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Abstract: The intricate combination of organic and inorganic compounds found in snake venom
includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components
work together to immobilise and consume prey through processes such as paralysis and hypotension.
Proteins, both enzymatic and non-enzymatic, form the primary components of the venom. Based on
the effects they produce, venom can be classified as neurotoxic, hemotoxic, and cytotoxic. Studies
have shown that, after envenomation, proteins in snake venom also contribute significantly to the
induction of inflammatory responses which can either have systemic or localized consequences.
This review delves into the mechanisms by which snake venom proteins trigger inflammatory
responses, focusing on key families such as phospholipase A2, metalloproteinases, serine proteases,
C-type lectins, cysteine-rich secretory proteins, and L-amino acid oxidase. In addition, the role of
venom proteins in activating various inflammatory pathways, including the complement system,
inflammasomes, and sterile inflammation are also summarized. The available therapeutic options
are examined, with a focus on antivenom therapy and its side effects. In general, this review offers a
comprehensive understanding of the inflammatory mechanisms that are triggered by snake venom
proteins and the side effects of antivenom treatment. All these emphasize the need for effective
strategies to mitigate these detrimental effects.

Keywords: snake venom; inflammation; inflammasomes; sterile inflammation; complement activation;
antivenom; venom proteins

Key Contribution: The role of different snake venom proteins in inducing inflammation post-
envenomation is highlighted in detailed. Also, the impact of snake venom proteins in inducing other
inflammatory mediators including complement system, inflammasomes and sterile inflammation are
described briefly.

1. Introduction

Proteins and peptides are the major constituents of snake venom that primarily aid
in prey immobilization and killing via hypotension and paralysis. In addition to proteins,
snake venom is composed of organic and inorganic constituents including metal ions,
lipids, carbohydrates, nucleosides, and nucleotides. Proteins belonging to non-enzymatic
and enzymatic families are the major components of snake venom [1]. These proteins
are mainly involved in mediating several pharmacological mechanisms in victims’ bodies
following envenomation. In general, depending on the mode of action, snake venom is
broadly classified as hemotoxic and neurotoxic. The venom of snake species belonging to
Viperidae is rich in hemotoxins and the Elapidae family has neurotoxins in abundance [2].
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The venom toxins induce both systemic and local effects in a victim through several
mechanisms. For example, systemic toxins exert their biological effects by binding to
specific targets. Neurotoxins and cytotoxins/cardiotoxins identified from Elapids belong to
this category. Neurotoxins affect both the peripheral and central nervous system, disrupting
muscle coordination that results in neuromuscular paralysis. Whereas cardiotoxins induce
muscle contraction and depolarization by binding to specific receptors present in cardiac
muscle cells. Similarly, hemolytic toxins present in viper venom are either involved in
hemolysis, i.e., red blood cell destruction or disruption of the blood coagulation machinery.
Phospholipase A2 (PLA2) present in the venom is an example of a locally acting toxin that
induces inflammation, pain, and necrosis at the bite site. However, in association with other
proteins, it is known to mediate systemic effects too [3,4]. In addition to PLA2s, several
other venom proteins also have immunomodulatory effects. They may act either alone or
in combination with other proteins in mediating these effects. A recent review highlights
the immune mechanisms triggered by snake venom metalloproteases and C-type lectins
(CTLs) associated with thromboinflammation [3]. In this regard, along with these proteins,
this review describes the molecular mechanisms involved in inducing inflammation by
snake venom proteins and the other factors inducing inflammation post-envenomation.

2. Snakebite-Induced Inflammation and the Role of Different Snake Venom Proteins

Inflammation is triggered upon the entry of antigens, in this case snake venom, into
the host. The initiators of inflammatory responses are leukocytes, primarily resident
macrophages and dendritic cells that recognize the antigens and phagocytose them, hence
they are regarded as professional phagocytes. These cells secrete chemokines and attract
neutrophils to the site of inflammation via a process known as transmigration [5], in which
neutrophils begin to express cell adhesion proteins that help them to bind to the endothe-
lium and extravasate. This process is accompanied by fluid exudation that leads to one of
the inflammatory symptoms known as edema [5]. Upon extravasation, these neutrophils
respond diversely to the already present inflammatory state and further induce inflam-
mation. Some of their effects are the orchestration of coagulation, laying out neutrophil
extracellular traps (NETs) [6], activating other immune cells including B cells and T cells,
recruiting and activating monocytes and macrophages, and further promoting platelet
production [5]. Studies have shown not just a one-way communication, but an elaborate
conversation between these inflammatory mediators [7].

Other mediators of inflammation are pro- and anti-inflammatory cytokines, chemokines,
anaphylatoxins, vasoactive amines (histamines and serotonins), eicosanoids (leukotrienes,
thromboxanes, prostaglandins), peptides such as bradykinin, and free radicals of oxygen
and nitrogen, to name a few [8]. All these molecules function in harmony to elicit the inflam-
matory responses triggered either by invasive compounds or compounds from within the
body (sterile inflammation). Studies have shown that snake venom proteins induce these
effects after envenomation and the components that are involved in inducing inflammation
are described briefly below:

2.1. Phospholipase A2

PLA2s are one of the most studied venom protein families not just in terms of structure
and classification, but also in ways they elicit immune responses post-envenomation. They
are esterolytic enzymes, involved in hydrolyzing glycerophospholipids resulting in the
release of lysophosphatidic and arachidonic acid. PLA2s are categorized into groups I and
II according to the presence of disulfide bonds. It is known that group I and II PLA2s are
commonly found in Elapid and viper venoms, respectively [9]. Reports indicate that snake
venom PLA2s (svPLA2) induce several pharmacological effects such as hemorrhage, edema,
myotoxicity, neurotoxicity, cardiotoxicity, and tissue damage [10–13]. Compared to Elapid
venoms, PLA2s are more abundant in viper species, and this substantiates the fact that
tissue disruption and necrosis are predominantly associated with viper bites. In addition
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to the above-mentioned pharmacological mechanisms, PLA2s are mainly responsible for
inducing inflammation after a snake bite [14].

Based on the presence of amino acids, lysine, and asparagine, at the 49th position in
the protein sequence, the group II svPLA2s are classified as classic and variant. The former
contains an asparagine [Asp49] while the latter contains a lysine [Lys49] [15]. The classic
svPLA2s have a catalytic activity that hydrolyses the ester bond of glycerophospholipids
at the SN2 position, which depends on Ca2+ ions. On the contrary, the variant svPLA2
has nearly no catalytic effect but has been shown to possess damaging capabilities on
the membrane [12,16,17]. Though the catalytic activities vary between classic and variant
svPLA2s, both have been shown to induce a range of inflammatory responses, that include
severe local edema and leukocyte infiltration at the site of toxin entry [18–20].

svPLA2s have great tendencies to stimulate and/or recruit various immune cells
either directly or indirectly. Mast cell degranulation was observed by Bothrops jararacussu
svPLA2s, bothropstoxin-I (BthTX-I) and bothropstoxin-II (BthTX-II) [21], and piratoxin-I
from Bothrops pirajai venom [22]. In vitro experiments demonstrated that piratoxin-I and
bothropstoxin-I stimulated the chemotaxis of neutrophils [23] by releasing leukotriene
B4 (LTB4) and platelet-activating factor (PAF) upon binding to the surface heparan of
neutrophils. Neutrophil migration was activated by G-protein-coupled receptors (GPCRs)
via the protein kinase C (PKC) pathway [24]. Catalytic and non-catalytic secretory PLA2
(sPLA2s), such as MT-II, MT-III, BthTX-I, BthTX-II [22], BJ-PLA2-I [25], BnSP-7 [26], and
BatroxPLA2 [27], from Bothrops species induced polymorphonuclear and mononuclear cells’
influx at the site of envenomation [18,28].

