Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1976 Jun 1;155(3):543–548. doi: 10.1042/bj1550543

Study of poly-L-lysine conformations in aqueous methanol solution by using polarized Raman techniques.

I W Shepherd
PMCID: PMC1172876  PMID: 949317

Abstract

Raman polarization measurements of the amide I band are reported in ionized poly-L-lysine dissolved in aqueous methanol. The observed changes with methanol concentration, attributed to changes in coil conformation and to the helix-coil transition, represent a novel method of measuring polymer conformation. Polarization measurements as a function of temperature yield values of the energy differences between rotational isomeric states in the coil. deltaH, of 8.8 +/- 0.7, 10.4 +/- 1.1 and 10.8 +/- 1.5 kJ/mol at methanol concentrations (v/v) of 85, 80 and 70% respectively. The stabilization energy of the helix is estimated at 9.3 kJ/mol.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen M. C., Lord R. C. Laser-excited Raman spectroscopy of biomolecules. VI. Some polypeptides as conformational models. J Am Chem Soc. 1974 Jul 24;96(15):4750–4752. doi: 10.1021/ja00822a004. [DOI] [PubMed] [Google Scholar]
  2. Chou P. Y., Scheraga H. A. Calorimetric measurement of enthalpy change in the isothermal helix--coil transition of poly-L-lysine in aqueous solution. Biopolymers. 1971;10(4):657–680. doi: 10.1002/bip.360100406. [DOI] [PubMed] [Google Scholar]
  3. Epand R. F., Scheraga H. A. Conformations of poly-L-valine in solution. Biopolymers. 1968;6(11):1551–1571. doi: 10.1002/bip.1968.360061104. [DOI] [PubMed] [Google Scholar]
  4. Epand R. F., Scheraga H. A. The helix-coil transition of poly-L-lysine in methanol-water solvent mixtures. Biopolymers. 1968;6(9):1383–1386. doi: 10.1002/bip.1968.360060912. [DOI] [PubMed] [Google Scholar]
  5. Ingwall R. T., Scheraga H. A., Lotan N., Berger A., Katchalski E. Conformational studies of poly-L-alanine in water. Biopolymers. 1968;6(3):331–368. doi: 10.1002/bip.1968.360060308. [DOI] [PubMed] [Google Scholar]
  6. Koenig J. L., Sutton P. L. Raman scattering of some synthetic polypeptides: poly(gamma-benzyl L-glutamate), poly-L-leucine, poly-L-valine, and poly-L-serine. Biopolymers. 1971;10(1):89–106. doi: 10.1002/bip.360100108. [DOI] [PubMed] [Google Scholar]
  7. Koenig J. L., Sutton P. L. Raman spectra of poly-L-lysines. Biopolymers. 1970;9(10):1229–1237. doi: 10.1002/bip.1970.360091003. [DOI] [PubMed] [Google Scholar]
  8. Krimm S., Mark J. E. Conformations of polypeptides with ionized side chains of equal length. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1122–1129. doi: 10.1073/pnas.60.4.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pederson D., Gabriel D., Hermans J., Jr Potentiometric titration of poly-L-lysine: the coil-to-beta transition. Biopolymers. 1971 Nov;10(11):2133–2145. doi: 10.1002/bip.360101109. [DOI] [PubMed] [Google Scholar]
  10. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  11. Tiffany M. L., Krimm S. Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers. 1972;11(11):2309–2316. doi: 10.1002/bip.1972.360111109. [DOI] [PubMed] [Google Scholar]
  12. Wallach D. F.H., Graham J. M., Oseroff A. R. Application of laser Raman spectroscopy to the structural analysis of polypeptides in dilute aqueous solution. FEBS Lett. 1970 May 1;7(4):330–334. doi: 10.1016/0014-5793(70)80197-1. [DOI] [PubMed] [Google Scholar]
  13. Yu T. J., Lippert J. L., Peticolas W. L. Laser Raman studies of conformational variations of poly-L-lysine. Biopolymers. 1973;12(9):2161–2175. doi: 10.1002/bip.1973.360120919. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES