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Abstract 

A mixture-of-experts (MoE) approach has been developed to mitigate the poor out-of-distribution (OOD) generalization of deep learn
ing (DL) models for single-sequence-based prediction of RNA secondary structure. The main idea behind this approach is to use DL 
models for in-distribution (ID) test sequences to leverage their superior ID performances, while relying on physics-based models for 
OOD sequences to ensure robust predictions. One key ingredient of the pipeline, named MoEFold2D, is automated ID/OOD detection 
via consensus analysis of an ensemble of DL model predictions without requiring access to training data during inference. 
Specifically, motivated by the clustered distribution of known RNA structures, a collection of distinct DL models is trained by itera
tively leaving one cluster out. Each DL model hence serves as an expert on all but one cluster in the training data. Consequently, for 
an ID sequence, all but one DL model makes accurate predictions consistent with one another, while an OOD sequence yields highly 
inconsistent predictions among all DL models. Through consensus analysis of DL predictions, test sequences are categorized as ID or 
OOD. ID sequences are subsequently predicted by averaging the DL models in consensus, and OOD sequences are predicted using 
physics-based models. Instead of remediating generalization gaps with alternative approaches such as transfer learning and se
quence alignment, MoEFold2D circumvents unpredictable ID–OOD gaps and combines the strengths of DL and physics-based models 
to achieve accurate ID and robust OOD predictions.
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Introduction
RNA, in contrast to DNA and protein, exhibits the unique capac
ity of dual genetic and non-genetic roles, culminating in the hy
pothesis of a primordial RNA world [1]. Whether in its coding or 
non-coding roles, RNA executes biological functions through its 
physical embodiment, a string of nucleotides, governed by uni
versal sequence-structure-interaction principles [2, 3]. Therefore, 
understanding RNA structure, akin to the protein structure prob
lem, is of central importance for the field of RNA biology. This 
has led to tremendous interest and progress in elucidating RNA 
structures with a diverse array of experimental and computa
tional techniques [4–6]. As base pairing and stacking dominate 
the energetics of RNA folding, the pattern and extent of base 
pairing (i.e. RNA secondary structure) defines the stem-loop mo
tif fundamental to RNA function. This study focuses on single- 
sequence-based prediction of RNA secondary structure with 
deep learning (DL) models.

[Single-sequence-based (i.e. de novo) DL models aim to learn 
the sequence-structure mapping of RNA directly from training 
data. Being highly over-parameterized, DL models are immensely 
expressive and able to capture the intricate dependencies at very 
fine-grained levels, as well as pick up various biases and idiosyn
crasies present in the training data. These advantages have led to 
far superior performances of DL models over alternative de novo 
methods on test RNA samples within the training data distribu
tion [7]. In contrast, non-DL de novo methods typically seek to 

optimize a score function over all possible base-pairing configu
rations. The score for a candidate structure can be calculated as 
its physical free energy with experimentally derived parameters, 
or as a statistical likelihood with data-derived parameters [8] 
obtained via traditional machine learning (ML) or related techni
ques [4]. Compared with ML methods, de novo DL algorithms em
ploy orders of magnitude more parameters and are usually 
trained end to end. As such, DL models have attained state-of- 
the-art performances and emerged as a very promising solution 
for de novo prediction of RNA secondary structure [4, 9–11].

Instead of operating on a single sequence, another class of 
predictive models relies on multiple-sequence alignments (MSA) 
to infer RNA secondary structure from co-evolutionary correla
tions [7, 12]. Often referred to as comparative sequence analysis, 
hand-crafted algorithms such as mfDCA [13], PLMC [14] and 
RScape [15] use covariance-based models to predict conserved 
base pairs. DL models have also been applied to learn from RNA 
MSAs [16–18]. These MSA-based approaches are generally more 
accurate and robust than single-sequence-based models. For ex
ample, recent work showed that MSA-based DL models outper
form minimum free energy (MFE) and de novo DL models on new 
RNA folds [19], though the absolute performances still have 
much room to improve on new folds defined by the authors, for 
example, sequence-averaged F1 scores slightly below 0.6 or 0.5 
for models with or without MSA inputs, respectively. 
Nonetheless, MSA-based structure predictions usually entail 
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high computing cost, because large sequence databases need to 
be stored and searched, and deep alignments can take hours. 
The advent of larger databases and more sophisticated pipelines 
has shown to improve the quality of MSAs but led to even slower 
MSA generation [20, 21]. Conversely, de novo DL methods offer 
the advantages of rapid prediction speed while maintaining com
petitive accuracy.

