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ABSTRACT

The lexicon is an evolving symbolic system that expresses an unbounded set of emerging
meanings with a limited vocabulary. As a result, words often extend to new meanings.
Decades of research have suggested that word meaning extension is non-arbitrary, and recent
work formalizes this process as cognitive models of semantic chaining whereby emerging
meanings link to existing ones that are semantically close. Existing approaches have typically
focused on a dichotomous formulation of chaining, couched in the exemplar or prototype
theories of categorization. However, these accounts yield either memory-intensive or
simplistic representations of meaning, while evidence for them is mixed. We propose a unified
probabilistic framework, infinite mixture chaining, that derives different forms of chaining
through the lens of cognitive efficiency. This framework subsumes the existing chaining
models as a trade-off between representational accuracy and memory complexity, and it
contributes a flexible class of models that supports the dynamic construction of word meaning
by automatically forming semantic clusters informed by existing and novel usages. We
demonstrate the effectiveness of this framework in reconstructing the historical development of
the lexicon across multiple word classes and in different languages, and we also show that it
correlates with human judgment of semantic change. Our study offers an efficiency-based
view on the cognitive mechanisms of word meaning extension in the evolution of the lexicon.

INTRODUCTION

A primary function of the lexicon is to support the expression of an unbounded set of emerging
meanings with a limited vocabulary. As a result, words often take on new meanings. For exam-
ple, the word face in English originally signifying “body part” was extended later to convey
meanings such as “facial expression” and “front surface of an object” (Kay et al., 2015). Sim-
ilarly, the word store took on a variety of novel noun arguments including food, electricity, and
password over the past centuries, as illustrated in Figure 1. Word meaning extension is a
dynamic process in which words acquire new referents and senses over time, and it is a man-
ifestation of language change which results from a functional need for maximizing communi-
cative expressivity under minimum effort (Blank, 1999; Jespersen, 1959). Existing research has
suggested that word meaning extension is non-arbitrary and can be explained partly by
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cognitive models of semantic chaining (Grewal & Xu, 2021; Habibi et al., 2020; Hilpert, 2007;
Lakoff, 1987; Malt et al., 1999; Ramiro et al., 2018; Sun et al., 2021; Xu et al., 2016; Yu & Xu,
2021). However, there is no unified account of different cognitive models of chaining. We
present a general probabilistic framework that derives different forms of semantic chaining
through the lens of cognitive efficiency.

Word meaning extension is a form of word meaning change (also known as semantic
change), which is a long-standing topic of interest to scholars in historical linguistics (e.g.,
Bréal, 1897; Traugott & Dasher, 2001) and cognitive linguistics (e.g., Lakoff, 1987). Recent
work in cognitive science suggests that word meaning extension is a dominant strategy for
lexicalizing emerging meanings in the historical development of the English lexicon, and this
process relies in part on semantic chaining, also abbreviated as chaining (Ramiro et al., 2018).
Chaining refers to incremental mechanisms of word meaning extension whereby new mean-
ings link to existing ones of a word when they are proximal in semantic space, therefore form-
ing chain-like semantic structures over time (Hilpert, 2007; Lakoff, 1987; Malt et al., 1999;
Perek, 2018). Existing studies have tested this incremental view by developing computational
models of chaining that account for the historical meaning extension of container names
(Sloman et al., 2001; Xu et al., 2016), numeral classifiers (Habibi et al., 2020), adjectives
(Grewal & Xu, 2021), verbs (Yu & Xu, 2021), and slang terms (Sun & Xu, 2022; Sun et al., 2021).

These previous studies of semantic chaining typically formulate the models in the tradition
of two psychological theories of categorization based on prototypes and exemplars. The
prototype theory postulates that each lexical category is represented by a central prototype
(Lakoff, 1987; Reed, 1972; Rosch, 1975) and has influenced subsequent cognitive linguists
who view chaining as a mechanism for generating radial categories. Another account is the
exemplar theory of categorization, which proposes that each category is represented by its
set of exemplars stored in memory, and it has motivated a line of computational models
like the Generalized Context Model that are commonly used to explain human categori-
zation (Ashby & Alfonso-Reese, 1995; Nosofsky, 1986).

Two outstanding issues emerge from these previous studies. First, they often focused on a
dichotomous comparison and assumed that the prototype and exemplar models of categori-
zation are sufficient to capture the cognitive processes of chaining in word meaning extension.
Second, which of these two models better explains empirical data has received mixed views in
different lexical semantic domains (see Grewal & Xu, 2021; Habibi et al., 2020; Yu & Xu,

Figure 1. Usage frequencies of the phrases store food, store electricity, and store password in the
past two centuries of English. Data were extracted from Syntactic N-grams historical corpus
(Goldberg & Orwant, 2013).
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2021, but also Geeraerts, 1997; Sun et al., 2021), and therefore there is no unified understand-
ing for the different forms of chaining.

Here we propose a general approach to modeling the dynamic construction of word mean-
ing. Our framework not only subsumes the different computational models of chaining but
also offers a new class of flexible models that goes beyond the existing accounts of chaining
to support the automatic construction of word meaning through time. In particular, we formu-
late word meaning extension as the process where a target set of head words expand their
collocation classes to pair with a larger array of arguments over time, a view that is consistent
with studies on lexical semantic change (Allan & Robinson, 2012; Hilpert, 2012). We evaluate
our framework against large-scale historical data in different word classes and languages, as
well as human judgment of lexical semantic change.

Theoretical Foundation

Our framework builds on the view that word meanings are structured to support efficient com-
munication (Kemp et al., 2018; Zaslavsky et al., 2018), and that accounts of word meaning
extension should take cognitive efficiency into consideration (Ramiro et al., 2018; Xu et al.,
2020). Here we define cognitive efficiency as a principled criterion for deriving different for-
mal accounts of semantic chaining, which is based on a tension between two competing con-
straints that trade off against each other: representational accuracy and memory complexity (or
memory load). Representational accuracy refers to the precision at which a model captures the
representation of word meaning, particularly how meaning dynamically changes over time.
Memory complexity refers to the cost incurred by a model in meaning representation, partic-
ularly the number of stored items required to represent the meanings of words.

Under this view, we propose that the existing accounts of chaining including the prototype
and exemplar models can be understood as candidates that fall under the two extremes of this
trade-off. At one extreme, the exemplar model offers a highly accurate mental representation
of a word’s meaning, or lexical category, by storing the past exemplars (i.e., word usages), and
it may therefore predict the state of a new item in relation to all the exemplars from memory
(see Figure 2a). In this respect, the exemplar model maximizes representational accuracy but
at the expense of a high memory load. At the other extreme, the prototype model offers a
highly compact representation for a category in terms of a central prototype, and it predicts
the state of a new item in relation to that prototype (see Figure 2b). In this respect, the proto-
type model minimizes memory complexity but at the expense of a simplistic representation,
and as a result, the capability of prototype model in predicting or explaining linguistic category
extension may be limited compared to exemplar models. The exemplar-prototype dichotomy
can thus be interpreted in a unified way as a fundamental tradeoff of cognitive efficiency in
word meaning extension: An accurate model tends to demand a high memory load, while a
minimum-effort model tends to be more impoverished in representational precision. This
efficiency-based framework also offers the possibility to formulate alternative accounts of
chaining that go beyond the existing models by near-optimally trading off between the two
described constraints of efficiency.

Our proposal is closely related to research in rational human learning and machine learn-
ing based on infinite mixtures. Building on this line of work, we model word meaning as an
infinite or growing mixture of clusters of usages (see Figure 2c). This modeling scheme can be
flexibly adapted to alter the internal structure of a semantic category as it assimilates new items
(Alishahi & Stevenson, 2008; Anderson, 1990; Griffiths et al., 2007; Rosseel, 2002; Vanpaemel
et al., 2005). In our case, an infinite mixture approach to modeling chaining can potentially
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capture polysemy (Klein & Murphy, 2001; Li & Joanisse, 2021; Rodd et al., 2012; Tuggy, 1993)
and complex structures of word meaning as new items (or usages) emerge over time, therefore
moving beyond the exemplar and prototype models which either represent word meanings as
a set of independent exemplars or a single prototype. On the other hand, our framework also
carries the potential to capture idiosyncratic word usages by storing them as “microclusters”
consisting of a single example, therefore offering a “mid-level” structure that lies between
schematic and exemplar representations (Dąbrowska, 2004). Similar approaches have been
explored in statistical machine learning in the tradition of Dirichlet process (DP) mixture (Allen
et al., 2019; Escobar & West, 1995; Ferguson, 1973) which instantiates a trade-off between
information loss in model reconstruction of data and complexity in terms of the number of
clusters inferred by model (Kulis & Jordan, 2012). Importantly, we demonstrate that the seman-
tic structures inferred by the infinite mixture model can be utilized to predict human judgment
of historical semantic change.

COMPUTATIONAL FRAMEWORK

In the following, we first formulate word meaning extension as a temporal prediction problem
under the two constraints of cognitive efficiency described. We then show how several exist-
ing classes of chaining models and a new class of models can both be derived from this frame-
work, and we specify the semantic space in which these models are operationalized. Code
and data for our work are made available in the following repository: https://osf.io/nsrph/
?view_only=9c3f9c0abb9b4679ad5cea7dd6ab3a6e.

Figure 2. Illustrations of (a–c) models of chaining and (d) how they trade off between representational accuracy and memory complexity in
the process of word meaning extension. The exemplar model yields high representational precision by linking a novel item (grey dot) to all
existing support items (green dots), so it requires high memory complexity. The prototype model requires low memory by linking the novel item
to the prototype (red star), but it tends to be less accurate in representation. The infinite mixture model trades off between accuracy and
complexity by constructing a semantic space that groups similar items into a sparse set of clusters (dashed circles), and then linking the novel
item to the cluster centroids (blue stars).
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Problem Formulation Under Efficiency Constraints

We define word meaning extension as a temporal prediction problem following the proce-
dures from existing work on semantic chaining that focused on comparing the exemplar
and prototype models (Grewal & Xu, 2021; Habibi et al., 2020; Yu & Xu, 2021).

Given a novel emerging item denoted by n (e.g., this item can be a new concept that
emerges over time such as password ), we want to predict which existing words in the vocab-
ulary can be extended and chosen to describe it. As a concrete example, we first describe our
framework in the case of predicting verb meaning extension, and we show later how it can be
applied broadly to other word classes not restricted to verbs.

We cast the problem of word meaning extension as probabilistic inference for predicting
novel compositional usages of existing verbs and novel noun arguments. Specifically, given a
novel noun n such as password, we ask which verbs w can be taken as its syntactic predicate
to form previously unattested compositions that extend the meaning space of w, e.g., store: “to
store food” → “to store password”. We therefore call the word w as the head word (or head ),
and the nouns that form phrases with w the arguments of the head. Since a head can take noun
arguments under different syntactic roles (e.g., English verbs can take nouns as direct objects,
and English adjectives serve as the modifiers of their noun arguments), we also constrain the
syntactic relations r in predicting novel phrases. Formally, we consider a head-relation pair

(w, r) (e.g., w = store, r = direct object) as a time-varying category denoted by S tð Þ
w ;r that consists

of all existing syntactic noun arguments under relation r up to time t. The temporal inference
problem is then equivalent to predicting the probability of any query noun nq to emerge in that
category at a future time. We focus on predicting pairings of existing heads with query nouns
that have not yet appeared as arguments for given heads – for instance, the category “store
(direct object)” may have been attested include the noun food up to time t, and can be pre-
dicted by a model to extend toward predicating new technological terms such as information
or password later.

Formally, given an emergent query noun nq at time t, and a list of head word forms w with

existing noun arguments S tð Þ
w ;r up to t, our framework models the process of semantic chaining

in the head prediction problem – i.e., inferring which heads will be appropriate predicates for
nq under syntactic relation r at time t + Δ, where Δ is an incremental time step. The probability
of a head w being a predicate of nq via relation r is defined as follows:

p w ; r jnq
� �tþΔ ¼ pðnqjSt

w ;r Þ ∝ simðnq;St
w ;r Þ (1)

Our framework can be applied similarly to the argument prediction problem asking which
novel query nouns will most likely emerge into a head’s referential range in the near future.
We achieve this by modeling the conditional probability p(nq|w, r) of nq being added as a new
syntactic argument of w. We take a probabilistic Bayesian approach by computing p(nq|w, r)
as a posterior distribution with a frequency-based prior over heads:

p nqjw ; r
� �tþΔ ∝ p0 w ; rð Þt p w ; r jnq

� �tþΔ ∝ N w ; rð Þt simðnq;St
w ;r Þ (2)

where N(w, r)t is the observed frequency count of w being a syntactic head of some arguments
via relation r up to time t.

Importantly, simðnq;St
w ;r Þ in both of the above equations is a yet-to-be-specified function

(i.e., implementing different ways of chaining) that measures the semantic similarity between
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the query noun and current meaning of the head-relation category Sw ;r at time t. To compute

this similarity, we quantify the semantic proximity between nq and the existing set of noun
arguments of Sw ;r (i.e., category exemplars). We refer to this set of nouns as the support set

(denoted by ns 2 Sw ;r ). We assume that the semantic similarity between a query noun and a

support set can be captured by the semantic distances between the query and a set of cluster
centroids inferred among the support nouns which we denote as Mw,r.

simðnq;St
w ;r Þ ¼ simðnq;Mt

w ;r Þ ¼ simðnq; fμtw;r ;kgK
t
w ;r

k¼1
Þ (3)

Here Mt
w ;r ¼ μtw ;r ;1; μ

t
w ;r ;2;…

n o
is a set of Kt

w ;r cluster centroids for support set St
w ;r. In the next

section, we show that exemplar chaining is equivalent to the case where each support noun
(or exemplar) forms its own cluster; prototype chaining is the case where all support nouns are
represented as a single cluster; and infinite mixture chaining sits in between these two
extremes.

We quantify every noun n at a given time using distributed semantic representation ϕ(n)t in
a high dimensional space that changes over time (details specified in the later section on dia-
chronic semantic space). Following the psychological literature (Nosofsky, 1986), we define
semantic similarity as the mean negative exponential Euclidean distance between the query
noun and the cluster centroids of a word-relation category:

simðnq;Mt
w ;r Þ ¼

1
Kt
w ;r

XKt
w;r

k¼1

exp − ∥ϕ nq
� �t − μtw ;r ;k∥2

β

 !
(4)

where we follow the Generalized Context Model and its variants (Kruschke, 2008; Maddox &
Ashby, 1993; Nosofsky, 1986) by adding a sensitivity parameter β that controls the rate at
which similarity decreases with semantic distance. We allow the number of cluster centroids
to flexibly vary over time (as a head word encounters new nouns), which is inferred and
updated based on the internal semantic structure of a head-relation category instantiated in
terms of its support nouns. In particular, the semantic clusters inferred within a category are
expected to optimize the following trade-off between two constraints of efficiency, following
work on infinite mixtures from machine learning (Kulis & Jordan, 2012):

Mt
v ;r ¼ argminM

XKt
v ;r

k

X
ns2Stv ;r

∥ϕ nsð Þt − μtk∥2 þ λKt
v ;r (5)

The first term on the right of Equation 5 is known as the information loss, which quantifies how
accurately a set of cluster centroids can represent the full set of support nouns (e.g., in the
exemplar model, representational accuracy is near ceiling because each exemplar is in its
own cluster). The second term measures the memory complexity for storing cluster centroids
(e.g., in the prototype model, memory complexity for a given word is 1, which is the theoret-
ical minimum if we wish to avoid zero representational accuracy). A single parameter λ con-
trols the relative weighting between the two constraints. Intuitively, models with higher values
of λ would favor a more parsimonious approach of chaining by inferring as few clusters as
possible (with prototype model at the extreme), while models with smaller values of λ would
store as many clusters as possible to minimize information loss (with exemplar model at the
extreme).

Our formulation of the efficiency tradeoff is also related to the information bottleneck the-
ory of efficient communication, which assumes that word meanings are organized under the
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tradeoff between reconstruction accuracy and complexity (Tishby et al., 2000; Zaslavsky et al.,
2018). However, a crucial distinction here is that our focus is on model inference of newly
emerging meanings for individual words rather than the construction of a semantic system
where word meanings are held static.

Classes of Chaining Model

The efficiency formulation in Equation 5 helps derive several classes of chaining model from
the literature and anew, and we show that our framework subsumes these classes under a
broader spectrum of models.

