across Mozambique. We
aimed at mapping the prevalence and distribution of these molecular markers across the country in
order to contribute to the development of targeted interventions to sustain the efficacy of malaria
treatments in Mozambique. Four databases were used to access the articles: PubMed, Science Direct,
Scopus, and Google scholar. The search strategy identified 132 studies addressing malaria and
antimalarial resistance. Of these, 112 were excluded for various reasons, leaving 20 studies to be
included in this review. Children and pregnant women represent the majority of target groups
in studies on all types of antimalarials. Most studies (87.5%) were conducted in the provinces of
Maputo and Gaza. The primary alleles reported were pfcrt CVMNK, and in the most recent data, its
wild-type form was found in the majority of patients. A low prevalence of mutations in the pfk13
gene was identified reflecting the effectiveness of ACTs. In pfk13, only mutation A578S was reported
in Niassa and Tete. CNVs were observed in studies carried out in the south of Mozambique, with
a frequency of 1.1–5.1% for pfmdr1 and a frequency of 1.1–3.4% for pfpm2. This review indicates
that molecular markers linked to malaria resistance show considerable variation across provinces in
Mozambique, with most up-to-date data accessible for Maputo and Gaza. In contrast, provinces such
as Zambezia and Inhambane have limited data on several genes, while Nampula lacks data on all
drug resistance markers.

Keywords: Plasmodium falciparum; malaria drug resistance; molecular markers; artemisinin-based
combination therapy; Mozambique

1. Introduction

Malaria remains one of the most pressing public health challenges in many tropical and
subtropical countries, impacting millions of lives across the region [1–3]. Mozambique faces
a substantial malaria challenge, being one of the countries with the highest number of cases
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and ranking fourth globally in terms of the malaria burden [4]. To combat malaria effectively,
Mozambique must address both the vector and the administration of antimalarial drugs [5].

The ongoing fight against malaria has been complicated by the emergence and spread
of Plasmodium falciparum resistance to antimalarial drugs, which compromises the efficacy
of treatment regimens and poses a significant threat to malaria control efforts [6–8]. Under-
standing the distribution of molecular markers of antimalarial resistance is essential for
monitoring and managing drug resistance, revising treatment guidelines, and informing
the development of new antimalarial drugs.

In Mozambique, as in other parts of sub-Saharan Africa, P. falciparum is the predomi-
nant malaria parasite. The region has seen various waves of drug resistance, particularly
to chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and, more recently, to artemisinin-
based combination therapies (ACTs) [1]. Molecular markers have been instrumental in
tracking and understanding these resistance patterns [1,9].

Chloroquine was the first-line treatment for uncomplicated malaria in Mozambique
for almost 50 years until 2004, when sulfadoxine-pyrimethamine (SP) and amodiaquine
(AQ) were introduced due the emergence and spread of resistance to chloroquine [10]. The
primary molecular marker associated with chloroquine resistance is the P. falciparum drug
resistance transporter (pfcrt) gene, particularly the single-nucleotide polymorphism (SNP)
K76T [11]. Several studies have reported high frequencies of this mutation in Mozambique
and neighboring countries such as Tanzania and Malawi, reflecting the extensive spread of
CQ resistance (CQ-R) in the region [12–14]. The haplotype defined by specific mutations
at amino acid positions 72–76 of pfcrt, CVIET, has been associated with CQ-R (in Africa),
while the haplotype CVMNK is associated with CQ susceptibility (CQ-S) [15,16]. Following
the decline in CQ efficacy, artesunate plus SP was introduced in Maputo Province between
2004 and 2006 as the mainstay for malaria treatment [10]. However, during this pilot
study, molecular markers associated with SP resistance (SNPs in the genes dihydropteroate
synthase, pfdhps, and dihydrofolate reductase, pfdhfr) increased dramatically [10,17,18].
SP resistance is associated with the SNPs A16V, N51I, C59R, S108N, and I164L in the
pfdhfr gene, which confer resistance to pyrimethamine, and I431V, S436A/F, A437G, K540E,
A581G, and A613S/T in the pfdhps, which confer resistance to sulfadoxine [17,19]. Parasites
with multiple SNPs in both pfdhfr and pfdhps were categorized as follows: a quadruple
mutant (pfdhfr 51I + 59R + 108N and pfdhps 437G [IRNG]) was classified as “partially
resistant”; a quintuple mutant (pfdhfr 51I + 59R + 108N and pfdhps 437G + 540E [IRNGE])
as “fully resistant”; and a sextuple mutant (pfdhfr 51I + 59R + 108N and pfdhps 437G + 540E
+ 581G or 613S/T [IRNGEG or IRNGES/T]) as “super resistant” [20].