An inherent shortcoming of de novo DL methods, stemming 
from their sole reliance on training data for learning, is poor out- 
of-distribution (OOD) generalization. This is manifested as sub
stantial drops in performance for samples that fall outside the 
training data distribution. Several groups have reported the fail
ure of de novo DL models in cross-family tests, where a specific 
RNA family (e.g. tRNA) is excluded from the training set but used 
for testing [22–24]. Note that the RNA family here denotes a func
tional annotation that is different from Rfam’s definition of fam
ily based on sequence and structure homology for covariation 
analysis [25]. Critically, de novo DL models perform significantly 
worse than MFE-based models in such cross-family tests. Our 
further analysis showed that the generalizability of de novo DL 
models degrades appreciably when the test sample falls below 
80% similarity level to the training set [22]. It is worth noting that 
Lang et al. demonstrated that de novo DL models can achieve 
comparable performances with MFE models on new RNA folds, 
with F1 scores around 0.45 [19]. We speculate that new RNA folds 
are less distant than cross-family sequences, as much lower 
scores are obtained in cross-family tests, e.g. F1 scores �0.27 for 
signal recognition particle and 0.36 for transfer-messenger RNA 
[22]. In short, OOD generalization, particularly at the cross- 
family level, remains a major challenge for de novo prediction 
with DL models.

Consequently, various approaches have been proposed to mit
igate overfitting and improve OOD generalization of de novo DL 
models. For example, regularization techniques such as dropouts 
and weight decays are commonly employed, SPOT-RNA uses 
model ensembles [26], and MXfold2 further introduces thermo
dynamic regulation [27]. However, while reducing the perfor
mance gaps between training and test sets, these strategies often 
degrade model performance and, importantly, do not fundamen
tally resolve ID-OOD generalization gaps—they cannot equip de 
novo DL models with the folding principles of unseen RNA 
families that are unknown. One effective approach is the afore
mentioned data augmentation with MSAs [18], but it is time- 
consuming and requires high quality MSAs that are not always 
possible. An alternative way of data augmentation is through 
representation learning with large language models (LLM). RNA 
LLMs can be trained in a self-supervised manner on vast 
amounts of RNA sequences (e.g. from RNAcentral [28]) to learn 
semantic, contextual, and distributional information from the 
entire biological sequence space. Several studies have fine-tuned 
RNA LLMs for RNA secondary structure prediction [29, 30] with 
state-of-the-art performances, though it is unclear whether LLM 
parameters were also trained during fine-tuning. For instance, 
one recent study reported superior cross-family test results than 
de novo DL models [31], while revealing inconsistent cross-family 
generalizations among other existing LLM-based models. 
Moreover, it remains to be established whether LLM-augmented 
DL models can eliminate the gaps between training and test per
formances entirely, which are actual measures of OOD generali
zation and usually not reported. For example, a recent 
systematic benchmarking study of LLM-based prediction of RNA 
secondary structures revealed significant challenges for 

generalization in low-homology scenarios (i.e. OOD samples) [32]. 
In essence, while ID-OOD generalization gaps can be mitigated, 
they are likely to persist when the learning process is (partly) 
driven by data.

In addition to the inherent limitations of data-driven DL algo
rithms, the scarcity of known RNA structures is another funda
mental cause of the ID-OOD performance gaps. High-resolution 
atomic structures are the best sources for extracting RNA sec
ondary structures, but the number of RNA structures in the pro
tein data bank (PDB) is rather small, fewer than 1000 after 
redundancy removal [33], and the distribution of known struc
tures is largely clustered around a handful of well-studied sys
tems such as tRNA and ribosomal RNA [34]. As a result, existing 
training data mainly comprise secondary structures inferred 
through homology-based computational methods. Rfam curates 
the most comprehensive database of this kind [25]. Despite being 
much larger than the quantity of RNA entries in PDB, Rfam col
lections are highly uneven in terms of length distribution and 
coverage of RNA functions. The quality of homology-based struc
tures also depends on both the quantity and quality of homolo
gous sequences. Therefore, the current state of data quantity, 
distribution, and quality presents another major obstacle to de 
novo predictive algorithms solely driven by data.

Here we propose a mixture-of-experts (MoE) approach that 
integrates the excellent performances of de novo DL models for 
in-distribution (ID) sequences with the robust performances of 
MFE models for OOD sequences. A critical component of our 
method is automated OOD detection without requiring sequence 
alignment against the training set. This is realized through con
sensus analysis of an ensemble of DL models trained via a leave- 
one-cluster-out (LOCO) approach. Specifically, with the training 
set grouped into N dissimilar families (or clusters), N indepen
dent DL models are trained by iteratively excluding a single clus
ter from the training data, resulting in N independent LOCO 
models, each of which has been exposed to N-1 clusters. During 
inference, an ID test sequence is expected to produce highly con
sistent predictions from N-1 models, whereas an OOD sequence 
will yield dissimilar predictions across all N models. 
Consequently, OOD detection can be automated via clustering 
analysis of the N predictions. The final output for an ID sequence 
is the average of the N-1 consistent models, and, as an added 
benefit, the excluded cluster of the outlier model identifies its 
cluster (or family) membership. On the other hand, OOD sequen
ces are predicted with an MFE model—in this case, LinearFold 
with thermodynamics parameters [35]. In this study, we demon
strate the utility of this workflow, named MoEFold2D, with a 
medium-sized de novo DL model, SeqFold2D with 960K trainable 
parameters [22], and a customized training set comprising nine 
RNA clusters. Furthermore, we expect this type of MoE approach 
to be applicable to other scientific domains where only scarce 
datasets with clustered distributions are available.

