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Abstract

Aims Amyloid deposition in myocardial tissue is a definitive feature for diagnosing cardiac amyloidosis, though less invasive imaging 
modalities such as bone tracer cardiac scintigraphy and cardiac magnetic resonance imaging have been established as first 
steps for its diagnosis. This study aimed to develop a deep learning model to support the diagnosis of cardiac amyloidosis 
from haematoxylin/eosin (HE)-stained myocardial tissue.

Methods 
and results

This single-centre retrospective observational study enrolled 166 patients who underwent myocardial biopsies between 
2008 and 2022, including 76 patients diagnosed with cardiac amyloidosis and 90 with other diagnoses. A deep learning model 
was developed to output the probabilities of cardiac amyloidosis for all the small patches cutout from each myocardial spe-
cimen. The developed model highlighted the area in the stained images as highly suspicious, corresponding to where Dylon 
staining marked amyloid deposition, and discriminated the patches in the evaluation dataset with an area under the curve of 
0.965. Provided that the diagnostic criterion for cardiac amyloidosis was defined as a median probability of cardiac amyloid-
osis >50% in all patches, the model achieved perfect performance in discriminating patients with cardiac amyloidosis from 
those without it, with an area under the curve of 1.0.

Conclusion A deep learning model was developed to diagnose cardiac amyloidosis from HE-stained myocardial tissue accurately. Although 
further prospective validation of this model using HE-stained myocardial tissues from multiple centres is needed, it may help 
minimize the risk of missing cardiac amyloidosis and maximize the utility of histological diagnosis in clinical practice.
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Introduction
The clinical importance of endomyocardial biopsy has been increasingly 
recognized, with the pathological classification of cardiomyopathies be-
coming more detailed.1 Although it is clinically meaningful to extract as 
much diagnostic information as possible from biopsy specimens, rou-
tinely performing various special staining on all samples, which is ex-
pected to increase in the future, will become challenging in terms of 
both time- and cost-effectiveness, thus necessitating the technological 
innovations for differentiating specific cardiomyopathies through histo-
logical analysis.

Cardiac amyloidosis (CA), in which amyloid deposits are observed 
in the myocardial tissue, is one of cardiomyopathies with a poor 
prognosis, resulting in refractory heart failure.2 Recent reports sug-
gest that it is more common in older patients with heart failure 
than previously thought.3,4 Diagnostic advances in non-invasive mo-
dalities, such as echocardiography, bone tracer cardiac scintigraphy, 
and cardiac magnetic resonance imaging, have made screening for 
CA increasingly feasible.5,6 However, these tests are not entirely re-
liable for excluding CA, and even in the absence of characteristic find-
ings on echocardiography or scintigraphy, there is still a possibility of 
reaching a diagnosis of amyloidosis.7,8 Therefore, once a myocardial 
biopsy is performed, it is clinically necessary to exclude amyloidosis 
as a part of the diagnostic process, given that CA is currently a treat-
able disease.9–13

Histologic diagnosis of CA by endomyocardial biopsy requires specif-
ic staining with Dylon or Congo Red to detect amyloid deposition. 
However, staining with Dylon or Congo Red is not routinely performed 
in all cases, possibly resulting in missed opportunities to diagnose CA 
when it is not suspected. This may occur particularly in atypical CA 
cases where dilated cardiomyopathy is suspected based on the cardiac 
morphology14,15 or cases of patients with heart transplantation,16,17

but amyloidosis is also present as a comorbidity. In contrast, haema-
toxylin/eosin (HE) staining is a basic procedure for histological analysis 
performed for most myocardial tissue biopsies. Therefore, it is 

beneficial to develop a new approach for the diagnosis of CA from 
HE-stained myocardial tissue.

Artificial intelligence is an innovative solution to address a variety of 
challenging tasks across all fields. Currently, deep learning applications 
for medical images, such as computed tomography, skin images, 
and histological images, have been developed for computer-aided 
diagnosis.18–20 Histological images are digitally available in high 
resolution as whole slide images; therefore, deep learning may be a 
good application for histological analysis.21 Indeed, deep learning mod-
els have focused on histological diagnosis,22,23 and image segmentation 
on specimens.24–26 We thus hypothesized that a deep learning model 
could accurately diagnose CA from HE-stained specimens.