These findings led to a change in the national malaria treatment policy in 2008 to the
use of ACTs. In Mozambique, the recommended treatment for uncomplicated P. falciparum
malaria consists of: artemether-lumefantrine (AMT-LUM) (first line of treatment since
2006 [21], artesunate-sulfadoxine and pyrimethamine (AS-SP), artesunate-amodiaquine
(AS-AQ), artesunate-mefloquine (AS-MEF), dihydroartemisinin-piperaquine (DHA-PPQ),
and artesunate-pyronaridine AS-PY [10,22]. In ACTs, artemisinin derivatives (short half-
life; <6 h) are combined with long-acting antimalarial drugs like AQ, MEF, PPQ, LUM,
and pyronaridine (PY) to treat uncomplicated malaria [22–24]. Regarding ACT partner
drugs, the primary genes associated with resistance are pfcrt, pfmdr1, pfpm2/3, and the
above-mentioned pfdhfr and pfdhps [25]. Multiple copies (or copy number variations,
CNV) of the P. falciparum multidrug resistance 1—pfmdr1 gene are established markers
for resistance to MEF (MEF-R) [26,27]. Additionally, SNPs in pfmdr1 have been linked to
altered parasite tolerance or susceptibility to several antimalarial drugs, including quinine
(QN), AQ, CQ, MEF, and lumefantrine (LUM) [28]. The key pfmdr1 SNPs associated with
drug resistance include N86Y, Y184F, S1034C, and N1024D [29–34]. The N86Y mutation is
related to increased CQ-R and increased sensitivity to MEF [35]. Parasites carrying pfmdr1
haplotype 86Y Y184 show increased susceptibility to LUM and MEF [36]. The role of the
pfmdr1 N86, 184F, and 1246D alleles, as well as pfmdr1 CNV, in P. falciparum’s response to
AMT-LUM remains debated [37].
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In recent years, resistance to ACTs has been reported in Southeast Asia in 2008 [25,38,39].
Recently, SNPs associated with resistance to artemisinins in Africa [40–42] were identified.
Resistance to artemisinin derivatives is characterized by delayed parasite clearance times
and is linked to SNPs in the Kelch13 protein coded by the gene pfk13. In particular, F446I,
N458Y, M476I, Y493H, R539T, I543T, P553L, R561H, and C580Y are currently considered
validated molecular markers of drug resistance by WHO [38,39,41]. This study’s objective
is to provide a comprehensive analysis of prevalence and distribution of the molecular
markers of antimalarial resistance in Mozambique. By mapping the prevalence and distri-
bution of these markers, this research aims to contribute to supporting the development of
targeted interventions to maintain the effectiveness of malaria treatments in Mozambique.

2. Methods
2.1. Selection of Relevant Literature

This study was conducted according to the recommendations of the Preferred Re-
porting Items for Systematic Reviews (PRISMA) [43,44]. Briefly, the search terms and
criteria for the inclusion or exclusion were previously defined to be searched across various
databases. After conducting the article search, the selection of the studies based on the
inclusion criteria were assessed by two independent researchers. In cases of disagreement,
a third researcher was consulted to solve the dispute. Following the selection of articles for
inclusion in the study, a thorough analysis was conducted to extract the most important
findings and conclusions. Subsequently, these data were organized and presented in tables
or figures. The databases searched were Scopus, PubMed, and Web of Science, in addition
to isolated searches for relevant articles found on Google Scholar. A total of 132 articles
published from 2007 to July 2024 complied with the inclusion criteria in the title, keywords,
or summary. Aligning with the national rollout of ACTs in 2006 [21], and to capture the
progress made in molecular monitoring of antimalarial resistance, a 17-year study period
was chosen.

2.2. Eligibility Criteria of Studies Include in the Review

The inclusion criteria were all original articles addressing molecular marker of anti-
malarial drug resistance published in indexed journals (PubMed, Science Direct, Scopus,
and Google Scholar) using the keywords: “pfpm2/3 OR pfmdr1 OR pfk13 OR pfdhps OR pfdhfr
OR ‘pfcrt’ OR ‘copy number variation’, AND ‘Mozambique”.

2.3. Screening and Data Extraction

The articles selected for the study were exported to Microsoft Excel to remove du-
plicates. The selection of articles was carried out by reading the titles and abstracts and
then the full text. The studies were systematized by authorship, year, sociodemographic
data, sample size, allele or gene, amino acid, haplotype, type of mutation, CNV, respective
prevalence, antimalarial drug, and main conclusions. The quality assessments of the studies
were performed using a tool for assessing risk of bias in randomized studies (Cochrane
ROB2) and a tool for assessing risk of bias in non-randomized studies (ROBINS-I).

3. Results and Discussion
3.1. Basic Characteristics of Included Studies

The search strategy identified 132 studies, from which 43 duplicates were removed.
After screening titles and abstracts, 56 studies were excluded. Of the remaining 33 studies,
13 were excluded after full-text review, leaving 20 studies for inclusion in this review
(Figure 1).
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Figure 1. PRISMA diagram of the systematic review. Steps followed by this systematic review according
to the PRISMA (“Preferred Reporting Items for Systematic Reviews and Meta-Analyses”) guidelines.

Children under 5 years of age and pregnant women comprise most targeted groups for
all types of antimalarials, followed by children and adolescents up to 15 years. Few studies
have focused on adult patients. The genes pfdhfr and pfdhps, associated with SP resistance,
were identified in studies focusing on patients of all ages and sexes [45,46]. Regarding the
gene pfk13, associated with resistance to artemisinin derivatives, the study by Da Silva [47]
included both children and adults of both sexes, while the study by Escobar [48] was
focused on adult patients of both sexes.

The information about the 20 studies included in this review is summarized in Table 1
and Figure 2 and detailed in the Supplementary Materials (Tables S1–S5). Most studies
(17/20; 85%) were conducted in southern Mozambique, specifically in the provinces of
Maputo and Gaza (Table 1). It is important to emphasize that 40% (8/20) of the total articles
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included in this study addressed three genes (pfcrt, pfdhfr, and pfdhps, pfmdr1, pfk13 and CNVs
pfpm2/pfpm3/pfmdr1) in different provinces [49–55] (detailed in Supplementary Materials).

Table 1. Summary of the studies included in the review. SNP, single-nucleotide polymorphism; CNV,
copy number variation.

Mutation Gene Province Nº of Studies
(2008–2024) References Year of Sample

Collection *

SNP

pfcrt

Maputo 6

[10,50–57]

2015–2019 [51]

Gaza 2 2015 [53]

Inhambane

1 2018 [54]
Zambezia

Tete

Cabo Delgado

pfdhfr, pfdhps

Maputo 10

[10,45,46,50,51,53,55,
57–62]

2015–2019 [51]

Gaza 3 2014–2015 [50]

Tete 1
2015 [53]

Sofala 2

Cabo Delgado 1 2015 [53]

pfmdr1

Maputo 5

[10,50–55,57,63]

2015–2019 [51]

Gaza 3 2014–2015 [50]

Inhambane
1

2018 [54]

Zambezia

Tete 2

Sofala 1

Cabo Delgado 2

pfk13

Maputo 4

[47,48,51,52,54] 2021 [47]

Gaza

1

Zambezia

Tete

Sofala

Manica

Cabo Delgado

Niassa

CNV
pfpm2/
pfpm3/
pfmdr1

Maputo 2

[52,53,64]

2021 [64]

Gaza

1

2015 [53]Tete

Sofala

Manica
2021 [64]