Methods
Datasets
Our objective is to create a dataset with a relatively small num
ber of distinct clusters (e.g. fewer than a dozen), so as to keep the 
number of LOCO DL models low and maintain a manageable 
computational cost. We start with two widely used datasets, 
ArchiveII [36] and StrAlign [37], which collectively contain ten 
functional types (e.g. tRNA and RNase P). Note that RNA types 
are used in place of RNA families hereafter to avoid ambiguities 
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with Rfam’s family annotation. To standardize the dataset, we 
further remove RNA samples exceeding 600 nucleotides and re
duce sequence redundancy levels below 90% identity using CD- 
HIT-EST [38]. The initial processing results in a total of 8037 sam
ples spanning nine RNA types. We then extract 4837 samples 
from the bpRNA dataset [39] that fall within the nine types based 
on metadata. These samples undergo the same length and 
redundancy filtering steps as described above. All samples are 
then pooled together and a final de-redundancy step using CD- 
HIT-EST ensures a maximum of 90% sequence identity, yielding 
a dataset of 9995 samples. This collection, referred to as 
ClustRNA2D, serves as the main training dataset used in this 
study. Notably, the populations of the nine RNA types are highly 
imbalanced, and their length distributions vary significantly (see 
Supplementary Figs A and B for details).

Each RNA functional type in the ClustRNA2D dataset is 
treated as a distinct cluster in this study. This choice is validated 
through clustering analyses of pairwise similarities obtained 
from both sequence and structure alignments (see 
Supplementary Section 1 and Supplementary Figs C–E for de
tailed analyses of ClustRNA2D clusters). Six different RNA align
ment programs, LaRA 2 [40], Foldalign [41], LocARNA [42, 43], 
RNAforester [44, 45], Gardenia [46], and RNAdistance [44], are 
employed to generate pairwise similarity matrices (9995×9995) 
for the entire ClustRNA2D dataset. The first three alignment pro
grams (LaRA 2, Foldalign, and LocARNA) are inputted with RNA 
sequences only, the next two (RNAforester and Gardenia) are 
provided with both sequences and secondary structures in the 
dot-bracket notation (dbn) format, and the last (RNAdistance) 
takes dbn structures as sole inputs. For each aligned RNA pair, 
we define two similarity scores: (i) seqSim, defined as the per
centage of identical residues relative to the mean length of the 
RNA pair, and (ii) dbnSim, defined as the percentage of identical 
dbn symbols (only for RNAforester, RNAdistance, and Gardenia). 
For similarity-based clustering, the OPTICS algorithm is selected 
because of its robustness to varying cluster densities. After clus
tering, outliers are assigned into their nearest clusters based on 
the average distances to cluster centroids.

DL Model architecture and LOCO training
The SeqFold2D DL model [22], developed by us to study DL gener
alization, is chosen for this study. Its architecture and training 
protocol follow our previous work, as detailed in Supplementary 
Section 2. Briefly, SeqFold2D is a de novo predictive model that 
uses single RNA sequences as the only inputs without data aug
mentations such as MSA or LLM representations. SeqFold2D is 
also free from post-processing steps like enforcement of canoni
cal pairs, sparsity, or thermodynamic consistency. The main 
trunk of SeqFold2D consists of a sequence module (transformer 
and long-short-term memory, LSTM) and a pair module (2D con
volution), and the model’s output is the 2D base pairing probabil
ity matrix (PPM). For this study, a medium-sized version of 
SeqFold2D with 960K trainable parameters is selected. This 
model was shown to achieve competitive performances against 
existing DL models [22]. SeqFold2D is thus representative of 
single-sequence-based DL models, and we choose not to include 
detailed performance comparisons against other DL models in 
this study.

In the MoEFold2D workflow as illustrated in Fig. 1, each DL 
model is trained on all but one cluster in the training data. With 
N¼ 9 RNA clusters in the ClustRNA2D dataset, nine SeqFold2D 

models are trained independently by iteratively leaving one clus
ter out of the training set for each model. This results in nine DL 
models, collectively referred to as the LOCO ensemble.

MoEFold2D prediction pipeline
When predicting RNA secondary structures, the LOCO ensemble 
is expected to exhibit distinct behaviors for ID and OOD test sam
ples, as illustrated in Fig. 1. For a test sample belonging to one of 
the N clusters in the training data, we expect poor performance 
from only one of the N LOCO models—the one trained with the 
specific cluster left out—while the other N-1 predictions are 
expected to be accurate and highly similar to each other and the 
ground truth. This scenario is readily discernable through cluster 
analysis of the N LOCO predictions, signified by a single cluster 
with N-1 similar predictions and one outlier. The N-1 predictions 
in consensus are then averaged to produce the final prediction 
for the ID sequence. An added benefit is the prediction of the 
cluster membership (or RNA type) of the ID sequence, which 
corresponds to the cluster excluded during training of the out
lier model.

Conversely, if the test sample does not belong to any of the N 
clusters in the training data, we expect all N models to yield poor 
and dissimilar predictions. Clustering of the LOCO predictions 
would fail to identify a single cluster of N-1 similar predictions 
and one outlier. In this scenario, none of the DL models can be 
trusted, and an MFE-based model is adopted as the predictor. 
Here we opt for LinearFold [35] for its linear dependence of com
puting time on the RNA sequence length and competitive per
formances against other MFE-based methods such as 
RNAstructure [47] and RNAfold [44].

Evaluation metrics
We choose F1 score as the primary metric for assessing model 
performance due to its ability to effectively balance precision 
and recall in classification tasks [48]. In binary classification, F1 
score is defined as F1¼ 2×Precisoin×Recall

PrecisionþRecall ¼
2×TP

2×TPþFPþFN, where 
Precision is TP/(TPþFP), Recall TP/(TPþFN), TP the number of 
true positives, FP false positives, FN false negatives, and TN true 
negatives. The TP, FP, and FN values are computed by comparing 
the predicted PPM, after discretization with a threshold of 0.5, 
with the ground truth matrix of RNA secondary structure. When 
averaging F1 scores across a dataset, we employ a sequence-wise 

Figure 1. Flowchart of the MoEFold2D workflow with an example of N 
data clusters. Abbreviations: LOCO ¼ leave one cluster out; ID ¼ in 
distribution; OOD ¼ out of distribution.
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approach rather than averaging at the cluster or family level. 
In addition to F1 score, Precision and Recall values are shown in 
Supplementary material.

Results
Cluster analysis of the ClustRNA2D dataset
RNA functional types represent categories of RNA molecules char
acterized by high levels of sequence and structure conservation, 
reflecting the fundamental coupling between sequence, structure, 
and function. Each RNA type thus exhibits distinct sequences and 
structures, making cross-type validation a common practice for 
benchmarking OOD performances of predictive algorithms. In this 
study, we adopt RNA types as unique clusters and further verify 
their congruence with similarity-based clusters.

Our analysis reveals that, for both seqSim and dbnSim scores, 
pairwise similarity matrices show noticeably higher intra-type 
similarities compared to inter-type values, as expected 
(Supplementary Fig. C). Utilizing the OPTICS algorithm for cluster 
analysis, we find that the dbnSim scores derived from 
RNAforester yield the most consistent clusters aligned with the 
known RNA types. Note that dbnSim scores are obtained with 
the knowledge of ground-truth secondary structures and our 
clustering analysis should be considered as structure-based. As 
shown in Table 1, each similarity-based cluster predominantly 
comprises RNAs from a single type, with minimal “spillover” 
from other types. Notably, two RNA types, 16S rRNA and SRP, are 
split into two clusters each, possibly due to substantial intra-type 
heterogeneity suggested by their non-Gaussian-like length distri
butions (see Supplementary Fig. B). Additionally, the two least 
populous RNA types, 23S rRNA (20 samples) and TERC (30 sam
ples), fail to form distinct clusters and are identified as outliers, 
which are assigned to closest existing clusters. It is possible to 
cluster them successfully using OPTICS parameters allowing for 
low-density clusters, but such clustering also results in frequent 
splits of other RNA types and numerous clusters with small sizes 
(see Supplementary Figs D and E and associated text for details).

Taking these factors into consideration, our observations as
sert that each RNA type comprises a group of closely related RNA 
molecules distinct from all other types. However, large 

differences in densities and non-uniform distributions among 
RNA types make it rather difficult to achieve perfect cluster vs. 
type congruence with a single set of algorithmic parameters. In 
sum, our cluster analyses validate RNA functional types as 
standalone clusters, while acknowledging substantial variations 
in cluster sizes and intra-cluster distributions.

Performances of individual LOCO models
Here, we assess how the performances of invididual LOCO mod
els are influnced by the exclusion of a specific RNA type from the 
seen set, as well as varied data redundancy levels and type-based 
upsampling of the seen set. N.B. clusters and types are used 
exchangeably. ClustRNA2D is first split into one seen set and one 
unseen set. The unseen set also serves as an ID test set, referred 
to as TS80, obtained by reducing the sequence redundancy level 
of ClustRNA2D to 80% (via CD-HIT-EST) and drawing out 15% 
through cluster-stratified, random sampling.