This study aimed to develop a deep learning model to assess the like-
lihood of CA in HE-stained myocardial tissue to aid in diagnosis from 
individual histological images.

Materials and methods
Data source and participants
This retrospective observational study included patients who under-
went endomyocardial biopsy from the septum of the right ventricular 
at the Kyushu University Hospital between January 2008 and July 
2022. Seventy-six cases diagnosed with CA were included, and 90 pa-
tients with other diagnoses (non-CA) were randomly selected. The pa-
tients were allowed to opt-out. This study was approved by the 
Institutional Review Board of Kyushu University Hospital (approval 
numbers: 22175 and 23209) and was conducted in accordance with 
the Declaration of Helsinki. This study follows the Strengthening the 
Reporting of Observational Studies in Epidemiology (STROBE)27 and 
the Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis + AI (TRIPOD + AI) statements.28

The 166 patients were randomly assigned to two datasets: a dataset 
for model development (51 patients with CA and 60 without) and 
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another dataset for model evaluation (25 with CA and 30 without) 
(Figure 1).

Outcome
The proposed model was designed to calculate the probability of CA 
for patch images (224 × 224 px) cutout from each specimen. In add-
ition, we diagnosed each specimen-based on the probabilities of all 
the patches. We then evaluated the performance of the model based 
on all patches and specimens respectively. More than two pathologists 
determined the ground truths of pathological diagnoses on each speci-
men. CA was diagnosed based on amyloid deposition detected by 
Dylon and/or Congo Red staining.

Preparation of cardiac specimens and 
images for digital analysis
The input images for the deep learning model were small patches cut-
out from whole slide images of HE-stained myocardial specimens. 
Originally, specimens were fixed in 10% buffered formalin and embed-
ded in paraffin. Each block was sliced into 4-μm thick sections. All slides 
were digitally converted to whole slide images using a virtual slide scan-
ner (Aperio GT450, Leica) at 40× magnification (0.23 µm/px).

As shown in Figure 2A, each whole slide image specimen was cropped 
into multiple small patches at a size of 224 × 224 px at level-1 resolution 
(OpenSlide Python ver. 1.3.1) while being shifted by half. During this 
process, patches without myocardial tissue were removed. All patches 
in each specimen with amyloid deposition were labelled CA, and those 
without were labelled non-CA. Therefore, the CA group included 
some patches with no apparent amyloid deposition.

The patches were allocated to the model development and evalu-
ation datasets at a 2:1 ratio on a specimen basis; 80% of the model de-
velopment dataset was used to train the model, and the remaining 20% 
was used to determine the hyperparameters.

The architecture of the deep learning 
model
The architecture of the deep learning model was based on ConvMixer 
(Figure 2B).29 The hyperparameters of the model were determined using 
a grid search. To improve the flexibility of the model and mitigate overfit-
ting, the Leaky ReLU was used as the activation function, and a dropout 
layer was inserted at the end of the model.30,31 The model was trained dir-
ectly on the training data, which was augmented by randomly flipping left/ 
right and up/down, changing brightness, and using the cutout method.32

Statistics
The discrimination performance of the developed model was evaluated 
using the receiver operating characteristic curve, area under the curve, 
and confusion matrix for all patches in the evaluation dataset. By setting 
the threshold with the median amyloid-positive probability on each 
specimen at 50%, the performance of the developed model was evalu-
ated with specimen-based receiver operating characteristic curves, 
areas under the curves, and confusion matrices. The analysis was per-
formed using Python 3.11.0 and TensorFlow 2.15.