Niassa

* indicates the year the samples were collected, providing the most recent data on the prevalence of the corre-
sponding molecular marker.
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Mutation Gene Province Nº of Studies
(2008–2024) References Year of Sample 

Collection *
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2015–2019 [51]
Gaza 2 2015 [53]
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Figure 2. Geographical distribution of studies and the most recent data available for each molecular
marker. Colored rectangles represent the number of studies identified for each molecular marker;
CNV, copy number variation; SNPs, single nucleotide polymorphisms; CVIET, amino acid positions
72-76 of pfcrt; IRNGE, amino acid positions 51I + 59R + 108N of pfdhfr and pfdhps 437G + 540E of
pfdhps; na, not available; NI, Niassa; CD, Cabo Delgado; NP, Nampula; ZB, Zambesia; SF, Sofala; TE,
Tete; MN, Manica; IH, Inhambane; GZ, Gaza; MP, Maputo.

A total of nine studies (45%) monitored the pfcrt gene (associated with CQ-R) (Table 1):
six in Maputo; two in Gaza; and one for Tete, Zambezia, Cabo Delgado, and Inhambane.
pfdhr and pfdhps genes, associated with SP resistance, were found in 13 studies (65%); 10 of
these studies were conducted in Maputo (Table 1). Of these 13 studies, 9 involved children,
4 pregnant women, and 1 adults (Table S2).

A total of nine studies were found addressing the pfmdr1 gene (Table 1). Five of these
focused on Maputo and two on Gaza, with five involving children and four pregnant
women (Table S3). Five studies were found examining the pfk13 gene (Table 1), including
two involving adults and pregnant women and three involving children, mainly in Maputo
(Table S4). Finally, three studies investigating CNV were identified; all included pregnant
women and children, with two in Maputo and one in Niassa, Manica, Sofala, Tete, and
Gaza, respectively. This overview highlights a concentration of studies in the Maputo and
Gaza provinces (in the south of the country; Figure 2) and a predominance of research
involving children and pregnant women (detailed in Supplementary Materials).

Malaria remains a significant public health concern in Mozambique, with Plasmodium
falciparum being the predominant species responsible for the disease [65]. Understanding
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the genetic variants associated with drug resistance is crucial for developing effective
treatment strategies and transmission control of the disease. This review reveals substan-
tial regional variability in genetic mutations associated with malaria drug resistance in
Mozambique (Figure 2). While the data are more robust for Maputo and Gaza, significant
gaps remain for other provinces, underscoring the need for further research to monitor
genetic variations over time. For instance, research on pfcrt gene polymorphisms, which
encode CQ-R, primarily focused on two southern provinces. The prevalence of pfcrt gene
was detected as between 40 and 84% of patients [10,56,61]. In the past, these data were
important for changing the malaria treatment, which at the time was based on chloroquine,
in line with what was happening in all malaria-endemic countries [66]. In Gaza and Ma-
puto, a moderate to high prevalence of the 76T pfcrt SNP (CQ-R) was found during the first
years after the introduction of ACTs [10,55]. However, more recent studies conducted in
the same provinces after the discontinuation of chloroquine (samples collected 2017–2019)
have identified a high prevalence of CQ-S P. falciparum genotypes [52–54]. This shift sug-
gests a reduced selective pressure from CQ. Similar trends have been observed in other
sub-Saharan African countries, including Kenya, Malawi, Sierra Leone, Ghana, Angola,
and Ivory Coast, where CQ-S P. falciparum genotypes have re-emerged [67–70].

3.2. Antimalarial Resistance Associated Polymorphisms
3.2.1. pfcrt

The majority of the studies (87.5%) addressing the pfcrt gene were conducted in the
provinces of Maputo and Gaza (Table 1 and Table S1), with only one study addressing
multiple provinces, namely Inhambane, Zambezia, Tete, and Cabo Delgado (see Table S1).
The most recent evaluation of pfcrt CVIET haplotype was from 2024 and revealed preva-
lences of 1.1% in Maputo; 9.2% in Gaza; and 0% in Inhambane, Zambezia, Tete and Cabo
Delgado (see Figure 2 and Table S1). The most prevalent haplotype was CVMNK (CR-
susceptible), found in 92.2% of patients sampled in Cabo Delgado, Tete, Zambezia, and
Inhambane in 2021 [53]. CVIET (CR-resistant) was reported in 7.8% of patients sampled
in Inhambane, Zambezia, Tete, and Cabo Delgado [56], and 76T was found in 84% of
adult patients of both genders in Maputo province in 2024 [50], 48.8% in children aged
2 to 3 months, and 46.4% in pregnant women [62]. The gene pfcrt confers resistance to a
wide range of quinoline and quinoline-like antimalarial drugs in P. falciparum, with local
drug histories driving its evolution and, thus, the drug transport specificities. For example,
the change in prescription practice from CQ to PPQ in Southeast Asia has resulted in
pfcrt variants that carry additional SNPs (H97Y, F145I, M343L, or G353V), leading to PPQ
resistance [71]. There is a notable gap in the current understanding of specific pfcrt SNPs
in Mozambique, particularly the ones associated to PPQ-R in Southeast Asia. Evaluating
these markers in Mozambique could provide essential information for updating malaria
treatment guidelines and managing potential PPQ-R as drug policies shift in the country.

3.2.2. pfdhr and pfdhps

The prevalence of the SP-resistance haplotype IRNGE was high in Maputo (95.1%)
and Gaza (89.5%) (Figure 2). The main studied mutations occurred at amino acid positions
51, 59, 108, 164, 437, 540, and 58, either individually or in combination within the pfdhfr
or pfdhps genes, resulting in multidrug resistance haplotypes (see Table S2). Taking into
account the most recent results, in the Maputo province, the most frequent haplotype
was IRNGE, with 95.1% prevalence in samples collected in 2015–2019 [51] and 94.2% in
samples collected in 2016–2019 (Table S2) [62]. In Gaza, the sextuple IRNGEG haplotype
was observed in 8% of the samples and the quintuple IRNGE in 55% [72]. Studies from the
central (Tete and Sofala) [53] and southern (Gaza and Maputo) [73] regions reported higher
prevalence of SNPs in the pfdhfr or pfdhps in various combinations than the northern (Cabo
Delgado) provinces [53] (Table S2).

In Mozambique, SP is used for intermittent preventive treatment in pregnancy (IPTp)
and has been linked to the accumulation of SP-resistant mutations in pfdhfr and
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pfdhps [10,50,61]. This may facilitate the selection of resistant parasites due to the re-
peated exposure to SP. Nevertheless, despite widespread SP resistance, studies indicate that
administering three or more doses of SP to pregnant women may still confer a protective
benefit against P. falciparum [62]. The geographical distribution of pfdhfr and pfdhps SNPs
studies in Mozambique reveals uneven coverage across provinces, with a significant focus
on the southern region, particularly Maputo (10; Table S2), with a limited number of studies
conducted in other provinces (three in Gaza [10,50,52], two in Sofala [53,60] and one in
Cabo Delgado and Tete [53]; Table S2). The remaining five provinces do not have published
information (Figure 2). In Maputo, high prevalence rates of mutations associated with SP-R
were reported, such as 51I (36.6–88%) in pfdhfr and 59R (52.4–91%), 108N (50.4–99.2%), 540E
(7.9–94.9), and 437G (42–96.2%) in pfdhps. The quintuple mutant IRNGE was reported in
multiple studies with high prevalence, namely, 94.2% in samples from 2016 to 2019 [62]
and 95.1% in samples from 2015 to 2019 [51] (Table S2). This underscores substantial SP
resistance in Mozambique and follows the trend of other African countries, such as Ghana
and Nigeria [74,75].

3.2.3. pfmdr1

SNPs in pfmdr1 were studied in all provinces except Niassa, Manica and Nampula
(Figure 2 and Table S3). The latest reported prevalences of SNPs were N86, found in 93.1%
in Cabo Delegado, 95.7% Gaza, 95.5% in Sofala, and 98.8% in Maputo, respectively, and
184F, reported in 41.7% in Tete, 43.2% in Sofala, 50.5% in Maputo, and 53.58% in Inhambane,
respectively (Figure 2).

The pfmdr1 encodes a protein involved in drug transport within the parasite and plays
a key role in susceptibility to the key antimalarial ACTs. Although mutations in pfmdr1
are not directly responsible for resistance to artemisinins, they influence the effectiveness
of partner drugs, such as LUM or AQ, and the haplotype NFD has been associated with
higher susceptibility to these partner drugs [29–34]. After Mozambique transitioned from
chloroquine to ACTs for malaria control, the prevalence of pfmdr1 mutations changed, with
the NFD haplotype (amino acids 86/184/1246) variant becoming more common [52,54].
The current data reveal a significant geographical gap in the country regarding studies
on the pfmdr1 gene. Most research has been concentrated in Maputo (5) [51,52,55,57,63]
and Gaza (3) [10,53,76]. There are limited data from other provinces, like Cabo Delgado
and Tete (2) [53,54] or Zambezia, Inhambane (1) [5], and Sofala (1) [53]. This regional
imbalance of studies leaves large parts of Mozambique underrepresented, especially in the
northern and central provinces. For instance, no studies have been recorded in Nampula for
pfmdr1 (or any other molecular marker), and in Sofala, the only study available is based on
samples collected nearly a decade ago (2015) [53]. The most recent studies have identified
an appreciable prevalence of mutations in pfmdr1, namely, the SNPs N86 (98.8%) and
184F (75.4%) in Maputo (samples collected in 2015–2019) [51] and the haplotype NFD in
Inhambane 74.4%, Cabo Delgado 66.7%, Tete 11.0%, or Zambezia 50.0% (samples collected
in 2018) [54]. Similar trends have been observed in several other African countries [76–79].

3.2.4. pfk13

Polymorphisms of pfk13 associated with multidrug resistance in P. falciparum were in-
vestigated in five studies (Table S4). Most studies (75%) were conducted in eight provinces,
except Inhambane and Nampula. Only one study examined multiple provinces (Figure 2
and Table S4). A low frequency of pfk13 was observed in all provinces where studies
were conducted (Figure 2). Maputo and Tete, with 4% each, were the provinces with the
highest prevalence of pfk13 SNPs (Figure 2). Notable, findings included the synonymous
mutation at codon 469 (TGC to TGT) in one sample and at codon 548 (GGC to GGT) in three
samples from Zambezia province (Mopeia city [54]). Two studies were identified for the
SNPs: 494I [52] and 578S [52], both with 4% prevalence and both in samples from Maputo
province [48] (Table S4). Neither of these two SNPs is currently considered a validated
molecular marker of drug resistance by WHO [38,39,41].
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The prevalence of pfk13 SNPs varies by region; in 2019, it was 45.4% in Southeast
Asia compared to a much lower prevalence of 7.6% in Africa [66]. In Mozambique,
8/10 provinces have evaluated the presence of pfk13 SNPs, and none of the validated
or candidate mutations have been identified so far. Similar findings have been reported
in other African countries like Gabon [80], Senegal [81], Kenya, and Ethiopia [82], where
low frequencies of pfk13 SNPs have been observed. However, A578S was detected in
samples from Niassa and Tete provinces [54,83], as well as in Uganda and Gabon [84]. The
identification of independent emergence of pfk13 SNPs (with partial resistance to ACTs) in
the African region, especially in Rwanda and Uganda [85–88], highlights the importance of
surveillance efforts to obtain genotypic data and map the extent of pfk13 SNPs throughout
the WHO African Region [89]. The recent detection of SNPs M476I, P553L, R561H, P574L,
and C580Y in Africa serves as an early warning signal [40–42,90].