Exemplar-Based Models. In the case where the tradeoff parameter λ → 0, the model ignores the
memory constraint and stores every support noun argument ns as a single cluster to achieve
zero information loss. The inf-mix model therefore boils down to the exemplar model of chain-
ing:

p nqjw ; r
� �tþΔ ∝

1
jStw ;r j

X
ns2Stw ;r

exp − ∥ϕ nq
� �t − ϕ nsð Þt∥2

β

 !
(6)

The literature has also suggested that a variant of the exemplar model, particularly 1-nearest-
neighbor (1nn) chaining, has been effective in predicting emergent word senses (Ramiro
et al., 2018). If we adjust the inference procedure by considering only one support noun
closest to the query noun (in semantic space) instead of all the support nouns, we can easily
derive the 1nn chaining model:

p nqjv; r
� �tþΔ ∝ argmaxns2Stv ;r exp − ∥ϕ nq

� �t − ϕ nsð Þt∥2
β

 !
(7)

Prototype Model. If λ → ∞, the model yields a minimal memory cost by storing only a single
cluster centroid (or the prototype) for each category, and it therefore converges to the prototype
model:1

p nqjw ; r
� �tþΔ ∝ exp − ∥ϕ nq

� �t − μtw ;r∥2
β

 !
(8)

Here μtw ;r ¼ 1
jStw;r j

P
ns2Stw;r

ϕ nsð Þ is the mean embedding of all nouns in a support set.

Infinite Mixture Model (inf-mix). In the intermediate cases where 0 < λ < ∞, the number of clus-

ters lies between 1 and the support set size jStw;r j and can be inferred using a deterministic

algorithm called DP-Means (Kulis & Jordan, 2012). This is a nonparametric variation of the
well-known K-means clustering algorithm in unsupervised learning (Hartigan & Wong,

1979). The centroids Mt
w ;r would then be the mean vector representation of the support argu-

ments within each cluster. Figure 2 illustrates the different classes of chaining model in the
computation of p(nq jw, r). Theoretically, it can be shown that the infinite mixture chaining
model is equivalent to the asymptotic case of a Dirichlet Process Gaussian Mixture Model
(DPGMM) (Görür & Rasmussen, 2010) with the variance parameter of the Gaussian likelihood
function shrunk toward 0 (Kulis & Jordan, 2012). However, in a fully Bayesian DPGMM, the

1 Precisely, the inf-mix model will become the prototype model as long as λ is greater than the maximum
pairwise Euclidean distance between any two support noun embeddings.
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mixture centroids μk become latent variables and need to be inferred via posterior sampling,
which requires storing and repeatedly using all support noun arguments. This is computation-
ally prohibitive for common head-relation classes consisting of hundreds or even thousands of
noun arguments. Our framework bypasses these issues of DPGMM and is more
computationally efficient.

Semantic Space

The chaining models described need to be operationalized in a time-varying semantic space
so that information about future head-argument phrases should be minimally smuggled into
prediction at current time points. We use Word2Vec-based representations commonly used in
natural language processing for distributed semantics (Mikolov et al., 2013). Note that word
co-occurrence distributions are constantly changing and therefore the semantic space needs
to be updated to capture information only up to time t. For this reason, we use the 300-d
HistWords pre-trained diachronic embeddings (Hamilton et al., 2016), where the embedding
for each noun at decade t is based solely on its co-occurrence statistics from the current
decade, while the future co-occurrences are not embedded. Other studies have explored
multimodal representations of word meaning beyond textual data (Brochhagen et al., 2023;
De Deyne et al., 2021; Yu & Xu, 2021), which can provide alternative semantic representations.

DATA

We evaluate our infinite mixture chaining framework on reconstructing historical extension in
three classes of words, derived from three separate datasets building on the existing literature
of semantic chaining: 1) English verb phrases consisting of head verbs and noun objects (cf. Yu
& Xu, 2021), 2) English adjective phrases of head adjectives and modified nouns (cf. Grewal &
Xu, 2021), and 3) Chinese numeral classifiers and their measured nouns (cf. Habibi et al.,
2020). Table 1 shows sample entries from these datasets which we describe in turn.

Historical Data of English Verb Phrases

Building on the study of Yu and Xu (2021), we collected a large dataset of historical head-
argument compositions derived from the Google Syntactic N-grams (GSN) English corpus,
where the noun argument can be either the direct object of the verb (e.g., store the password )
or can be an indirect prepositional object (e.g., store in the computer). In particular, we col-
lected verb-noun-relation triples (n, v, r)t that co-occur in the ENGALL subcorpus of GSN from
1850 to 2000. We focused on working with common usages and pruned rare cases under the
following criteria: 1) all noun arguments are extracted from a large vocabulary of words with
top-10,000 noun counts (with POS tag as noun) in GSN over the 150-year period; 2) all verbs

Table 1. Sample entries from Google Syntactic N-grams including head-relation pairs, support and query nouns, and timestamps.

Decade

Head-relation pair

Support noun Query nounHead word Syntactic relation

1900 drive (verb) direct object horse, wheel, cart car, van

1950 work (verb) prepositional object via as mechanic, carpenter, scientist astronaut, programmer

1980 healthy (adjective) modified objec food, diet, life vegan, finance

2000 次(cì) (Chinese classifier) modified object 资助(funding), 就业(employment),
发言(speech)

公投(referendum)
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should have at least 20,000 counts in GSN. To support feasible computations, we consider the
top-20 most common syntactic relations in GSN between head verbs and noun arguments. We
binned the raw co-occurrence counts by decade Δ = 10. At each decade, we define emerging
noun arguments for a given verb-relation category (v, r) if their number of co-occurrences with
(v, r) up to time t falls below a threshold θq, while the number of co-occurrences with (v, r) up
to time t + Δ is above θq (i.e., an emergent usage that conventionalizes over time, as opposed
to a spontaneous usage). We define support nouns as those that co-occurred with (v, r) for
more than θs times before t. We found that θq = 10 and θs = 100 are reasonable choices. This
preprocessing pipeline yielded a total of 8,897 verb-relation categories of noun arguments
over 15 decades, where each category has at least 1 novel query noun and 10 existing support
nouns in each decade.

Historical Data of English Adjective Phrases

Analogous to verb extension and building on the study of Grewal and Xu (2021), we extracted
historical compositions of English adjective modifiers and their noun arguments from the
ENGALL subcorpus of GSN from 1850 to 2000. We also pruned rare usages by keeping only
the same set of top-10,000 most frequent noun types as in the verb phrase dataset, and remov-
ing phrases whose head adjective has less than 20,000 counts in GSN. At each decade, the
criteria of deciding novel emergent noun arguments for an adjective is the same as those
described in the verb phrase collection pipeline. We finally obtained a total of 2,037 adjective
categories of noun arguments over 15 decades, where each category has at least 1 novel query
noun and 10 existing support nouns in each decade.

Historical Data of Chinese Numeral Classifiers

Building on the study of Habibi et al. (2020), we also apply inf-mix chaining to reconstruct
meaning extension of linguistic categories beyond English. Specifically, we consider how Chi-
nese numeral classifiers have been applied to modify novel nouns in the 20th century. Chinese
classifiers are obligatory grammatical classes that are used between a noun and a numeral
term describing its quantity, e.g., one [个(gè)] person or two [份(fèn)] documents. We made
use of the data of historical linguistic category extension in Habibi et al. (2020), which
includes a comprehensive list of 8,371 (Chinese classifier, noun) pairs over the period
1940–2003. We follow Habibi et al. (2020) by representing each Chinese noun as the pre-
trained word2vec contemporary embedding of its English translation to prevent information
smuggling. Different from Habibi et al. (2020) that predicted novel usages on a yearly basis,
we binned the noun-classifier pairs by Δ = 5 based on their time of emergence to ensure that
between two consecutive evaluation time points, there is a sufficient number of newly intro-
duced arguments and a set of significantly different inferred semantic centroids by inf-mix
models.

RESULTS

In this section, we first show via a simulation study that inf-mix chaining offers better account
for the extension process of categories with various structures. We then demonstrate in three
case studies that cognitive efficiency can derive new chaining models that balance the trade-
off between predictiveness of new meanings and memory complexity. We finally show that the
semantic representations derived from inf-mix chaining is psychologically grounded in that
they can capture human judgment of diachronic word meaning change.

OPEN MIND: Discoveries in Cognitive Science 9

Infinite Mixture Chaining Yu and Xu



Infinite Mixture Chaining on Simulated Data

We first compare inf-mix and existing models of chaining using simulated data of category
extension in a continuous two-dimensional space. To do so, we generate N = 500 data points
for each of two competing category via Gaussian Mixture models with randomly sampled
components. We then present a chaining model with 80% of generated points from each cat-
egory as the training set to infer category centroids and use the model to predict category
labels for the remaining 20% as the test set. We test a series of 50 inf-mix chaining models
whose inferred number of semantic centroid ranges from 1 (prototype) up to 500 (exemplar)
with a step-size of 10. In each simulation, the number of Gaussian component for each cat-
egory is randomly sampled between 1 and 10, and the mean of each Gaussian distribution is
randomly drawn from a 2-D uniform distribution in [−1, 1] × [−1, 1]. We keep all Gaussian
distributions isotropic with a variance of 0.1 in both dimensions.

Figure 3a illustrates the trade-off between mean model predictive accuracy on test set and
normalized model complexity measured by the ratio between the number of inferred clusters
and the category size. We found that a range of inf-mix models with moderate complexities
best balance the trade-off by offering the highest predictive accuracy while maintaining a rel-
atively low memory cost. In contrast, the exemplar model is less accurate and more memory-
intensive, while the prototype model, despite having the lowest memory cost, yields the lowest
predictive accuracy that is only slightly above chance. Figure 3b shows the generated data
points of two Gaussian mixture categories with 4 and 5 components respectively, together
with the inferred cluster centroids by the inf-mix model of highest test accuracy. In this case,
the inf-mix model almost perfectly recovers the ground-truth centroids for both categories.
These simulation results suggest that for artificial categories with various structures, inf-mix
chaining has the potential to offer the most cognitively efficient account of category extension.

Case Study 1: English Verb-Noun Compositions

We next evaluated empirically different classes of chaining models on both head and argu-
ment prediction problems under variation of the trade-off parameter λ on emerging verb-noun
compositions for the historical period 1850 to 2000. At every decade, for argument prediction

Figure 3. (a) Predictive accuracy and memory complexity (ratio between inferred cluster number
and category size) on 2-D simulated data. (b) Example generated data points and inferred cluster
centroids by inf-mix for two competing categories with multiple Gaussian mixture components.
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problem, we randomly sample for each verb-relation pair (v, r) 100 candidate noun arguments
(with exactly one of them being a ground-truth novel argument nq) from the vocabulary of top-
10,000 nouns in GSN, and we then compute the percentage of cases where each chaining
model predicts the true nq over the random noun set as a more appropriate argument. Simi-
larly, for the head prediction problem, we randomly sample for each query noun 100 candi-
date verb-relation pairs (with exactly one of them being a ground-truth head of the query noun)
from the vocabulary of top-5,000 verb-relations in GSN. This procedure allows us to assess the
degree to which each class of chaining model can successfully predict novel verb-noun com-
positions incrementally through time, and how they fare in the accuracy-complexity trade-off.
To pursue best model predictability of word meaning extension, we apply stochastic gradient
descent to tune the sensitivity parameter β in the semantic similarity functions of each chaining
model to maximize their average predicted probability p(nq jw, r)t+Δ over all ground-truth
(novel noun argument, head word, relation) triples in the dataset.

For infinite mixture models with 0 < λ < ∞, we implemented the DP-means clustering algo-
rithm introduced in Kulis and Jordan (2012) to assign a categorical cluster label for every noun
within the support set of each verb-relation pair, and take the mean word embeddings of sup-
port nouns in each inferred cluster as centroid to compute the likelihood function p(nq|v, r).
Since Euclidean-distance-based clustering methods such as DP-means tend to degenerate on
high dimensional data (due to the curse of dimensionality), we instead perform DP-means on a
30-dimensional subspace of the HistWords embeddings projected by principal components
analysis (PCA). We found that this reduced subspace preserves well the relative distances
between word pairs (explaining over 80% of variance from the original 300-dimensional data)
and yields reasonable clustering results. During prediction, we use the full HistWords embed-
dings by computing centroids using clustering labels computed on the PCA subspace.

We found that when λ = 0.24 and β = 0.45, the inf-mix model yields most well-defined
clustering overall measured by the standard Silhouette score for unsupervised clustering.2

We therefore evaluate this model on its predictive accuracy by-decade and aggregate predic-
tive accuracy, along with the other competing models. We also consider two baseline models:
a frequency baseline that always favors the noun with the highest usage frequency in GSN up
to the decade in question, and a random baseline.

Figure 4 summarizes the results for the main problem of head prediction. We observe that
among all the models examined, the infinite mixture and exemplar models yielded near-
equivalent predictive accuracy and are superior than the alternatives. The prototype and
1nn models perform better than the two baselines, but they are much worse than the top 2
models. We observed similar result patterns in the argument prediction problem as well (see
Figure A1 in Appendix). These initial results show that the infinite mixture model is on par with
the exemplar model in predicting historical verb extension, the latter being the better perform-
ing model as reported in recent work of chaining (Grewal & Xu, 2021; Habibi et al., 2020; Yu
& Xu, 2021).

To assess the efficiency of different chaining models, we computed the expected predictive
accuracy from the average predictive percentages over all (v, r, nq) triples in the dataset. We
also measured memory complexity by computing the expected number of cluster centroids
inferred for every set of support noun arguments at each decade. We focus on comparing the

2 We took the averaged Silhouette score over clustering of all support sets across all decades, and found that
the inf-mix model with λ = 0.24 yields the highest mean Silhouette score.
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infinite mixture model with the two most representative models of chaining, prototype and
exemplar. We also incrementally vary λ to assess a large set of other alternative classes of
chaining beyond the three target models. Figure 5 shows the result for head verb prediction
which indicate that 1) by sweeping λ from 0 toward ∞ (in this case λ ≥ 0.5 suffices), the
predictive accuracy drops only slightly from the exemplar model to the infinite mixture model
(λ = 0.24) but substantially to the prototype model—this finding confirms with our previous
analysis, that the infinite mixture model predicts on par with the exemplar model; and 2) the
marginal gain on accuracy of the exemplar model comes at a high cost in memory

Figure 4. Model accuracy of head verb prediction through time (left panel) and in aggregate (right
panel). The infinite mixture model has λ = 0.24. Error bars represent the standard deviations of accu-
racy across decades.

Figure 5. Accuracy of head prediction problem and memory complexity (mean number of clusters
per word used in prediction) on English historical verb-noun composition dataset. The gray dots
show the spectrum of infinite mixture models under different λ values. The left end (red dot) of
the x-axis corresponds to the prototype model with λ ≥ 0.5. The right end (green dot) of the x-axis
corresponds to the exemplar model with λ = 0. The blue dot corresponds to the infinite mixture
model with inferred optimal λ value.
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complexity: compared to the infinite-mixture model, it requires over 25-fold more storage of
cluster centroids to achieve a gain of <0.01 in predictive accuracy. We observed a similar
trade-off curve for the argument noun prediction problem as well (see Figure A2 in
Appendix). Overall, the infinite mixture model achieves a better balance between preci-
sion and memory.

We interpret the semantic clusters learned by the infinite mixture model using verb category
store in dobj as an example. Figure 6 illustrates its meaning space spanned by support nouns in
1900s and 1980s respectively, projected on a 2D plane using the t-distributed Stochastic
Neighbor Embedding (van der Maaten & Hinton, 2008). The model identifies 4 clusters of
semantically related store-able nouns in 1900s and 7 clusters in 1980s, most representative
noun arguments for which are shown in the legends of Figure 6. To track how these the mean-
ing clusters change over time, we mark a pair of clusters across the two decades with the same
color if they share the highest number of overlapping support arguments. For instance, the
cluster with arguments bean, honey, meat in 1980s is colored in blue, since it shares the most
support nouns with the corn, flour, wheat cluster at 1900s. The three clusters in 1980s with
distinct colors (marked in olive, cyan and black) can be considered as novel senses that the
verb category acquired during the 20th century. We found that the infinite mixture model not
only infers consistent noun clusters across time by adding semantically related novel nouns to
the existing clusters (e.g., assigning words like key, data to the red cluster denoting abstract
concepts related to knowledge and mind), but also detects novel word senses by growing clus-
ters that contain those emerging concepts (e.g., the olive cluster of biology terms, and the
black cluster that contains information technology terms).

Case Study 2: English Adjective-Noun Compositions

Similar to the previous case study on English verb phrases, we evaluated chaining models
trade-off parameter λ 2 [0, 0.6] on predicting emerging noun arguments for English adjectives
between 1850 and 2000. Each trial of head prediction consists of a true attested adjective and
99 randomly sampled adjectives that are never paired with the target noun, and each trial of
argument prediction consists of a true attested argument noun and 99 randomly sampled

Figure 6. Low-dimensional visualizations of historical meaning extension for the verb frame store
in (noun) from 1900s (left) to 1980s (right) via t-SNE projection. The dots correspond to word
embeddings of noun arguments grouped in clusters inferred by the infinite mixture chaining model.
Legends show 3 representative nouns closest to their cluster centroids for each cluster.
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nouns that are never paired with the target adjective. All chaining models are again evaluated
on a PCA-reduced 30-dimensional HistWord historical semantic space, in which we also per-
formed DP-Means clustering for inf-mix models and found that λ = 0.14 and β = 1.50 yielded
the most coherent clustering results (measured by the Silhouette score).

Figure 7 summarizes the predictive accuracy for all chaining models on the main task of
head prediction. We again observe that among all the models examined, the infinite mixture
and exemplar models yielded near-equivalent predictive accuracy and are superior than the
alternatives. Figure 8 summarizes the memory complexity and predictive accuracy on head
adjective prediction task for all models. Again, the most coherent infinite mixture model with
λ = 0.14 and exemplar models yielded nearly identical performance, whereas the latter
requires approximately four times more memory space to operate. and as λ goes above the
critical value of 0.14, the performance of models of decreasing memory cost drops

Figure 7. Model accuracy of head adjective prediction through time (left panel) and in aggregate
(right panel). The infinite mixture model has λ = 0.14. Error bars represent the standard deviations of
accuracy across decades.

Figure 8. Accuracy of head prediction problem and memory complexity (mean number of clusters
per word used in prediction) on English historical adjective-noun composition dataset.
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significantly. We observed similar result patterns in the argument prediction problem as well
(see Figure A3 and A4 in Appendix). These results conform with our finding in case 1 and
suggest that the inf-mix chaining model offers the best trade-off between precision and
memory in accounting for historical semantic change of English adjectives.

Case Study 3: Chinese Classifier-Noun Compositions

Figure 9 summarizes the expected head prediction problem accuracy over all (classifier, novel
noun) pairs in the Chinese numeral classifier dataset for all chaining models. Similar to the
previous two case studies, the infinite mixture and exemplar models are on par with each other
while outperforming all other models. Figure 10 summarizes the memory complexity and

Figure 9. Model accuracy in head classifier prediction through time (left panel) and in aggregate
(right panel). The infinite mixture model has λ = 3.0. Error bars represent the standard deviations of
accuracy across decades.

Figure 10. Accuracy of head prediction problem and memory complexity (mean number of clus-
ters per word used in prediction) on Chinese historical noun-classifier composition dataset.
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predictive accuracy on the head classifier prediction task. Due to the different geometric prop-
erties of the contemporary word2vec embeddings, we found that in this case the inf-mix model
converges to the prototype model at a much larger λ ≈ 15.0 compared to thresholds in the
previous two experiments, and a sensitivity parameter β = 0.96. Moreover, we observed that
the optimal inf-mix model of the most coherent semantic clusters is more memory-intensive
than the previous two optimal inf-mix models (with an optimal λ ≈ 3.0), suggesting that the
meaning of Chinese classifiers is much more “polysemous” compared to English verbs and
adjectives, as the noun arguments of Chinese classifiers cannot be summarizes using a small
set of semantic classes. However, despite the more complex nature of classifier meaning, the
performance of the inf-mix model again matches the best exemplar model with about 50% less
memory requirement. We observed similar result patterns in the argument prediction problem
as well (see Figure A5 and A6 in Appendix).

Taken together, the three case studies suggests that inf-mix offers a novel view and
extends existing models of word meaning extension, by incorporating cognitive efficiency
into semantic chaining to quantify the trade-off between predictive precision and memory
complexity.

Case Study 4: Human Judgment of Lexical Semantic Change

Finally, we perform a quantitative analysis to assess whether the inferred semantic centroids by
inf-mix chaining model can be applied to explain people’s judgment of diachronic lexical
semantic change (LSC) in English. We choose the subtask 2 of SemEval-2020 Task 1
(Schlechtweg et al., 2020) as our evaluation dataset, where an unsupervised model is asked
to rank a set of target words according to their degree of lexical semantic change between
corpora C1 and C2 from two different time periods. For the case of English, C1 and C2 are
the subsets of the Clean Corpus of Historical American English (CCOHA) (Alatrash et al.,
2020) that spans time periods 1810–1860 (C1) and 1960–2010 (C2) respectively, and there
are 37 target word types (33 nouns and 4 verbs) for evaluation.

We construct an inf-mix model for predicting semantic change in the following way: for
each target word w, we first use a deep contextualized neural language model named BERT
(Devlin et al., 2019) to encode each usage sentence of w into a high-dimensional sentence
embedding space. We then run the DP-Means clustering algorithm on two sets of usage sen-
tence embeddings in C1, C2 respectively to obtain two groups of induced centroid embeddings

H 1ð Þ
w ;H 2ð Þ

w . The degree of semantic change of w between the two time periods of study can then

be quantified as the mean pairwise cosine distance between H 1ð Þ
w ;H 2ð Þ

w :

sw t1; t2ð Þ ¼ 1

jH 1ð Þ
w j ⋅ jH 2ð Þ

w j
X

h12H 1ð Þ
w ;h22H 2ð Þ

w

h1; h2h i
∥h1∥2∥h2∥2

(9)