Results
Patient characteristics
Figure 1 and Table 1 show the flow chart of the study population and the 
patient backgrounds in the overall and divided datasets, respectively. 
The CA group included 54 patients with transthyretin amyloidosis 
(ATTR) (71.1%), 10 with light chain amyloidosis (AL) (13.2%), 9 with 
amyloid A amyloidosis (AA) (11.8%), and 3 with ATTR and AL 
(3.9%), all diagnosed based on immunohistochemistry. The non-CA 
group included 13 patients with hypertrophic cardiomyopathy, 12 
with dilated cardiomyopathy, 12 with hypertensive heart disease, 10 
with valvular heart disease, 9 post-transplant patients, 8 with cardiac 
sarcoidosis, and the remainder with other cardiac diseases. In the CA 
group, 56 out of 76 cases (73.7%) had a suspicion of amyloidosis as 
the primary indication for endocardial biopsy, whereas only 3 out of 
90 cases (3.3%) had this suspicion in the non-CA group. In the model 
evaluation dataset, the median age was higher in the CA group {78 years 
[interquartile range (IQR): 64–82]} than in the non-CA group [60 years 
(IQR: 45–72)]. The left ventricular ejection fractions were slightly bet-
ter in the CA group [50% (IQR: 42–66)] than in the non-CA group 
[43% (IQR: 32–58)]. The interventricular septum (IVS) in the CA group 
[14 mm (IQR: 10–16)] was thicker than in the non-CA group [10 mm 
(IQR: 9–10)].

Development of deep learning model
Each specimen image was cut into small patches, and the median num-
ber of patches per specimen was 816 (IQR: 573–1089) (Figure 2A). The 
deep learning model was developed with the patches from 111 patients 
(CA: 44 944 patches; non-CA: 51 283 patches) based on ConvMixer 
(Figure 2B).

Model performance on all patches
The developed deep learning model was evaluated using an evaluation 
dataset of 55 patients (CA: 23 589 patches; non-CA: 23 716 patches). 

Figure 1 Patient flowchart. Patients with and without cardiac amyloidosis were divided into 2:1 for the model development and evaluation.
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Figure 3A shows the receiver operating characteristic curve for the dis-
crimination of all patches; the area under the curve for this model was 
0.965. Figure 3B shows the confusion matrix of the developed model, 
with an accuracy of 0.899, a sensitivity of 0.873, a specificity of 0.925, 
and a positive predictive value of 0.921.

Patch-based amyloid probabilities by the 
model in CA and non-CA specimens
Figure 4 shows the representative operations of the deep learning mod-
el in non-CA (A to C) and CA cases (D to F and G to I). In the 
HE-stained specimens of the non-CA case (Figure 4B), the deep learning 
model scarcely detected amyloid-suspicious areas. Conversely, in the 
CA case with sparse amyloid deposition in the myocardial specimen 
(Figure 4E), the model specifically detected the areas corresponding 
to Dylon-positive amyloid deposition. Not surprisingly, in the CA 
case with dense amyloid deposition (Figure 4H), the model identified 
most patches as highly amyloid-suspicious areas. For the distribution 
of amyloid probability for all patches, in the non-CA case, most of 
the amyloid-positive probabilities were distributed close to 0% 
(Figure 4C); in the CA case with sparse amyloid deposition, the amyloid- 
positive probabilities had a biphasic distribution with 0 and 100% 
(Figure 4F). Understandably, in the CA case with dense amyloid depos-
ition, most of the amyloid-positive probabilities were distributed close 
to 100% (Figure 4I).

Specimen-based model performance
Figure 5A shows the box plots of the CA probabilities per specimen. By 
setting the threshold with the median amyloid-positive probability on 
each specimen at 50%, the developed deep learning model perfectly 
discriminated between CA and non-CA cases. As shown in Figures 5B 
and C, the model performance using a deep learning approach achieved 

a sufficient area under the curve, accuracy, and sensitivity and a positive 
predictive value of 1.0.

Discussion
CA, in which amyloid deposits are observed in the myocardial tissue, 
results in refractory heart failure with a poor prognosis.2 In recent 
years, CA has become a treatable disease with new therapeutic agents 
such as transthyretin stabilizers, RNAi, and monoclonal antibodies 
against TTR (NI006) for CA.9–13 Therefore, early and appropriate diag-
nosis is more important than ever. Although routine amyloid staining of 
endomyocardial biopsy specimens is commonly performed at our insti-
tution, particularly at high-volume centres, the anticipated increase in 
the number of cardiac specimens requiring differentiation among vari-
ous cardiomyopathies presents a clinical challenge in efficiently screen-
ing all cases for CA. Here, we developed deep learning capable of 
accurately diagnosing CA from HE-stained specimens, which can help 
minimize the risk of missing amyloidosis in the analysis of valuable myo-
cardial tissue.