svPLA2s also induce the production of various cytokines and chemokines, such as
LTB4, IL-1β, IL-6, and tumor necrosis factor-alpha, TNF-α [18], that further contribute
significantly to the chemotaxis of leukocytes [29–31]. Bbil-TX from Bothropsis bilineata
stimulated the production of IL-6 in mice models [31], and BmatTX-I and BmatTX-II were
shown to upregulate the secretion of IL-1β in mice neutrophil cell cultures [32]. Menaldo
DL et al. showed that BatroxPLA2 induced the production of IL-6, Prostaglandin E2 (PGE2),
and LTB4 by macrophage cell culture from mice [27]. BaPLA2 and BaTX-II triggered the
release of TNF-α in macrophages [33]. Boene et al. [34] showed that IL-1β was secreted via
nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3
(NLRP3) inflammasomes in mice upon injection with a Lys49-PLA2, BthTX-I, that also
induced inflammation by lactate dehydrogenase and cellular damage by creatine kinase
release into the plasma [34–36]. In another study, the secretion of IL-1β was observed via
NLRP3 inflammasome upon detecting the released ATP by P2X7 receptors and signaled
through the caspase recruitment domain (ASC) and caspase 1/11 [37].

In addition to stimulation and recruitment of leukocytes, svPLA2s also play a major
role in inducing the effector functions of the immune system. A study demonstrated that
phagocytosis by macrophages is activated by Bothrops svPLA2s. MT-II significantly en-
hanced phagocytic activity through all receptor classes, and MT-III enhanced it via mannose
and β-glucan receptors by assuming that there may be some molecular regions involved
in this effect that are different from the catalytic sites [28]. A study conducted on BaltTX-I
and BaltTX-II from B. alternatus showed that BaltTX-II did not induce phagocytosis by
macrophages; however, BaltTX-I induced phagocytosis in macrophages through comple-
ment receptors [38]. H2O2 was released by macrophages induced by MT-II and MT-III from
Bothrops sp., where MT-III was more potent [39]. Superoxide release by macrophages has
also been demonstrated by BaltTX-I and Balt-TX-II via the PKC pathway [38]. H2O2 release
has also been noted in neutrophils upon induction with BaTX-II via the PI3K pathway, in
addition to the secretion of cytokines such as IL-1β, IL-8, LTB4, and neutrophil extracellular
traps (NETs) [40]. So far, all sPLA2s have shown pro-inflammatory activities; however, a
study conducted on Crotoxin B from Crotalus durissus terrificus has shown anti-inflammatory
effects by inhibiting macrophage mobility and phagocytic capabilities [41,42].

svPLA2s are also involved in inducing edema through the release of prostaglandins.
Intraperitoneal injections of MT-II [43] and MT-III [44,45] into mice have demonstrated
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the release of prostaglandin D2 (PGD2). In other similar studies, injections of Batrox-
PLA2 [27] and BJ-PLA2-I [25] showed a sustained release of prostaglandin E2 (PGE2).
As a result of both sets of experiments, PGD2 and PGE2 showed signs of vasodilation
that led to edema [46,47]. sPLA2s from B. asper induced thromboxane and leukotriene
B4 (LTB4) release, in vivo [18]. In addition to the release of LTB4, an Asp49 sPLA2 from
B. atrox induced lipoxin and PGE2 [27]. Peritoneal leukocytes in murine models showed
upregulated expression of COX-2 via NF-κB upon injection of MT-II [43] and MT-III [45].
This resulted in an increased expression of prostaglandins in macrophages of mice. To
support this evidence, COX-2 and PGE2 expression by MT-II and MT-III was inhibited
by TPCK, an IκB phosphorylation inhibitor [43,48]. The study also demonstrated that
MT-II and MT-III phosphorylate PKC, PI3K, and PTK in macrophages [43,48]. COX-2 and
PGE2 production were positively regulated, via NF-κB, because of PKC and P38MAPK
stimulation by MT-III [49–51].

There has been a recent focus on understanding lipid metabolization and the con-
sequent lipid droplet (LD) formation, which initiated an investigation as a marker for
atherosclerosis and obesity [52–54]. In addition, LD formation is also associated with
inflammation [55–57] and their accumulation in immunocompetent cells [58,59]. The
pharmacological potential of LDs has fueled interest in exploring their interaction with
snake venom in recent years. Studies have demonstrated that exposure to MT-II [49], MT-
III [60], BaTX-I, BaTX-II, and BaPLA2 leads to an increase in LD formation within mouse
macrophages [33]. MT-II and MT-III induced LD synthesis and accumulation via PI3K,
PKC, p38, and ERK1/2 in murine macrophages [61]. svPLA2s also generate free fatty acids
from membrane phospholipids. These free fatty acids bind to toll-like receptor -2 (TLR2)
and signal via MyD88 adaptor molecules to release inflammatory mediators, resulting
in LD accumulation in macrophages [62]. There may be more TLRs at play during this
signaling event that require better investigation. CD36 receptor expression is upregulated
by MT-III via PPAR-β/δ which, in turn, recognizes the free fatty acids and induces LD
accumulation [63,64]. MT-III has also been shown to activate diacylglycerol acyltransferase
and acyl-CoA cholesterol acyltransferase to synthesize triacylglycerol and cholesterol, re-
spectively, in both mice macrophages [65] and in human monocytes [66], eventually leading
to LD accumulation. Figure 1 shows a schematic representation of the possible mechanisms
through which several snake venom PLA2 proteins induce inflammation.

2.2. Snake Venom Metalloproteinase

Snake venom metalloproteinases (SVMP) are a family of proteases with molecular
masses of more than 50 kDa and are named so for their association with divalent metal ions
such as zinc and cobalt to attain maximum activity. These proteins are categorized into four
classes based on their functional domains: P-I SVMPs containing just the metalloproteinase
domain; P-II SVMPs containing metalloproteinase and disintegrin domains, but also found
with just the disintegrin domain; P-III SVMPs contain cysteine-rich domains in addition to
disintegrins and metalloproteinase domains; and P-IV SVMPs contain all the P-III domains
and a lectin-like domain [67].

Before we move ahead, it is a prerequisite to understand that metalloproteases (MPs)
and matrix metalloproteinases (MMPs) are different but interact via key events such as
inflammation [68,69]. Edema, degranulation of mast cells, and leukocyte infiltration are
the most commonly attributed effects of SVMPs [70–72]. It has also been observed that
SVMPs cause hemorrhage by loosening the connective tissue of blood vessels [73]. A very
similar set of observations was reported by McKay [74] and Ownby [75] through the ex-
periments conducted to study the effects of snake venoms on capillaries. Another set of
studies showed the hydrolysis of laminin, nidogen, entactin, type IV collagen, fibronectin,
and proteoglycans [73] in addition to various other targets of SVMPs [76]. SVMPs have
been shown to play a role in coagulopathies [77]; however, their involvement in hemor-
rhage is a complex relationship with MMPs. Capillary basement proteins and ECM are
targeted by SVMPs to disrupt the hemostasis and cause capillary rupture [78–80]. A P-III
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SVMP from Crotalus simus enzymatically cleaved the basement membrane and, thereby,
led to pulmonary hemorrhage and edema [81]. CsH1, an SVMP isolated from C. simus, in-
duced pulmonary hemorrhage activity, basement membrane components were hydrolyzed,
induced inflammation in the lungs, and hemorrhage mediated through inflammatory
mediators [81]. Similarly, another P-III SVMP, bothropasin, from B. jararaca venom, was
responsible for edema, hemorrhage, and necrosis [82]. Atroxlysin-I, a P-I class of SVMPs
from B. atrox, possessed hemorrhagic and fibrinogenolytic activity. It also has the capability
to cleave the ECM and inhibit platelet function [83]. Damage to endothelial cell integrity
was reported in a study conducted on salmosin, a disintegrin isolated from Agkistrodon halys
brevicaudus venom [84]. These cellular damages would lead to the generation of DAMPs
which would then result in a positive feedback loop of cytokine signaling, potentially
leading to a cytokine storm [85].

Figure 1. Inflammatory mechanisms induced by snake venom PLA2s (green color boxes) isolated
from various snake species. TNF-α, tumor necrosis factor-alpha; IL, interleukin; NLRP3, nucleotide-
binding domain, leucine-rich–containing family, pyrin domain–containing-3; H2O2 hydrogen perox-
ide; LTB4 leukotriene B4; NETosis, neutrophil extracellular traps; LDH, lactate dehydrogenase.

As seen with other venom protein families, SVMPs promote proinflammatory cytokine
release. One of the most widely studied SVMPs, jararhagin, isolated from Bothrops jararaca,
induced the release of inflammatory mediators such as IL-1β, IL-6, IL-8, and IL-11 and dam-
aged vascular tissue [86,87]. An in vivo study on jararhagin also induced the production
and release of IL-1β and TNF-α and activated glial cells in the spinal cord via the NF-κB
pathway, resulting in the first-ever observation of the involvement of spinal cord glial cells
and astrocytes in venom-induced mechanical hyperalgesia [88]. In addition to jararha-
gin, hemorrhagin isolated from Echis pyramidum leakeyi venom activated TNF-α in mice
models [89]. BaP1 from B. asper venom induced the production of IL-1β, IL-6, and MMPs
in vivo [90]; joint hypernociception through TNF-α and PGE2 [91]; neutrophil recruitment
and cytokine release [92]; and local tissue damage in muscular and endothelial tissues [93].



Toxins 2024, 16, 519 6 of 30

Clissa et al. showed that the SVMP jararhagin stimulated macrophages to mediate the
release of inflammatory cytokines in addition to the recruitment of inflammatory cells,
without directly influencing the chemotactic activity [94]. In addition, jararhagin is also
known to activate fibroblasts [87,95] and hydrolyze von Willebrand factor (vWF) [96]. Jaras-
tatin, a disintegrin isolated from B. jararaca venom, proved to be a strong chemoattractant
of human neutrophils in vitro, signaling via PI3K and MAPK pathways [97]. A P-III SVMP
promoted inflammation through the recruitment of neutrophils into the parenchyma of the
lungs [81]. The upregulation of chemokines such as CXCL1 and CXCL2 by jararhagin may
also explain the increased recruitment of neutrophils [87]. Batroxase, from B. atrox, pro-
moted acute inflammation in vitro and in vivo through macrophages and mast cells [27].
Figure 2 shows a schematic representation of the possible mechanisms through which
several SVMP proteins induce inflammation.

Figure 2. Inflammatory mechanisms induced by SVMPs (orange color boxes) isolated from various
snake species. TNF-α, tumor necrosis factor-alpha; IL, interleukin; NF-κB, nuclear factor kappa-light-
chain-enhancer of activated B cells; PGE2, prostaglandin E2; vWF, von Willebrand factor.

2.3. Snake Venom Serine Protease

Most abundantly found in viperid venoms, SVSPs are monomeric glycoproteins weigh-
ing about 26–76 kDa and are categorized under the proteolytic class of enzymes [98]. Their
direct effects on the coagulation machinery make them a potent coagulator by inducing
platelet aggregation and activation of coagulation factors [99,100]. SVSPs were also able
to induce the production of cytokines and chemokines in vitro and in vivo. KnBa, from
Bitis arietans, increased THP1 macrophage cell viability at least by 90%, upregulating the
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production of IL-1β, TNF, and IL-6 [101]. KnBa also upregulated chemokines such as IL-8,
RANTES, MCP-1, and IP-1; however, KnBa was not involved in PGE2 production [101].
The functions of SVSPs were also varied in different species of Bothrops. BpirSP27 and
BpirSP41 are two SVSPs isolated from Bothrops pirjai that did not elicit the basic signs
of inflammation—edema, pain, and leukocyte recruitment [102]. Bothrops alternus and
Bothrops moojeni venom demonstrated an increase in the levels of pain and edema in mouse
models [103]. Cdtsp2, an SVSP purified from Crotalus durissus terrificus, capable of degrad-
ing fibrinogen, acts on a GPCR leading to inflammation, thrombosis, and disruption of
homeostasis [104]. Their effector functions are signaled via protein kinase C (PKC) and
phospholipase C (PLC), generating inositol triphosphate (IP3) and diacylglycerol (DAG).
In the same study, the authors observed that Cdtsp2 acted on protease-activated receptors,
PAR1 and PAR2 on the mast cells to induce edema with suspected production of PGE2.
They were also observed to act on PAR3 and PAR4 which are expressed on platelets to alter
their activity.

2.4. C-Type Lectin

CTLs in snake venom are known as snaclecs and belong to the non-enzymatic class of
snake venom proteins. In other organisms, including humans, they exist as homodimers
and bind calcium and sugar residues. Whereas the CTLs found in venom proteins lack the
typical calcium/sugar-binding loop and have adapted to interact with a broad spectrum
of biologically significant proteins and receptors. They are mostly heterodimeric with
active α and β subunits covalently linked by disulfide linkages [105]. Snaclecs from snake
venom interact with various receptors and proteins, including C-type lectin-like receptor
2 (CLEC-2); coagulation factors; vWF, GPIb, and GPVI receptors on platelets; and α2β1
receptors of integrins. Hence, they are known to have platelet aggregation inhibitory
activities [105]. In viper venom, hemostasis and inflammation are closely linked, with
thromboinflammation being well-documented in these species [3]. The involvement of
CLEC-2 receptors in inducing thromboinflammation is also explored in detail [106]. The
report indicated that aggretin, a CTL from Calloselasma rhodostoma, binds to the CLEC-
2 receptors present on monocytes and macrophages, resulting in the production and
release of pro-inflammatory cytokines such as IL-6 and TNF-α through JNK and ERK
phosphorylation (MAPKs) [106]. In another study, aggretin also possessed pro-angiogenic
activities by inducing the expression of VEGF, through the PI3K, Akt, and Erk1/2 pathways
upon integrin α2β1 activation [107]. In addition to aggretin, agglucetin, isolated from
Agkistrodon acutus, also possessed pro-angiogenic activities through the FAK, PI3K, and
Akt pathways [108].