3.2.5. Copy Number Variations in pfmdr1 and pfpm2/3

Figure 2 summarizes the latest prevalence rates and primary study provinces, and
Table S5 displays detailed data collected from various populations (children, adults, preg-
nant women) between 2015 and 2023. Only three studies were found investigating the
prevalence of copy number variations (CNVs) in pfmdr1 and pfpm2 (Table 1). Two studies,
Brown et al., 2024 [64] and Gupta et al., 2018 [53], covered multiple provinces, while the
third study (Gupta et al., 2020 [52]) focused solely on Maputo province (Table S5). Pfmdr1
CNV prevalence rates were as follows: 4.8% in the north (Niassa); between 1.1%, 2.3% in
Tete, Manica, and Sofala (center); and 5.7% in the south (Maputo; Figure 2). Regarding plas-
mepsins (pfpm2 and pfpm3) CNVs, prevalence rates were higher in the southern provinces
of Gaza and Maputo (3.4% for pfpm2 and 2.3% for pfpm3) compared to the northern and
central provinces (Niassa, Tete, Manica, and Sofala), where the prevalence ranged from
1.1% to 1.6% for pfpm2 and 1.6% to 2.3% for pfpm3 (specifically 1.6% for pfpm3 in Niassa
and 2.3% in Manica).

There are only three studies assessing CNVs of pfmdr1, pfpm2, and pfpm3 in Mozam-
bique; one assessing all three [64]; and two assessing pfmdr1 and pfpm2 [52,53]. These
revealed prevalence rates ranging from 1.1 to 5.7% for pfmdr1, 1.1 to 3.4% for pfpm2, and 1.6
to 2.3% for pfpm3 [10,22,57]. Studies from Mozambique revealed a much lower prevalence
of pfmdr1 CNV than other African countries, namely Kenya (6.2%), Ghana (18%), Tanzania
(10.2%), West Ethiopia (8.4%), and North of Ethiopia (54.14%) [76,91–94]. Observations
from Mozambique, on the other hand, are in line with studies from other African countries
like Nigeria or Democratic Republic of Congo, where increased CNV was not observed for
pfmdr1 [95,96]. Regarding pfpm2 prevalence, the two studies recorded in Mozambique also
reported much lower prevalences than others from Africa (7.7% in Tanzania [91] and 67.9%
in Guinea Equatorial [97], but comparable to, e.g., Liberia or Uganda, increased copies of
pfpm2 were not observed [98,99]).

Copy number variation (CNV) has also been found to play a significant role in the
development of antimalarial drug resistance. One copy of pfmdr1 is associated with slower
clearance of parasites after PPQ treatment as compared to more copies of pfmdr1 [100],
while having two copies of pfpm2 is associated with slower clearance [101,102], after PPQ
treatment. This inverse selection pressure argues in favor of keeping these molecular
markers under constant surveillance.

4. Conclusions

Although malaria is endemic throughout the country, the central and northern regions
of Mozambique have the highest incidences, especially the provinces of Zambezia, Nam-
pula, and Cabo Delegado, which are most affected by the disease [103]. This situation may
be associated with the fact that these are coastal provinces, with climatic conditions and
socio-economic factors favorable for the proliferation of the malaria vector. However, most
studies on monitoring molecular markers of resistance to antimalarials are concentrated in
the southern region of the country.
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Maputo province has had the highest number of and more up-to-date studies con-
ducted (17), followed by Gaza (4) and Tete, Sofala, and Cabo Delgado (3). Other provinces
such as Manica and Niassa (2), Zambezia, and Inhambane (1) have limited studies, while
no studies have been reported from Nampula. This review highlights the concentration of
research efforts primarily in Maputo, reflecting a potential need for further investigation to
gather more recent data on these genetic markers in the underrepresented provinces.

To address the disparities in research distribution and the underrepresentation of
northern and central provinces in Mozambique, future studies should prioritize compre-
hensive investigations into molecular markers of antimalarial resistance in regions with
high malaria incidence, such as Zambezia, Nampula, and Cabo Delgado. These provinces
are not only heavily affected by the disease, but also exhibit unique climatic and socio-
economic conditions that may influence resistance patterns.

Expanding research into these areas will provide critical insights into the regional
dynamics of resistance, enabling more targeted and effective malaria control strategies. Ad-
ditionally, establishing collaborative research networks and strengthening local laboratory
capacities in underrepresented provinces could ensure a more equitable distribution of
scientific efforts. This approach will contribute to the development of a robust national
framework for monitoring and combating antimalarial resistance, ultimately improving
public health outcomes across the country.
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