Advances in imaging with non-invasive modalities, such as bone tra-
cer cardiac scintigraphy and cardiac magnetic resonance imaging, have 
made the diagnosis of CA less invasive in patients with suspicious symp-
toms.5,6 However, histological evidence of amyloid deposition remains 
the definitive diagnostic feature.33 In addition, immunohistochemistry 
or laser microdissection with mass spectrometry of biopsied myocar-
dial tissues can also identify the types of amyloid, including ATTR, AL, 
and AA, highlighting the clear merit of histological analysis.34 In this con-
text, diagnosing CA is essential even in patients who do not show clin-
ical suspicion but undergo endomyocardial biopsy, as CA is now a 
treatable disease.9–13 Retrospective analysis in this study revealed 
that 9 of 76 cases in the CA group were not suspected of CA prior 
to endomyocardial biopsy (see Supplementary data online, Table S1). 

Figure 2 (A) Each whole slide image of the specimen was cropped into multiple small patches of 224 × 224 px size and shifted by half (a patch is an 
area bordered by a bold line). Patches without myocardial tissue were removed (the white area was used for analysis, and the gray area was excluded). 
(B) The architecture of the deep learning model is based on ConvMixer. The input image is a patch (224 × 224 px) cropped from the whole slide image 
of myocardial specimens. And the output is the probability of CA. To improve the flexibility of the model and mitigate overfitting, the Leaky ReLU was 
used as the activation function, and a dropout layer was inserted at the end of the model. The hyperparameters of this model were determined using GS 
as follows: Kernel size = 5 (GS: 3, 5, 7, 9), patch size = 4 (GS: 2, 4, 8), number of filters = 128 (GS: 32, 64, 128, 256). GS, grid search.

4                                                                                                                                                                                              T. Tohyama et al.

http://academic.oup.com/ehjimp/article-lookup/doi/10.1093/ehjimp/qyae141#supplementary-data


Thus, the routine system for diagnosing CA from HE-stained specimens 
may be an innovative approach, as HE is standard staining applied to all 
myocardial biopsies.

In this study, we developed a deep learning model for diagnosing CA 
from HE-stained myocardial tissue. The developed model demon-
strated remarkable accuracy in diagnosing CA using only HE-stained 
specimens. Previous deep learning models for histological analysis 
have focused on diagnosis for cancers,22,23 image segmentation,24–26

and image transformation.35 To the best of our knowledge, this is the 
first study to diagnose CA from images of HE-stained specimens with-
out Dylon or Congo Red staining, although a few deep learning models 
that can quantify amyloid deposition in corneal or ligamentum flavum 
specimens stained with Congo Red have been reported.24,26 The pre-
sent model can serve as the foundational basis for a system that rou-
tinely screens the possibility of CA from HE-stained specimens, 

thereby minimizing the risk of missing CA in CA-unsuspicious patients 
who are subject to endomyocardial biopsy.

Patient background in this study
In this study, cases of CA and non-CA were randomly selected from 
patients who underwent myocardial biopsy between 2008 and 2022. 
A model was developed using these myocardial biopsy specimens. 
Among the 76 cases of CA, 56 had amyloidosis as the primary indication 
for endomyocardial biopsy, whereas 11 had amyloidosis included as 
part of the differential diagnosis. The remaining 9 cases had no suspicion 
of amyloidosis prior to biopsy (see Supplementary data online, 
Table S1), and it was diagnosed clinically for the first time through the 
biopsy evaluation. This may be because of the approval of Tafamidis 
for use in Japan in 2019, which has since increased the inclusion of 
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Table 1 Patient characteristics

Total Model development Model evaluation

CA Non-CA CA Non-CA

Subject, n 166 51 60 25 30
Age, years 70 [58–79] 78 [71–82] 63 [53–70] 78 [64–82] 60 [45–72]