A C-type lectin-like protein known as convulxin (CVX), extracted from the venom
of the Crotalus durissus snake is known to stimulate platelet aggregation but was found
to be non-toxic to peripheral blood mononuclear cells and also did not affect cell growth
or IL-2 release. However, it induced IL-10 secretion and ROS production via monocytes
and activated the NLRP3 inflammasome leading to IL-1β secretion. This effect is mediated
through its interaction with the Dectin-2 receptor (a CTL receptor) highlighting the role of
CVX in modulating immune cell functions and inflammation [109]. CTLs can modulate
immune responses through various mechanisms. For instance, Galatrox, a glycan-binding
protein from Bothrops atrox snake venom promotes neutrophil migration and induces the
release of pro-inflammatory cytokines, such as IL-1α and IL-6 both in vitro and in vivo.
Additionally, it also stimulates macrophages to produce pro-inflammatory mediators
through the TLR4-MyD88 signaling pathway suggesting its role in mediating the toxicity
of B. atrox venom [110]. A study on BpLec, from Bothrops pauloensis demonstrated increased
hemoglobin levels and blood vessel formation in vivo. In addition, BpLec also inhibited
cell adhesion and pro-inflammatory cytokines [111]. BpLec possessed the properties of
an angiogenic and inflammatory modulator. However, the authors surprisingly noted an
increase in neutrophil count though the proinflammatory cytokine levels were diminished.
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Figure 3 shows a schematic representation of the possible mechanisms through which
several snake venom CTL proteins induce inflammation.

Figure 3. Inflammatory mechanisms induced by snake venom CTLs (purple color boxes) isolated
from various snake species. TNF-α, tumor necrosis factor-alpha; IL, interleukin; ROS, reactive
oxygen species; NLRP3, nucleotide-binding domain, leucine-rich–containing family, pyrin domain–
containing-3; TLR-4, toll-like receptor-4.

2.5. Cysteine-Rich Secretory Protein

As part of the CAP [cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5), and
pathogenesis-related 1 (Pr-1)] protein superfamily, CRISPs are the most intriguing molecules
to snake venom biologists. They are non-enzymatic proteins having a molecular mass
of 20–30 kDa with all 16 cysteine residues strictly conserved [112]. They are widely seen
in diverse organisms including various snake families such as the Elapids, Viperids, and
the Colubrids and mediate a wide variety of biological functions [113,114]. However,
their intricate biological mechanisms are still far from being understood, but many hy-
potheses have been developed to explain their roles in eliciting inflammation, edema,
necrosis, cell death, and other pharmacologically important outcomes. CRISPs are not
directly involved in causing death in mammals but contribute to various effects that can
severely disrupt the homeostasis in the host body. The ion channel blocking, myotoxic, and
proinflammatory activities of snake venom CRISPs have been explored in detail by several
groups [112,115–117].

A study conducted on a CRISP (Bj-CRP) isolated from B. jararaca revealed that it
induced inflammation by promoting neutrophil recruitment and IL-6 production [118]. In
line with this, another study demonstrated that a CRISP (BaltCRP) isolated from Bothrops
alternatus induced the expression of IL-1β and IL-10, in addition to IL-6 [119].
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The CRISP natrin, from Naja atra, mediated its inflammatory activity by inducing
the expression of monocytic cell adhesion molecules such as the vascular cell adhesion
molecule (VCAM-1), the intracellular adhesion molecule (ICAM-1), and E-selectin [120].
The production of proinflammatory molecules, such as IL-6, TNF-α, and IL-1β, by Nk-
CRISP, a CRISP from Naja kaouthia, was suggested to be through the involvement of the
toll-like receptors TLR-2 and TLR-4 [121]. Figure 4 shows a schematic representation
of the possible mechanisms through which several snake venom CRISP proteins induce
inflammation.

Figure 4. Inflammatory mechanisms induced by snake venom CRISPs (squash color boxes) isolated
from various snake species. TNF-α, tumor necrosis factor-alpha; IL, interleukin; ICAM-1, intercellular
adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; C3a, complement component 3a;
C4a, complement component 4a; C5a, complement component 5a.

2.6. L-Amino Acid Oxidase

Like other components of snake venom, L-amino acid oxidase (svLAAO) is also in-
volved in inducing inflammatory responses such as edema, hemolysis, and myotoxic-
ity [122,123]. Although the specific roles of svLAAO are not clearly understood, crude
venom from the Bothrops species has been shown to induce necrosis in dermal cells, also re-
ferred to as dermonecrosis [124,125]. In addition to this, studies have also reported apoptotic
activity of svLAAO through the generation of H2O2 [126]. H2O2 is known to trigger inflam-
mation and blood clots, and may also have necrotic and hemorrhagic effects. Therefore, the
severity of envenomation would also be influenced by the amount of H2O2 generated by
LAAOs. This has been supported by other studies where sequestration of H2O2 decreased
the apoptotic activity of svLAAO [122,127]. Other studies have demonstrated that edema
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is induced in mice models when treated with svLAAO isolated from Cerastes cerastes [128–
130] and Bungarus fasciatus [131]. LAAO from Bungarus also induced severe myotoxicity,
accumulation of inflammatory cells, and myolysis [131]. The role of different snake venom
proteins in inducing inflammation post envenomation are summarized in Table 1.
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Table 1. Snake venom proteins and their role in inducing inflammation.

Protein Name
Snake Venom

Protein
Family

Snake Species Inflammatory Mechanisms
Involved Model Used Reference

BthTX-I and
BthTX-II

PLA2s

B. jararacussu
Leukocyte recruitment

Neutrophils from
healthy human

blood
[23]

Inflammasome activation Mice [34]

Mast cell degranulation Mice
[21,22]

Piratoxin-I B. pirajai Mast cell degranulation Mice

MT-II and
MT-III

Bothrops sp. Leukocyte recruitment Mice [22]

B. asper Increased macrophage phagocytic
activity Mice [28]

B. asper H2O2 release by macrophages Mice [39]

B. asper Activation of NF-kB Mice [43,45]

B. asper Vasodilation Mice [43,44]

BJ-PLA2
B. jararaca Leukocyte recruitment Mice

[25]
B. jararaca Vasodilation and edema Mice

BnSP-7 Bothrops
pauloensis Leukocyte recruitment Mice [26]

Batrox-PLA2
B. atrox Leukocyte recruitment

Mice and in vitro
using cells

obtained from
these treated mice

[27]

B. atrox Cytokine and chemokine release

Mice and in vitro
using cells

obtained from
these treated mice

[27]

BaPLA2 B. atrox TNF-α release in macrophages
In vitro, J77A.1

macrophage cell
line

[33]

Bbil-TX Bothriopsis
bilineata IL-6 production Mice [132]

BmatTX-I and
BmatTX-II

Bothrops
mattogrossensis IL-1β production Mice and in vitro

using ELISA [32]

BaltTX-I and
BaltTX-II B. alternatus H2O2 release Mice [38]

BaTX-I and
BaTX-II B. atrox H2O2, IL-1β, IL-8, LTB4, NETs

release

Neutrophils from
healthy human

blood
[40]

Crotoxin B C. durissus
terrificus

Inhibition of macrophage
phagocytic activity and motility Mice [41,42]

Bj-CRP

CRISPs

B. jararaca Inflammation via neutrophil
recruitment and IL-6 production Mice

[118]

B. jararaca Anaphylatoxin production In vitro, in human
serum

Balt-CRP B. alternatus Cytokine release Mice [119]
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Table 1. Cont.

Protein Name
Snake Venom

Protein
Family

Snake Species Inflammatory Mechanisms
Involved Model Used Reference

Natrin
CRISPs

N. atra Promotes expression of cell
adhesion molecules

In vitro,
endothelial cells
from the human

umbilical cord and
U937 monocytes

[120]

Nk-CRISP N. kaouthia Cytokine release In vitro, THP-1 [121]

Jararhagin

SVMPs

B. jararaca Cytokine release Mice
[94,133]

- Leukocyte recruitment Mice

Jarastatin Chemoattractant In vitro,
neutrophils [97]

CsH1 C. simus Pulmonary hemorrhage Mice [81]

Bothropasin B. jararaca Edema, hemorrhage, necrosis In vitro [82]

Atroxlysin-I B. atrox Hemorrhage and fibrinogenolytic In vitro and in
mice [83]

Salmosin A. halys
brevicaudus Endothelial cell disruption

In vitro, bovine
capillary

endothelial cell
line

[84]

Hemorrhagin E. pyramidum
leakeyi TNF-α production In vitro, WEHI 164

subclone 13 [89]

BaP1 B. asper
Cytokine and MMP production,

neutrophil recruitment, local tissue
damage

In vitro assay [90–93]

Batroxase B. atrox Inflammation through
macrophages and mast cells Mice [27]

VaaSP-VX

SVSPs

Vipera
ammodytes Cleaves Factor V and factor X In vitro assays [134]

Kn-Ba
B. arietans Cytokine and chemokine release In vitro, THP-1

macrophages
[101,135]

B. arietans Fibrinogenolytic In vitro assay

B. arietans Kinin-release In vitro assay

Ancrod C. rhodostoma
Fibrinogenolysis

In vitro assay
[136]Batroxobin B. atrox In vitro assay

RVV-V D. russelii

BpirSP27 and
BpirSP41 B. pirajai Complement activation In vitro assay [102]

Cdtsp2
C. durissus
terrificus Fibrinogenolysis In vitro assay

[104]

C. durissus
terrificus Edema Mice

Aggretin CTLs C. rhodostoma VEGF induction

In vitro, HUVECs
(Human Umbilical
Vein Endothelial

Cells)

[107]
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Table 1. Cont.

Protein Name
Snake Venom

Protein
Family

Snake Species Inflammatory Mechanisms
Involved Model Used Reference

Agglucetin

CTLs

A. acutus Pro-angiogenic In vitro, HUVECs [108]

Convulxin C. durissus
terifficus Promotes platelet aggregation In vitro assay [109]

Galatrox B. atrox Neutrophil migration, cytokine
release, stimulates macrophages

Mice and in vitro
assays [110]

BpLec B. pauloensis

Pro-angiogenesis; increased
hemoglobin production; inhibition

of cell adhesion, cytokines, and
collagen deposit

Mice [111]

3. Inflammasomes: Role in Snake Venom-Induced Inflammation

Inflammasomes can be activated under sterile and non-sterile conditions of inflam-
mation. Any component of the venom that causes cytotoxicity or cellular disruption, can
lead to the activation of inflammasome [34,37,101,109,137–140]. Reports suggest that snake
venom PLA2s, CTLs, SVSPs, and LAAOs are involved in the activation of inflammasomes
resulting in inflammatory responses [34,37,101,109,137–140]. Inflammasomes mediate
the inflammatory responses through caspase-1-dependent mechanisms resulting in the
production of proinflammatory cytokines IL-1β and IL-18 and inducing pyroptosis [141].

sPLA2s of Viperidae venoms share structural and functional similarities with secretory
PLA2s and are one of the most potent activators of inflammasomes [142,143]. Studies
conducted on Bothrops sp. PLA2s have shown that they have myotoxic activity and also
trigger the release of IL-1 and IL-6, which leads to the speculation of the involvement
of inflammasomes [18,39,144]. A study on BthTX-I, a Lys49-sPLA2 from B. jararacussu,
induced IL-1β release in mice muscles, but not through P2X7 receptors (which signal for
inflammasome activation and assembly) [34]. On the contrary, another study conducted
on BthTX-I, obtained from the same species, reported the involvement of NLRP3 and
caspase activation through P2X7 receptors, mediated by ATP [37]. In an in vitro study on
macrophages, both BthTX-I and BthTX-II induced the release of IL-1β and IL-18 via ASC,
NLRP3, and caspase-1 [137]. Studies involving BthTX-I and II have demonstrated that
these proteins activate the NLRP3 inflammasome complex contributing to inflammation
post envenomation [34,139].

In a similar study conducted on sPLA2s from B. moojeni, the authors demonstrated an
indirect trigger of inflammation by the release of ATP by somatosensorial neurons, which
in turn activated P2X2 and P2X3 receptors [145]. Since ATP is a DAMP, the involvement
of NLRP3 inflammasomes is highly likely, thus resulting in the surge of caspase-1, IL-1β,
and IL-18 levels [34,146,147]. Similarly, convulxin, a CTL from Crotalus durissus terrificus,
proved to be a potent activator of NLRP3 inflammasome in human PMBCs, in vitro [109].
Convulxin is also known to activate NF-κB and release IL-2, all contributing to the inflam-
matory responses [148,149]. Another CTL, BjcuL, isolated from B. jararacussu, activated
NLRP3 inflammasomes through TLR4, in vitro. BjcuL also demonstrated the activation
of NF-κB in the process, resulting in the release of IL-1β [140]. The first ROS-dependent
NLRP3 activation was reported by a study conducted on Cr-LAAO isolated from C. rhodos-
toma [138]. The NLRP3 expression was noted in human neutrophils in vitro and inhibition
studies were carried out to confirm the roles of ROS, NLRP3, and caspase-1 when incubated
with Cr-LAAO. The involvement of Bitis arietans venom and Kn-Ba, an SVSP from the same
species has suggested the involvement of inflammasomes in the release of IL-1β in the
THP-1 cell supernatant [101]. All these studies demonstrated the proinflammatory activities
of different snake venom components through inflammasome activation. However, a study
has shown that caspase-1 inflammasome activation protects mouse models from the toxic
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effects of bee and snake venom. Caspase-1 might be inducing these protective mechanisms
through membrane repair by recruiting neutrophils thereby aiding tissue repair mecha-
nisms. The same study also suggests that inflammasomes protected the animals through
the detoxification of venom components indicating the beneficial role of inflammasomes
rather than their harmful effects [150]. Nevertheless, these mechanisms need to be explored
in detail.

Studies performed on the venoms from the ‘big four’ snake species in India have
demonstrated that only Naja naja venom activated the inflammasome pathways in mouse
models. The findings also demonstrated that treatment using MCC950, a selective NLRP3
inflammasome inhibitor, reduced the production of IL-1β through the activation of caspase-
1 pathways in mouse macrophages [151]. In another study, the same group has shown
that dimethyl ester of bilirubin (BD1) inhibited the activation of MAPKs and NLRP3
inflammasomes and reduced Naja naja venom-induced lung toxicity [152]. All these results
are suggestive of the fact that compounds inhibiting inflammasome activation might be
useful in reducing inflammation and local tissue damage post-envenomation. Figure 5
shows a schematic representation of the possible mechanisms through which several snake
venom proteins activate inflammasome-mediated inflammation.