Then, a seen set for training and validation is obtained by ex
cluding samples in ClustRNA2D that have sequence identity 
above 80% against TS80. The seen set, referred to as NR90, thus 
has an intra-set sequence redundancy level similar to 
ClustRNA2D (ie, 90%). The rationale for a seen set with higher re
dundancy than a typical 80% is to expose DL models to more di
verse samples within the same overall distribution. However, 
this is at the expense of even more imbalanced size distribution 
among the clusters, as the more populous clusters typically have 
higher intra-cluster densities in the original dataset. In order to 
investigate the effects of varied cluster sizes and redundancy lev
els, we consider several additional configurations of the NR90 
set: (i) NR90-UP, by up-sampling all clusters to match the size of 
the largest cluster; (ii) NR80, by further reducing NR90 to 80% re
dundancy with CD-HIT-EST; and (iii) NR80-UP, by up-sampling 
the NR80 set to have the same size for all clusters. For each of 
these seen set configurations, we train a total of ten SeqFold2D 
960K models, nine LOCO models and one with the entire seen 
set. Each seen set is further randomly split into a training set for 
updating trainable parameters and a validation set for early stop
ping, and TS80 is the common test set.

The four seen sets (NR90, NR90-UP, NR80, and NR80-UP) yield 
distinctive model performances, as depicted in Fig. 2A. Notably, 
up-sampling results in nearly identical training set F1 scores across 
all RNA clusters, irrespective of their original cluster sizes. This 
stands in stark contrast to the degradation of training performan
ces observed for under-represented clusters without up-sampling. 
However, consistent training performances on up-sampled clus
ters do not transfer to the validation or test sets, where larger 
train-validation gaps are evident for clusters with smaller sizes, 
and the train-test gaps generally widen even further. While up- 
sampling levels up the training performances across all clusters, 
it fails to achieve similar improvements on test samples, limiting 
its effectiveness in mitigating cluster size imbalances.

Upon closer examination of the common test set, TS80, we ob
serve slightly higher F1 scores for the NR90 and NR90-UP sets 
compared to NR80 and NR80-UP for the entire TS80 set (denoted 
as [TOTAL] in Fig. 2). For individual RNA clusters, the under- 
represented clusters (e.g. TERC and 16S rRNA) benefit more from 
higher redundancy (e.g. NR90 vs. NR80) or up-sampling (e.g. 
NR90-UP vs. NR90) of the training set. However, it is important to 
note that the improvements are small, and under-represented 
clusters still exhibit rather low F1 scores, particularly for the case 
of sparsely populated 23S rRNA with very poor outcomes from all 
four seen sets. Overall, our observations indicate that training 
with a seen set featuring higher redundancy or up-sampling can 

Table 1. The composition of RNA functional types within each 
similarity-based cluster identified by the OPTICS algorithm, 
demonstrating high levels of congruence between RNA types and 
OPTICS clusters.

RNA Type

tRNA 4996 4996 0 0 0 0 0 0 0 0
Intron I 1028 0 1026 0 0 1 1 0 0 0
5S rRNA 2326 41 0 2285 0 0 0 0 0 0
16S rRNA 470 2 0 7 324 0 1 19 1 116
RNase P 367 0 11 1 2 329 24 0 0 0
tmRNA 345 1 0 0 0 0 344 0 0 0
SRP 413 7 0 24 1 0 1 191 188 1
TERC 30 0 1 0 7 8 0 0 0 14
23S rRNA 20 0 8 0 2 3 2 0 4 1

Total 5047 1046 2317 336 341 373 210 193 132
#0 #1 #2 #3 #4 #5 #6 #7 #8

OPTICS cluster ID

The total number of samples for each RNA type (OPTICS CLUSTER) is given in 
the adjacent column (row). It is important to note that these RNA types, rather 
than OPTICS clusters, are used as individual clusters for training deep 
learning models.
Abbreviations: rRNA ¼ ribosomal RNA, tRNA ¼ transfer RNA, Intron I ¼ group 
I intron, tmRNA ¼ transfer messenger RNA, SRP ¼ signal recognition particle, 
TERC ¼ telomerase RNA component.
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enhance model performances, albeit to a modest degree and 
dependent on the specific data distributions. Consequently, 
NR90-UP is used as the seen set for the results presented hereaf
ter, while noting that the uses of the other sets yield comparable 
outcomes. Moreover, other metrics (e.g. Precision, Recall, and 
Matthews correlation coefficient (MCC)) exhibit similar trends as 
F1 score (see Supplementary Fig. G).

The presence of nine RNA clusters/types in the ClustRNA2D 
dataset enables the training of nine SeqFold2D models using the 
LOCO strategy. Figure 2B illustrates their performances when 
trained with the NR90-UP set, along with a model trained with the 
entire NR90-UP set for comparison. It is evident again that up- 
sampling levels up training performances for all clusters, irrespec
tive of their sizes, but remains susceptible to overfitting and poor 
generalization. Crucially, for every RNA type in the test set (TS80), 

we observe highly similar F1 scores from all models except one, 
and the outlier model is the one trained with that specific RNA 
type left out. Moreover, the outlier model exhibits notably poorer 
performance compared to the other LOCO models, as expected for 
ID samples, which is the case for TS80 with respect to NR90-UP. 
Additional metrics (shown in Supplementary Fig. H) exhibit quali
tatively consistent trends, while Recall appears to degrade more 
significantly than Precision or MCC for underrepresented RNA 
types such as TERC and 23S rRNA. Precision and Recall can be 
reweighed via the beta value in the F-beta score definition 
(beta¼ 1 in F1 score) or balanced by tuning the threshold used for 
discretizing pairing probabilities. We chose not to even out 
Precision and Recall as their imbalance is pronounced only for 
selected RNA types. Similar trends are observed on LOCO model 
ensembles trained on the NR90, NR80, and NR80-UP sets 

Figure 2. The performances of SeqFold2D models trained on different data configurations, illustrating the effects of the training data redundancy level 
and RNA type-based upsampling (A) and model training, validation, and test performances of the LOCO ensemble (B). In each panel, the average F1 
scores are displayed for the respective training (top), validation (middle), and test (bottom) sets. The training and validation sets are random splits of 
the seen set, which is detailed below. The test set, TS80, is common for all models. For each set, the scores are presented for the entire set, denoted as 
[TOTAL], and for its constitutive RNA type labeled along the x-axis. (A) SeqFold2D models trained on four seen sets: NR90, NR90-UP, NR80, and NR80- 
UP, respectively. Each model is identified by its seen set, as specified in the legend. (B) SeqFold2D models trained via the LOCO strategy on the NR90-UP 
seen set, with the left-out cluster/type indicated in the legend. A SeqFold2D model trained with no cluster left out is shown as a reference, denoted as 
NR90-UP. Note that each LOCO model (all except NR90-UP) excludes its respective left-out cluster from both its training and validation sets, resulting 
in empty bars in corresponding positions. One key observation is the substantially worse performance of each LOCO model on the left-out RNA type.
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(Supplementary Fig. I). These observations lend strong support for 
the proposed method of automated ID/OOD detection, where ID 
samples can be identified by the pattern of a single cluster of N-1 
highly similar predictions and one outlier among the N LOCO 
predictions.

Ensemble-based prediction of ID test samples 
with known RNA types
With nine LOCO models as shown in Fig. 2B, an ID sample results 
in eight consistent predictions and one outlier, while an OOD 
sample yields nine mutually dissimilar predictions. Automated 
ID/OOD detection can thus be achieved via consensus analysis of 
LOCO predictions. Beyond ID/OOD classification, the left-out 
RNA type of the outlier model further predicts the RNA type of an 
ID sample, whereas “OOD” is assigned to OOD samples. Thus pre
dicted RNA types for the TS80 test set are shown against the 
ground-truth RNA types in Fig. 3A with NR90-UP as the seen set. 
Out of the 606 samples in TS80, 576 (95%) are correctly predicted 
as their ground-truth types, 4 (0.7%) are mis-identified as other 
types, and 26 samples (4.3%) are labeled as OOD. The overall per
formance is excellent, and many RNA types are predicted nearly 

perfectly. Nonetheless, the success rate of ID/OOD detection 

depends on the RNA type and appears to strongly correlate with 

the test performance of the specific type. For example, the lowest 

success rates are observed for 23S rRNA (0%) and TERC (33%) 

with test F1 scores are far lower than the other RNA types, below 

0.6 vs. over 0.9 (Fig. 2B). This correlation is rather healthy as we 

prefer not to identify a sample with a low F1 score as ID and pre

dict its type (further discussed below). On the whole, the LOCO 

ensemble proves to be capable of identifying the specific cluster 

membership for ID test samples.
Importantly, it appears insufficient for ID samples to simply 

belong to one of the training types to achieve successful RNA 

type prediction. Instead, the true prerequisite for ID samples is 

consistent predictions from all but one LOCO models. High con

sistency among multiple independent LOCO models gives a very 

high chance for all predictions to be close to the ground truth 

and hence highly accurate. As such, samples that categorically 

belong to the training types can still be classified as OOD if the 

LOCO ensemble makes inconsistent predictions, which are very 

in fact very likely to be inaccurate. Notably, this consistency- 

Figure 3. Model predictions on the TS80 test set with known RNA types. (A) Congruence between the predicted (y-axis) and ground-truth (x-axis) RNA 
types of the TS80 set, exhibiting high levels of consistency in RNA type prediction. (B) Performance comparisons of different models: MFE, SeqFold2D 
(NR90-UP), the LOCO ensemble (LOCO), and MoEFold2D. F1 scores are shown for the entire TS80 set ([Total]) and the predicted RNA types. Main 
observations are that MoEFold2D achieves similar performances as its parent DL model for the samples identified as ID and that the samples with poor 
performances are more likely to be identified as OOD.
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based classification is not a disadvantage but an advantage of 
the LOCO strategy, as our overarching goal is to use DL models 
where DL predictions are accurate. Here the consensus analysis 
presents a practical way to gauge the prediction robustness and 
accuracy of DL models, going beyond the use of nominal RNA 
types that are imperfect surrogates for ID/OOD detection.

In the next step of the MoEFold2D workflow, the secondary 
structures of ID and OOD samples are generated in different 
ways: ID samples take the average of their respective sets of con
sistent LOCO predictions while OOD samples are predicted with 
an MFE-based model (LinearFold). Fig. 3B shows the MoEFold2D 
performances on the TS80 set, together with the MFE-based pre
dictions of all TS80 set (denoted as “MFE”), the predictions by a 
single SeqFold2D model trained with the entire NR90-UP set 
(“NR90-UP”), and the averages of the LOCO ensemble (“LOCO”) 
where consistent models are averaged for ID samples and all 
models are averaged for OOD samples as the best guess. Note that 
SeqFold2D has been extensively benchmarked against data-drive 
and physics-based models in our previous study [22] and exhibits 
on-par or better performances on commonly used datasets, hence 
MoEFold2D is primarily compared with the NR90-UP SeqFold2D 
model herein. As expected from TS80 being an ID test set, DL 
models (SeqFold2D and LOCO) surpass the MFE model by substan
tial margins overall and individually for each identified RNA type. 
It is reassuring that the test samples with successful identification 
of RNA types all have excellent performances, and the 4.3% sam
ples detected as OOD show much poorer performances in com
parison, corroborating the ability of consensus analysis in 
estimating model accuracies. It is worth noting that the LOCO en
semble further shows a slight edge over SeqFold2D, presumably 
due to the averaging of multiple LOCO models. In sum, the case 
study of TS80 as an ID test set lends strong support to the utilities 
of the MoEFold2D workflow in automated ID/OOD detection, iden
tification of RNA types, and superior performances of ID samples.

Ensemble-based prediction of OOD test samples 
with unknown RNA types
We next examine the LOCOFold performances on an OOD test set 
with unknown RNA types. The TS0 set, first compiled by the SPOT- 
RNA team, is used for this purpose and referred to as bpRNA- 
TS0. As bpRNA-TS0 is derived from bpRNA with partial overlaps 
with ClustRNA2D, we further filter out the samples above 80% 

sequence identity with respect to the entire ClustRNA2D dataset 
using CD-HIT-EST, obtaining a total of 1118 samples out of 1305 
in the original set. Figure 4 shows the F1 scores on the filtered 
bpRNA-TS0 set as a whole ([Total]) and grouped by the predicted 
RNA types. Over 86% of the bpRNA-TS0 set is predicted as OOD, 
consistent with bpRNA-TS0 being much more distant to the seen 
set (NR90-UP) than the TS80 set. Evidently, the MFE model sub
stantially outperforms the DL models (NR90-UP and LOCO in  
Fig. 4) on the OOD samples, as expected from the poor OOD gen
eralization of DL models. Interestingly, on the 14% of bpRNA-TS0 
identified as ID, the DL models achieve slightly better performan
ces than the MFE model. By choosing DL for ID samples and MFE 
for OOD samples, MoEFold2D combines the best performances 
on both ID and OOD populations, testifying to the robustness of 
the MoEFold2D workflow on a distant test set.

The case study of bpRNA-TS0 as a distant test set indicates 
that the LOCO DL models are only used for predicting a rather 
small fraction of test samples and mainly serve as the method of 
automated ID/OOD detection. Despite the reduced utility of DL 
models, it can be argued that this is the preferred action because 
DL models cannot be trusted on OOD samples. This case study 
further demonstrates that the consensus analysis of LOCO en
semble can pick out the samples among a distant set that are 
likely predicted with high accuracy by DL models, evidenced by 
the large performance gaps between ID and OOD samples (NR90- 
UP and LOCO in Fig. 4). This corroborates the advantage of con
sensus analysis in gauging the prediction accuracy of DL models.

Notably, the absolute performance of the DL models on the ID 
samples in bpRNA-TS0 is significantly lower than that on the ID 
samples in TS80, as low as 0.4 for some predicted RNA types. As 
the consensus analysis clusters together predictions within a ra
dius of 0.2 in F1-score distance from the center, the pair distan
ces within a cluster can range from zero to nearly 0.4. The cluster 
radius of 0.2 can be tuned up or down to loosen or tighten the 
consistency threshold, which would also lead to more or fewer 
samples identified as ID, respectively. A more stringent threshold 
generally improves the prediction accuracy but can render all 
samples identified as OOD. Here 0.2 is chosen such that the DL 
models would still outperform or at least match the MFE model 
on the ID samples in bpRNA-TS0. Moreover, the pairwise F1 
scores used by the consensus analysis contain additional statis
tics such as the mean and spread of the scores. We have 

Figure 4. Model performances on the filtered bpRNA-TS0 test set with unknown RNA types. The same four models (groups) as in Fig. 3 are shown here 
as denoted by the legend. Note that the MFE and MoEFold2D predictions are the same for OOD samples. The key observation is that, even for an OOD 
test dataset, MoEFold2D can pick out the subset of samples with relatively high performances and identify them as ID, while the samples identified as 
OOD exhibit substantially lower performances and are safeguarded by physics-based predictions.
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examined the informative power of such statistics on prediction 
accuracy but found no satisfactory correlation near the boundary 
of ID/OOD classification. More work is required to extend the 
consensus analysis beyond binary ID/OOD classification.

Conclusion
In this study, we present a practical and effective approach to 
take advantage of superior ID performances of DL models via a 
LOCO strategy to first realize automated ID/OOD detection. The 
LOCO method is enabled by the clustered distributions of RNA 
sequences with reliable knowledge of secondary structures, 
allowing training of an ensemble of DL models each of which is 
exposed to all but one data cluster. Consensus analysis of the 
LOCO ensemble serves to identify ID samples in the test set and 
further designate their cluster membership without accessing 
the training data (ie, in lieu of comparative sequence analysis). 
With ID samples predicted by averaging the LOCO ensemble, and 
OOD samples predicted by an MFE model, the MoEFold2D pipe
line achieves highly accurate ID and robust OOD predictions. 
Two case studies with one ID and one OOD test sets demonstrate 
the efficacy of MoEFold2D in ID/OOD detection and prediction 
performance.

MoEFold2D can be substantially improved in multiple aspects 
beyond the proof-of-principles studies presented here. First, ex
pansion of existing clusters and addition of new clusters will im
prove the performance and scope of the LOCO ensemble. Several 
clusters in ClustRNA2D are either too small (e.g. 23S rRNA and 
TERC) or very heterogeneous (e.g. SRP and 16S rRNA), and in
creasing the population and coverage of these existing clusters 
will boost both prediction accuracy and ID detection for these 
specific RNA types. Addition of new clusters will broaden the 
span of ID distributions as well as the utilization of ID predictions 
of DL models. One possibility is to incorporate the entire Rfam 
database into ClustRNA2D. However, our preliminary analysis 
observes the appearance of many small-sized clusters and the 
merge of some existing clusters (e.g. tRNA and 5S rRNA). Detailed 
analyses, including data pruning and alternative clustering algo
rithms (e.g. bpRNA-align [49] or graph-based GraphClust [50]), 
are likely necessary for cluster-based curation of a diverse and 
large dataset such as Rfam. On the model side, a larger 
SeqFold2D model may be needed for training a larger number of 
clusters with increased diversity in order to obtain superior ID 
performances. The MFE model for OOD samples, currently 
LinearFold only, can be extended to an ensemble of physics- 
based models and to make use of the recent update of thermody
namic parameters [51]. Moreover, the consensus analysis can be 
replaced by a machine learning model or multilayer perceptron 
trained for ensemble learning. Lastly, the set of LOCO DL models 
all have distinctive learning dynamics resulting from different 
left-out clusters, and more fine-grained analysis of the LOCO en
semble predictions (i.e. beyond the consistency analysis based on 
mutual F1 scores) may shed lights on the uncertainty quantifica
tion or structural diversity. Conversely, the premise behind 
MoEFold2D, poor OOD generalization of DL models, will become 
obsolete when the body of RNA sequences with known structures 
eventually covers the explorable RNA space in biology.

Meanwhile, the MoEFold2D pipeline, particularly the LOCO 
ensemble method, can be readily transferred to other scientific 
domains with sparse and clustered data distributions, so as to 
take advantage of the expressive capacity of DL for ID predic
tions. More broadly, the MOE approach is witnessing a 

renaissance in the realm of large language and multimodal mod
els where an ensemble of smaller, task-specialized DL models 
can be trained and run at lower costs and yield competitive per
formances collectively [52, 53]. The MoEFold2D approach herein 
develops data-specialized DL models, and consensus analysis is 
used in place of a routing network for ID/OOD detection. Its small 
mode size and compute requirement (e.g. a single commodity 
GPU with 12 GB RAM for the SeqFold2D 960K model) further 
make DL accessible to the broader scientific community for rapid 
exploration.
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