Female, n (%) 48 (28.9) 12 (24.0) 20 (32.8) 5 (19.2) 11 (37.9)

Etiologies, n (%)
Amyloidosis 76 (45.8) 50 (100.0) 26 (100.0)

HCM 13 (7.8) 10 (16.4) 3 (10.3)

DCM 12 (7.2) 8 (13.1) 4 (13.8)
HHD 12 (7.2) 4 (6.6) 8 (27.6)

VHD 10 (6.0) 5 (8.2) 5 (17.2)

Post-transplant 9 (5.4) 8 (13.1) 1 (3.4)
Cardiac sarcoidosis 8 (4.8) 6 (9.8) 2 (6.9)

Others, undiagnosed 26 (15.7) 20 (32.8) 6 (20.7)

Amyloid classification, n (%)
ATTR 54 (71.1) 34 (68.0) 20 (76.9)

AL 10 (13.2) 9 (18.0) 1 (3.8)

AA 9 (11.8) 6 (12.0) 3 (11.5)
ATTR and AL 3 (3.9) 1 (2.0) 2 (7.7)

Prior HF hospitalization, n (%) 53 (31.9) 17 (34.0) 22 (36.1) 8 (30.8) 6 (20.7)

PM, ICD, CRT, n (%) 29 (17.5) 4 (8.0) 18 (29.5) 4 (15.4) 3 (10.3)
Moderate to severe AS, n (%) 13 (7.8) 3 (6.0) 1 (1.6) 3 (11.5) 6 (20.7)

Rhythm, n (%)

Sinus 116 (69.9) 29 (58.0) 47 (77.0) 15 (57.7) 25 (86.2)
AF 39 (23.5) 18 (36.0) 9 (14.8) 8 (30.8) 4 (13.8)

PM 9 (5.4) 2 (4.0) 5 (8.2) 2 (7.7) 0 (0.0)

SBP, mm Hg 113 [102–129] 110 [100–121] 122 [103–137] 114 [103–127] 115 [103–127]
DBP, mm Hg 70 [60–76] 62 [58–71] 70 [62–85] 70 [60–74] 72 [66–80]

Heart rate, bpm 70 [61–80] 67 [62–75] 69 [60–82] 73 [61–78] 78 [66–86]

BNP, pg/mL 216 [104–483] 288 [154–532] 159 [58–440] 216 [138–333] 225 [125–694]
LVEF (%) 49 [38–63] 48 [41–61] 49 [36–65] 50 [42–66] 43 [32–58]

IVST (mm) 11 [9–15] 15 [12–16] 10 [8–11] 14 [10–16] 10 [9–11]

LVPWT (mm) 11 [9–14] 14 [12–16] 9 [9–11] 14 [10–16] 10 [9–11]
LAD (mm) 42 [36–48] 44 [40–48] 42 [35–46] 43 [36–48] 40 [34–48]

Data are presented as n (%) or median [Q1–Q3].
HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; HHD, hypertensive heart disease; VHD, valvular heart disease; PM, pacemaker; ICD, implantable cardioverter 
defibrillator; CRT, cardiac resynchronization therapy; AS, aortic valve stenosis; AF, atrial fibrillation; SBP, systolic blood pressure; DBP, diastolic blood pressure; BNP, brain natriuretic 
peptide; LVEF, left ventricular ejection fraction; IVST, interventricular septum thickness; LVPWT, left ventricular posterior wall thickness; LAD, left atrial dimension.
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amyloidosis in the differential diagnosis. Prior to its approval, amyloid-
osis was less actively considered. However, approximately 10% of cases 
in this study still had amyloidosis diagnosed incidentally through endo-
myocardial biopsy. These findings highlight the importance of routine 
amyloid staining and the utility of the developed model as an alternative 
histological screening tool for CA in clinical practice.