Figure 5. NLRP3 inflammasome activation by various snake venom proteins and its effector functions.
TNF-α, tumor necrosis factor-α; IL, interleukin; NLRP3, nucleotide-binding domain, leucine-rich–
containing family, pyrin domain–containing-3; ROS, reactive oxygen species; GSDMD, gasdermin
D; BD1, dimethyl ester of bilirubin; ATP, adenosine triphosphate; ASC, apoptosis-associated speck-
like protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; TLR-4, toll-like
receptor-4; TNFR, tumor necrosis factor receptor; IL-1R1, interleukin-1 receptor 1; PAMPs/DAMPs,
pathogen/damage-associated molecular patterns. The venom proteins/crude venom responsible
for inducing inflammasome activation are highlighted in different colors; green- phospholipase
A2; dark yellow-snake venom serine protease; purple-C-type lectins, white-L-amino acid oxidase;
Orange-three finger toxins.
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4. Complement Pathway Activation Post Envenomation

Consisting of more than 40 interacting plasma and surface proteins, the complement
system functions in sync with other immune defense systems to mediate inflammation and
the clearance of antigens [153]. Its initiation can occur via one of three major pathways—
classical, alternative, and lectin pathways, that all converge at the formation of C3 conver-
tase [154,155]. This C3 convertase cleaves C3 into C3a (anaphylatoxin) and C3b (opsonin).
Downstream pathways of C3 convertase activation are the generation of C5 convertases
that cleave C5 into C5a and C5b. Anaphylatoxins, such as C3a, C4a, and C5a, mediate local
innate immune responses such as vasodilation via mast cells, leukocyte recruitment, the
release of reactive oxidative species (ROS), and cytokine-release [155]. An increase in the
C3 and C5 cleavage activity has been noted during snake bite envenomation [156]. This
activity may be due to the direct or indirect effect of the snake venom itself, which aggra-
vates the inflammatory responses seen after envenomation. A study in Brazil conducted
on 19 species of snake species demonstrated a significant increase in the complement
components in the serum, predominantly through the classical pathway [157]. Among
the numerous components of snake venom, proteomic analysis showed that the major
contributors were SVMPs and SVSPs [157,158].

Numerous studies have been conducted on Bothrops species to understand their in-
fluence on the complement system. C-SVMP, a P-I class SVMP isolated from B. pirajai
possessed the ability to cleave C3, C4, and C5, which increased the levels of anaphylatox-
ins [158]. This study also showed that this toxin was able to activate all three pathways.
C-SVMPs were able to generate C3a, C5a, and SC5b-9 [159]. Other similar studies sug-
gested the involvement of BpirLAAO-I, BjussuSP-I [160], BpirSP27, and BpirSP41 [102] in
complement activation and the resulting inflammation from B. pirajai and B. jararacussu. In
addition to complement cleavage, C-SVMP also induced the secretion of a chemoattractant,
CXCL9/MIG, in the blood, in addition to increasing the expression of CD11b, C3aR, CD14,
C5aR1, TLR2, and TLR4 in leukocytes [159]. B. lanceolatus triggered an increased expression
of C4a and C5a, but not C3a, which was similarly observed in another study on B. brazili
venom [157,161]. However, in the latter study, various other Bothrops species significantly
induced the production of all the anaphylatoxins—C3a, C4a, and C5a. The authors suggest
that there may be the presence of peptidases in these two Bothrops venoms that degrade
only C3a. Similarly, a study conducted on Naja annulifera demonstrated that the C5a-C5aR1
axis is elicited by SVMPs, that induce the expression of prostaglandins, leukotrienes, and
thromboxanes [162], along with the increased expression of CXCL1.

The proteolytic activities of the coagulation and complement systems inevitably lead to
curiosity about the role of SVSPs since both contain serine proteases. Yamamoto et al. [163]
demonstrated the C3-cleaving activity of Flavoxobin from Trimeresurus flavoviridis venom.
This showed that an SVSP could act as a C3 convertase. In a study conducted on Bothrops
pirajai, serine proteases BpirSP41 inhibited CP and LP hemolytic activity, while BpirSP41
and BpirSP27 inhibited AP hemolytic activity [102]. Certain snake venoms have shown
complement-inhibitory activities, which we suggest may be an evolutionary adaptation
of snakes to increase their venom potency. A study on N. atra demonstrated the ability of
a class-III SVMP, atrase B, to cleave C6, C7, C8, and Factor B which concluded their anti-
hemolytic properties [164]. Similarly, rFII, a recombinant fibrinogenase enzyme, sourced
from Agkistrodon acutus cleaved C5, C6, and C9 components [165,166]. Activation of
the complement system was observed by Micrurus spp. which significantly increased the
production of anaphylatoxins such as C3a, C4a, and C5a, for which, the proposed mediators
were SVMPs and SVSPs [167].

5. Snakebite Envenomation Induced Sterile Inflammation

Several signaling cascades are activated when inflammatory cells are drawn to the site
of tissue or cell damage. These inflammatory pathways are activated through alarm signals
known as damage/danger-associated molecular patterns (DAMPs) [7]. The DAMPs are
composed of motifs that are highly conserved [168]. Cellular integrity might be hampered
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due to several physical, chemical, and environmental factors resulting in a condition known
as sterile inflammation. Several reports indicate that snakebite envenomation also results in
inducing sterile inflammation in the host [7,14,85]. In reaction to these, even in the absence
of infections, inflammatory cells may be drawn to the site of cell injury.

The process termed sterile inflammation is mediated by several molecules including
HMGB1, HSPs, S100B, S100A8, S100A9, MyD88 [62], and IL-6 [169,170]. One member
of the HMG protein family, HMGB1, is mostly found in the cell nucleus and is essential
for controlling the expression of genes. However, upon its extracellular release, HMGB1
has been observed to elicit an inflammatory response through the activation of the NF-κB
pathway. HMGB1 binds to several receptors, including TLR4, TLR2, and TLR9, and the
receptor for advanced glycation end products (RAGE), triggering their activation. The
primary function of the S100 proteins, a class of calcium-binding proteins, is to control
the build-up of calcium inside cells. HSPs (heat shock proteins) typically serve as chap-
erone proteins, aiding in biosynthetic processes. However, when HSPs are released into
the extracellular environment due to cellular necrosis, they can trigger inflammation by
activating receptors like TLR2, TLR4, and CD91. In a study conducted to check the levels of
sterile inflammatory markers during snakebite, it was observed that there was a significant
increase in markers like HMGB1, IL-6, HSP, and S100B [170]. The authors of the same study
also showed that titanium-dioxide nanoparticles (Ti-NP) reduced the levels of these sterile
inflammatory markers. They observed that Ti-NP provided greater protection against
viper-venom-induced mice models than from cobra venom, which was speculated to be
because of the higher levels of PLA2 in viper venom than in cobra venom. Apart from a
very few reports mentioned above, it must be noted that the mediators of sterile inflam-
mation post-envenomation have not been studied in detail. Figure 6 shows a schematic
representation of the possible mechanisms through which several snake venom proteins
induce sterile inflammation.

Figure 6. Possible mechanisms of sterile inflammation elicited by snake venom proteins post enven-
omation. TNF-α, tumor necrosis factor-alpha; IL, interleukin; NLRP3, nucleotide-binding domain,
leucine-rich–containing family, pyrin domain–containing-3; ROS, reactive oxygen species; PGE2,
prostaglandin E2; LTB4 leukotriene B4; NETs, neutrophil extracellular traps; H2O2 hydrogen peroxide;
DAMPs, damage-associated molecular patterns; PGD2, prostaglandin D2.
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6. Snakebite Treatment

A person bitten by a venomous snake would need to seek medical attention before the
serious effects of the venom start to occur. This poses a concern for healthcare systems in
two ways: treatments for envenomation must be available at every healthcare facility and
the effectiveness of the treatment option itself [171].

6.1. Antivenom

Snake antivenoms are the primary treatment for snakebite envenomation, offering
lifesaving protection against the toxicity of snake venom. Large animals, such as horses or
sheep, are immunized with snake venom to produce immunoglobulins, which can then be
processed further using proteolytic enzymes to produce Fab or F (ab’)2 antibodies [172].
They can be polyvalent, which can neutralize several snake venoms, or monovalent, which
is effective against just one kind of snake venom. Antivenom antibodies recognize and
bind to venom components circulating in the blood or tissue compartments following a
parenteral entry in the envenomed patients, aiding their neutralization. [173]. In India, the
polyvalent antivenom (PAV) that is developed against the venom of “The Big Four”—the
spectacled cobra, common krait, Russell’s viper, and saw-scaled viper—is utilized [174].
Although the PAV produced is used as a mainstay treatment against snakebite envenoming,
they are effective at neutralizing systemic toxins only, and their ability to neutralize local
effects is limited, leading to complications from envenomation [175].