In this study, genetic testing was performed on 40 of the 57 TTR cases, 
including 3 cases with TTR and AL. The results revealed that 38 cases had 
wild-type TTR with no genetic mutations, whereas 2 cases had genetic 
mutations. One of these had a Lys61Glu (E61 K) mutation, and the other 
case had a Val30Met (V30 M) mutation (see Supplementary data online, 
Figure S1). As the case with E61 K was included in the development da-
taset, the case with V30  M assigned into the evaluation dataset was ana-
lysed in detail (see Supplementary data online, Figure S2 A–C); for 
reference, images of Dylon and HE staining from the case with E61 K 
are also shown in Supplementary data online, Figure S2 D and E. 
Although bone tracer scintigraphy has been reported to yield false nega-
tives for certain variant TTRs, such as Phe84Leu (F84L) and Ser97Tyr 
(S97Y),36 which require myocardial biopsy for an accurate diagnosis, 
the analysis with this model demonstrated that it could accurately diag-
nose ATTRv (the V30M case corresponding to CA07 shown in Figure 5A
and Supplementary data online, Figure S2C) and ATTRwt in the evalu-
ation dataset (Figure 5A). Nevertheless, the median probability for the 
V30M case was lower than that of ATTRwt. This may be because 
some cases of ATTRv exhibit amyloid deposition primarily in the nervous 
system before cardiac symptoms and endomyocardial biopsy are pre-
sent. Indeed, the patient with the V30M mutation had been diagnosed 
with amyloid polyneuropathy several years prior to the endomyocardial 
biopsy and was hospitalized for atrial fibrillation and bradyarrhythmia, 
which ultimately led to the biopsy. Despite the onset of arrhythmia, 
echocardiography revealed no evidence of hypertrophy. These findings 
were consistent with the median probability output by the model and 
the degree of amyloid deposition observed in Dylon staining. This case 
illustrates that ATTRv may follow a different diagnostic course compared 
with ATTRwt and that amyloidosis in other organs can precede the diag-
nosis of CA through myocardial biopsy. Consequently, endomyocardial 
biopsy in ATTRv may need to be performed at an earlier stage of CA, 
potentially resulting in lower median probability or a higher likelihood 
of false negatives because of sampling errors compared with ATTRwt. 
These concerns arise from the inherent limitations of myocardial biopsy 

in CA and are not directly related to the model development in this 
study. However, it should be noted that this model was carefully applied 
to cases of ATTRv, and further investigation into its predictive accuracy 
for ATTRv may be warranted, as the number of ATTRv cases was lim-
ited, and the majority of cases in this study were ATTRwt.

Deep learning modelling to diagnose CA 
from HE-stained specimen
In this study, we first developed a deep learning model to assess the 
probability of CA in each small patch cutout of an overall image. 
Then, we investigated whether using amyloidosis-positive probabilities 
in all patches from each specimen could accurately diagnose CA on a 
specimen basis. Figure 3 shows the accuracy of all patches in the evalu-
ation dataset. Although not all small patches uniformly exhibited amyl-
oid deposition, and thus, some patch labels in the CA cases could 
contain false positives, the developed models achieved good discrimin-
ation with an area under the curve of 0.965 in the evaluation dataset. To 
assess accuracy on a per-specimen basis, we plotted individual probabil-
ity distributions for each specimen (Figure 5A) along with discrimination 
performance (Figures 5B and C). Most probabilities of patches in CA 
cases were mainly distributed close to 100%, and those in non-CA cases 
were distributed close to 0%. These distinct distributions did not re-
quire fine-tuning to set the threshold as the median value of the positive 
criterion, allowing us to discriminate effectively all specimens in the 
evaluation dataset by a crude threshold of 50% for median probability. 
This study mainly focused on developing a deep learning model to out-
put the probability of cardiac amyloid based on individual small patches 
because available images were limited; however, with more data, the 
model could be extended to a more integrated end-to-end model 
for direct diagnosis from individual whole slide images using methods 
such as multiple instance learning.37

Identification of amyloid deposition by 
present deep learning model
The developed model almost did not detect any suspicious areas in the 
non-CA case shown in Figure 4B. In contrast, it marked the area in the 
digitally-stained images on HE-stained images as highly suspicious, cor-
responding to where Dylon staining showed amyloid deposition in the 