Traditional antivenoms have several limitations due to their heterologous nature and
production methods. The presence of non-human proteins in antivenoms, including the
host-animal antibodies, can cause immunogenic reactions in snakebite victims, such as
serum sickness or anaphylaxis. Additionally, antivenom products often experience batch-
to-batch variability and may contain low or imbalanced levels of therapeutically relevant
antibodies. While para-specificity can occur, antivenoms are typically most effective against
the venoms of the snake species they were specifically designed for. The manufacturing
process is labor intensive and low throughput, which raises concerns about the inclusion
of animal-derived impurities, the risk of disease transmission, and the overall cost. Since
venoms are complex mixtures of various toxins with differing toxicity, abundance, and
immunogenicity, not all medically important toxins trigger a strong immune response,
limiting the antivenom’s ability to neutralize all toxins [176]. Several reports have demon-
strated and highlighted the necessity for developing antivenoms that are region-specific to
improve the treatment outcomes in snakebite envenomed victims [175,177–180]. To stream-
line necessary treatment strategies, a detailed characterization of snake venom components
needs to be conducted through proteomics approaches [181].

Effective treatment of envenomation requires the timely administration of antivenom,
which is influenced by factors such as the antivenom dose, the amount of venom injected,
and the recognition of venom proteins by the antivenom. The antivenom is administered
intravenously, but the initial dose must be tailored based on the patient’s response. If signs
of severe envenomation are observed, such as worsening neurotoxic effects, cardiovascular
issues, or persistent incoagulable blood after 6 h, the dosage is adjusted upwards. However,
without the specific snake species responsible for the bite or the precise initial dose needed,
administering a high amount of antivenom poses a risk of serious adverse reactions. The
challenge of determining the correct dosage is compounded by the lack of comprehensive
clinical trials. Consequently, clinicians often rely on the manufacturer’s estimates, which are
typically based on the antivenom’s efficacy in neutralizing venom in laboratory rodents [4].
Research has shown that not all venom proteins are recognized and bound to by antivenoms,
and low molecular weight, less immunogenic proteins, even when highly lethal, do not
provoke a robust immune response in the host animals which makes the antivenom less
effective [179,182].
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6.2. Treatment of the Inflammatory Symptoms After Snakebite

One of the biggest challenges posed by antivenoms is their ability to neutralize only
the free-circulating venom in the blood and not against the venom that has already begun
to act on its target components. Once the symptoms of an envenomation have been initi-
ated, there is a subsequent cascade of pro-inflammatory activities leading to tissue/organ
damage, and subsequently, death [175]. Due to the physical impossibility of a victim to
gain instantaneous access to aid, it is important for healthcare centers to treat the symptoms
of the envenomation in addition to antivenom therapy [171,175].

Antivenoms are usually supplemented with anti-inflammatory drugs such as NSAIDs,
antihistamines, anticholinesterases, etc. [183] in order to reduce the body’s allergic reactions
against the antivenom. Depending on the overall effect of the envenomation, specific
medications may be prescribed, for example, coagulants for bites from Russell’s viper. An
extensive clinical study conducted by Mahmood et al., on hospitalization cases showed
significant diversity in the complications led by snake venom [184]. Prophylactics such
as hydrocortisone and antihistamines are generally given to patients before antivenom
injections but were found to be ineffective in many studies, probably due to the time it
takes to act on the body [185,186]. In addition, antihistamines act only on already released
histamine and do not confer protection against further release. However, a study that
supplemented hydrocortisone with chlorphenamine reduced the antivenom reactions [187].
Depending on the severity of the antivenom reactions, either antihistamines or adrenaline
is administered [188]. In addition, in the case of local tissue necrosis, the victim is also
administered with tetanus toxoid as an injection [189].

7. Antivenom-Mediated Hypersensitivity Reactions

Antivenom administration must be cautiously approached due to the potential for
multiple adverse reactions [190]. Severe reactions can occur within an hour after antivenom
administration, necessitating close patient observation and continuous monitoring of vi-
tal signs to detect any adverse effects promptly. The safety of antivenom is influenced
by several production parameters, such as snake venom composition, immunoglobulin
composition, immunoglobulin fragment purification, and the presence of other compo-
nents including preservatives. At first, antivenoms included fragment crystallizable (Fc)
and fragment antigen-binding (Fab) sections of entire immunoglobulin G (IgG), which
led to a number of adverse reactions. Antivenoms made of Fab or F (ab”)2 with Fc
fragments eliminated were created to lessen the adverse consequences [191]. However,
subsequent research revealed that the purity and protein content of the antivenom were
more critical determinants of adverse reactions than Fc-mediated complement activation.
Well-purified whole IgG antivenom demonstrated comparable potency and safety to F
(ab”)2 antivenom [191]. Depending on the purification process utilized, the geographical
area, and the precise type of antivenom used, the incidence rate of adverse reactions to
antivenom varies [187,192,193].

Adverse hypersensitivity reactions to snake antivenom may occur as both acute (ana-
phylactic and pyrogenic reactions) and delayed (serum sickness) [194]. Anaphylactic
reactions appear within 10–180 min after administering the antivenom. They encompass
various symptoms such as itching, hives, dry cough, fever, nausea, vomiting, abdominal
pain, rapid heartbeat, and diarrhea. In more severe cases, some patients may experience
anaphylactic reactions characterized by low blood pressure, swelling of the skin or mucous
membranes, and constriction of the airways [195–197]. It is possible to further categorize
anaphylactic reactions as either IgE-mediated or non-IgE-mediated. Adverse events in-
duced by early IgE antibodies are seldom documented during the treatment of antivenom.
These reactions manifest in individuals who have been previously exposed to animal im-
munoglobulin, which generates IgE antibodies. These IgE antibodies bind to mast cells and
basophils, triggering cell degranulation upon exposure to antivenom [198]. This release of
chemicals like leukotrienes and prostaglandins causes vasodilation, increased permeability,
muscle contractions, and increased gland function [199]. Most early reactions brought on
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by antivenom are not IgE-mediated. These reactions occur de novo in patients with no
prior record of antivenom administration. The WHO does not recommend using an intra-
dermal hypersensitivity test, which is common for allergic reactions, for non-IgE mediated
anaphylactic reactions. Two mechanisms are proposed to explain the non-IgE mediated
anaphylactic reactions: antivenom anticomplementary activity (ACA) and the presence of
heterophilic antibodies [200].

Pyrogenic reactions usually develop 1–2 h after starting ASV therapy [201]. These
are caused by the presence of pyrogen contaminants during the manufacturing process.
These reactions can manifest as chills, rigors, fever, myalgia, headache, tachycardia, and
hypotension due to blood vessel dilation. Pyrogens that are most found in antivenoms
are bacterial lipopolysaccharides. Typically, these reactions occur within the first hour of
antivenom infusion. Treatment involves physically cooling the patient and administering
antipyretics like paracetamol to manage such reactions. In severe cases accompanied
by hypotension, intravenous fluids, and adrenaline may be necessary. To prevent these
reactions, strict adherence to good manufacturing practices is essential to avoid microbial
contamination in the antivenom, including pyrogens. Delayed reactions, known as serum
sickness, belong to type III hypersensitivity in the Gell–Coombs classification. The reaction
typically occurs between 5 and 20 days after administering antivenom, and it is triggered
by soluble antigen-antibody complex formation. Upon antivenom administration, the
patient’s immune system produces antibodies that attach to the antivenom, resulting in the
formation of antigen-antibody complexes. These immune complexes thereby can trigger the
complement system and cause immune cells, particularly leukocytes, to infiltrate affected
areas [202].

8. Prophylactic Medications for Antivenom Mediated Complications

Both pharmacologic and non-pharmacologic therapies are used to treat antivenom-
induced anaphylactic responses. Non-pharmacologic interventions include airway manage-
ment, fluid resuscitation and momentarily pausing the infusion of antivenom injection [190].
Potential treatments for minimizing the occurrence and intensity of antivenom reactions
include the administration of corticosteroids, adrenaline, and antihistamines [183,203].
Pharmacokinetic studies have demonstrated that intramuscular delivery of epinephrine is
more efficacious than subcutaneous administration making it a primary pharmacologic
intervention. Patients who do not respond to intramuscular adrenaline and fluid resusci-
tation may require intravenous administration of adrenaline [190]. Following successful
control of the reactions and achieving hemodynamic stability, the antivenom infusion may
be resumed slowly. However, this can cause acute reactions to recur, thereby demanding a
repeated administration of adrenaline.

Adrenaline rapidly counteracts the effects of hypersensitivity observed in anaphylaxis.
It targets the cardiovascular system but can also lead to cardiac arrhythmias. Antihis-
tamine drugs are commonly administered along with adrenaline to prevent a recurrence
of anaphylaxis. These drugs are considered relatively safe. Corticosteroids are also used,
as they can suppress the immune system. However, their effects may take several hours
(4–6 h) to become noticeable after administration [183]. A study by Premawardhena et al.
found reduced acute reactions in the serum when adrenaline was administered subcu-
taneously immediately prior to antivenom treatment [192]. If pyrogenic reactions occur,
antipyretics (paracetamol) and physical cooling are both used as treatments for fever. In
severe hypotension cases, intravenous fluids and adrenaline may be needed. Following
excellent manufacturing practices will prevent microbial products from contaminating the
antivenom, preventing adverse responses.

9. Recent Advancements

The field of snakebite envenomation has witnessed significant advancements in recent
years, driven by the application of modern research techniques and a renewed focus on
improving patient outcomes. The need for a better understanding of snake venoms from a
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multi-omics perspective is paramount to enhance the efficiency of antivenoms and to mini-
mize their side effects [204,205]. Advances in venomics have enhanced the understanding
of venom diversity, while snake venom extracellular vesicles (svEVs) may play a part in
the envenomation process, though further research is necessary. Characterization of blood
plasma proteome post-envenomation holds significant potential for identifying venom
biomarkers, but its complexity makes direct proteomic analysis challenging. However,
isolating extracellular vesicles has shown promise, offering insights into tracking venom
effects and assessing antivenom effectiveness, providing a comprehensive overview of
snakebite and treatment responses [206]. A study investigating B. atrox venom was con-
ducted to assess the changes in systemic pathological and inflammatory responses in a
mouse model. This research employed hematologic, lipidomic, and shotgun proteomic
analyses to provide insights into the venom’s effects on the body’s systems [207]. A re-
cent advancement in understanding the pathophysiology of snakebites and enhancing
clinical management involves the analysis of the proteomic composition of blister fluids
from envenomation patients. This highlights proteomics as a valuable diagnostic tool,
capable of detecting various tissue, plasma, and inflammatory proteins resulting from
the tissue-damaging effects of snake venom. It offers important insights into the patho-
logical and inflammatory processes occurring in venom-affected tissues [208]. Proteomic
analysis of exudates from tissues affected by snake venoms has emerged as an effective
method for understanding the distinct patterns of tissue damage caused by crude venoms
and purified toxins, such as hemorrhagic SVMPs and myotoxic phospholipase A2. This
approach can also help identify differences in the effects of venoms that exhibit varying
pathophysiological profiles [209]. A detailed investigation of the plasma proteome of mice
treated with crude Bothrops venom has shown that it is involved in inducing a cascade
of inflammatory responses including thromboinflammation [210,211]. Similarly, recent
studies have explored innovative therapeutic approaches for snakebite envenomation,
focusing on improving patient outcomes. One such approach involves the use of mes-
enchymal stromal cells (MSCs) to address muscle damage caused by snake venom. Early
results show that the MSC secretome significantly mitigates muscle damage caused by
snake venom. This research seeks to harness the regenerative potential of MSCs to promote
skeletal muscle regeneration, capitalizing on their established roles in immune modulation
and angiogenesis promotion [212].

Despite extensive research, our knowledge of the functional aspect of most animal
toxins is still unclear. This is especially true for the processes of toxin production, storage,
and the specialized anatomical structures within venom-producing tissues that might affect
venom composition [213]. A highly promising tool, mass spectrometry imaging (MSI), aims
to offer insights into the spatial expression of proteins by integrating protein data acquisition
through mass spectrometry with visualization software [214]. MSI has been previously
employed to study the spatial differentiation of snake venom glands [215,216]. A study
has reported the use of matrix-assisted laser desorption/ionization mass spectrometry
imaging (MALDI-MSI) combined with proteo-transcriptomic analyses to map the spatial
distribution of toxins within the venom gland of the Egyptian cobra (Naja haje). The
research uncovered significant spatial heterogeneity in toxin classes at the proteoform
level, distributed across different regions of the venom gland [213]. However, a detailed
investigation is warranted to evaluate the pathophysiological mechanism induced by crude
venoms from a clinical perspective.

10. Conclusions

The intricate and varied characteristics of snake venom proteins and their functions in
triggering inflammation following envenomation are emphasized to wrap up this review.
Although many snake venom proteins were formerly classified according to their cytotoxic,
hemotoxic, or neurotoxic properties, it is now clear that these proteins also play important
roles in inducing inflammatory responses. Different clinical consequences may arise from
these inflammatory effects, which might appear both locally, at the bite site, and systemi-
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cally, throughout the victim’s body. Snake venom proteins can cause inflammation through
a variety of mechanisms, including complement system activation, the development of
inflammasome-mediated inflammation, and through sterile inflammation. These pathways
may aggravate long-term recovery and elevate the risk of subsequent infections and other
consequences, in addition to contributing to the initial pain, swelling, and tissue damage
seen after envenomation. Therefore, it is essential to comprehend these mechanisms to
create tailored treatment plans.

The effectiveness of current therapeutics methods, which mostly involve the adminis-
tration of antivenom, in completely alleviating the inflammatory aftermath of snakebites
is limited. Antivenoms are often made to counteract the toxins that cause potentially
fatal hemotoxic or neurotoxic effects, although they might not fully treat the venom’s
inflammatory components. Adjunctive treatments that can precisely block inflammatory
pathways triggered by venom components are, therefore, desperately needed. Subsequent
investigations must concentrate on identifying and characterizing venom proteins account-
able for these inflammatory reactions. Novel therapeutic treatments that either directly
block these proteins or modify the host’s inflammatory response may be developed by
figuring out their precise mechanisms of action and interactions with host immune com-
ponents. Furthermore, investigating the possibility of anti-inflammatory medications in
conjunction with conventional antivenoms as part of a combination therapy may provide
a more thorough course of treatment, enhancing the prognosis for snakebite victims. So,
a better comprehension of the inflammatory pathways set off by snake venom proteins
enhances our understanding of the biology of the respective venom and may create new
opportunities for therapeutic intervention. These discoveries have the potential to improve
patient outcomes and quality of life by lowering the burden of inflammation brought on by
snakebite.
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