Figure 3 (A) The receiver operating characteristic curve of the developed deep learning model in all patches of the evaluation dataset. 
(B) Patch-based confusion matrix of the deep learning model.
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CA cases with sparsely and densely accumulated amyloid (Figures 4E 
and H). Due to the black-box nature of deep learning models, it is dif-
ficult to understand how the present deep learning model interprets 
images and exactly calculates the probability of CA. Since false positives 
were rare but present in the non-CA cases (Figure 3B), this model re-
cognizes not only amyloid deposition but also other histological fea-
tures of CA. In this context, we should carefully utilize the present 
model in clinical practice, as is always the case when using AI technol-
ogy. Nevertheless, this study has suggested the clinical feasibility of 
the deep learning model in aiding in the diagnosis of CA from HE stain-
ing because the model achieved remarkable performance in specimen- 
based diagnosis.

Clinical perspectives
The present model, which outputs the possibility of CA based on images 
of HE-stained specimens, can provide two significant clinical benefits. 

First, the model accurately discriminated CA from non-CA even in cases 
where characteristic features of CA (such as myocardial hypertrophy) 
were not evident on the echocardiogram (Table 1). Retrospective ana-
lysis of cases in this study revealed that 9 of 76 cases in the CA group 
had no prior suspicion of CA before endomyocardial biopsy (see 
Supplementary data online, Table S1). This highlights the potential for un-
derdiagnosis in cases of CA that could be missed without routine amyloid 
staining. The model can assess the possibility of CA in myocardial tissue 
that has not been stained with Dylon or Congo Red due to a lack of clin-
ical suspicion of CA. Hence, this model could be used as a screening tool 
for cases not scheduled for specific CA staining as well as for re- 
evaluation of old specimens that were not specifically stained.

Second, staining with Dylon or Congo Red can affect diagnosis due to 
over-staining or over-depigmentation. This model can calculate the 
amyloid probabilities separately from Dylon or Congo Red staining, 
which could comprehensively enhance the diagnostic accuracy of histo-
logical analysis.

Figure 4 Sets of dylon staining (A, D, G), HE staining overlayed with the amyloid-positive area calculated by the model (B, E, H), and the distributions of 
amyloid-positive probabilities on a specimen basis (C, F, I). The set of A, B, and C is a representative case of non-cardiac amyloid. The set of D, E, and F is 
the case of cardiac amyloid with sparse amyloid deposition. The set of G, H, and I is the case of cardiac amyloid with dense amyloid deposition. In 
HE-stained images, high-probability areas of amyloid are shown in translucent red, and low-probability areas are shown in translucent gray. Since 
the patches were cropped while being shifted by half, the probabilities of overlapping areas are given as the average probability. The distributions 
are described by histograms, and the median probabilities are described by dotted lines.
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Limitations
We acknowledge the following limitations. First, because the present 
model was developed based on single-centre data, it is unclear whether 
it can accurately diagnose CA when differences exist in the methods of 
HE staining or the quality of stained specimens, as these may vary by 
institution or pathologist. Further investigations using multi-centre 
data are needed to validate the accuracy and generalizability of the 
model for broader clinical use. Second, this model does not address 
the sampling error associated with endomyocardial biopsy. A biopsy 
samples only a small portion of the myocardium, and even in cases of 
CA, there is a risk that amyloid deposits may not be detected in the bi-
opsied tissue. Therefore, it is important not to become overly reliant on 
pathological diagnosis alone. The diagnosis of CA should primarily fol-
low the standard diagnostic algorithm, particularly for hypertrophic 
phenotypes, referencing T1/T2 mapping or late gadolinium enhance-
ment on cardiac magnetic resonance imaging.38 Myocardial biopsy 
should be considered as an additional step. It should be emphasized 
that the developed system is intended as a complementary screening 
tool within the broader diagnostic process.

Conclusion
A deep learning model was developed to accurately diagnose CA from 
the images of HE-stained specimens. The present model may be effect-
ive in minimizing the risk of missing CA and maximizing the utility of 
histological diagnosis in clinical practice.

Supplementary data
Supplementary data are available at European Heart Journal - Imaging 
Methods and Practice online.
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