We evaluate the models by computing the Spearman’s ρ correlation score between predicted
semantic change scores and the gold-standard results by human annotators. Similar to the pre-
vious three case studies, we varied the trade-off parameter λ of the inf-mix model from 0 up to
a sufficiently large value of 0.7 with a step size of 0.05, and take the one with highest
silhouette clustering score as the optimal inf-mix model. The case of λ = 0 and λ = 0.7
again correspond to a prototype-based and an exemplar-based LSC model and can be
taken as two baselines.
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Figure 11 shows correlation scores for a series of inf-mix models. We observe that the
inf-mix model with highest clustering quality (measured by silhouette score) coincides with
the inf-mix model (λ = 0.15) of highest correlation between human LSC judgements
(ρ = 0.266, p < 10−11) compared to the prototype (ρ = 0.245, p < 10−7) and the exemplar
(ρ = −0.013, p < 10−6) models. Notably, the exemplar model that yields best predictive
accuracy in the previous three case studies now performs much worse compared to models
of lower memory costs, suggesting that semantic abstraction plays a more essential role than
individual usage memorization in modeling diachronic lexical semantic change. On the
other hand, the inf-mix model yields either the best or a near-optimal performance across
all four studies, suggesting the important role of cognitive efficiency in explaining word
meaning change over time. Table 2 shows several example lemmas on which the inf-mix
model yields the best predictive accuracy in LSC. Though not perfect, we found that the inf-
mix model is better than the alternative models in capturing prominent word meaning
changes (e.g. tip), and words with relatively stable meaning (e.g. chairman).

Table 2. Sample English lemmas in SemEval-2020 Task 1 with ground-truth and model predicted scores of lexical semantic change (LSC)
between the time periods of 1810–1860 and 1960–2010.

Lemma Ground-truth LSC Prototype predicted LSC Exemplar predicted LSC Inf-mix predicted LSC

chairman (noun) 0 −0.012 0.133 0.008

player (noun) 0.274 0.557 0.182 0.306

tip (verb) 0.679 −0.197 −0.281 0.223

Figure 11. Correlations between inf-mix model predictions and human annotated degree of
semantic change for 37 English words between two historical time periods. The gray dots show
the spectrum of infinite mixture models under different λ values and varying numbers of inferred
semantic centroids (memory complexity). The left end (red dot) of the x-axis corresponds to the
prototype model with λ ≥ 0.7. The right end (green dot) of the x-axis corresponds to the exemplar
model with λ = 0. The blue dot corresponds to the infinite mixture model with inferred optimal
λ = 0.15.
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DISCUSSION AND CONCLUSION

We presented an efficiency-based computational framework of semantic chaining for model-
ing the historical extension of word meaning. Our framework provides a synthesis of existing
approaches and suggests that different forms of chaining can be understood as a trade-off
between model representational accuracy and memory complexity. Our study moves away
from the typical focus on a comparative analysis of different chaining models but instead
develops a unified view toward interpreting the diverse kinds of chaining in word meaning
extension. In particular, we showed that the most commonly described chaining models based
on the exemplar and prototype theories can be interpreted as two extremes of a trade-off for
cognitive efficiency.

Our work extends beyond existing work on chaining by proposing a new class of models
that supports flexible growth of meaning clusters based on historical and emerging word
usages. We showed that the infinite mixture chaining model is on par with the exemplar model
and performs better than the prototype model in reconstructing the historically emerged noun-
argument pairings with English verbs and adjectives, and numeral classifiers in Mandarin Chi-
nese. We also showed that the same model yields a substantially more compact representation
for the internal structures of word meaning compared to the exemplar model, and therefore
near-optimally trading off model accuracy with complexity.

Our framework has several limitations. Firstly, we considered a simplified problem of word
meaning extension by predicting how words should pair up with previously unattested con-
cepts as they emerged over time. However, word meaning may change without involving
novel compositions. For instance, the phrase to save my key used to refer to “keeping a phys-
ical key”, but the same phrase took on the novel meaning “to save a string that gives access to
retrieve information” without requiring any change in its compositional form. Additionally,
word meaning extension may occur in a highly contextual setting that is not necessarily
reflected in novel argument pairing. For example, saying “that person is sick” can be inter-
preted as a sick person or a cool person, depending on the context of the communicative sce-
nario. Our emphasis on predicting emerging argument and argument pairing is motivated by a
comparison to existing approaches to modeling semantic chaining which use a similar setup
for prediction (Grewal & Xu, 2021; Habibi et al., 2020; Xu et al., 2016; Yu & Xu, 2021), and it
can be taken as an initial step toward characterizing the general processes of word meaning
extension.

Secondly, recent work has shown that chaining models based on semantic proximity
between novel and existing meaning (also known as “associative chaining”) often fail to pre-
dict metaphorical or other non-literal word meaning extensions (e.g., “to arrive at school” →
“to arrive at conclusion”) (Yu, 2023). Future work should explore how infinite mixture models
may be integrated with other types of chaining mechanisms to account for mechanisms such
as analogy (Fugikawa et al., 2023), which is also discussed in structural mapping (Gentner,
1983) and conceptual metaphor mapping (Lakoff & Johnson, 2008).

Thirdly, our study focused on modeling the cognitive mechanisms that may give rise to
novel word choices in lexical evolution, but it does not account for other mechanisms or fac-
tors that can also shape the changing landscapes of the lexicon. For example, novel word
meanings might emerge due to growing needs for communicating socio-cultural changes or
technological innovations, and the chaining models we presented here do not take into
account these factors. Related to this issue, we evaluated our framework against historical cor-
pus data that might reflect conventionalized or sustained changes, but this approach is poten-
tially limited in explaining spontaneous or less common changes that do not appear in text
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corpora. Understanding rare, unconventional patterns of word meaning extension may require
a diachronic analysis of linguistic communities, and a characterization of the elimination and
propagation of linguistic innovations through the lens of sociolinguistics.

Finally, the current framework of infinite mixture chaining considers word meaning exten-
sion at a population level by predicting historically emerging word usages presumably shared
among a group of language speakers. We believe that our framework has the potential to
explain word meaning extension from individuals. Prior studies have shown that computa-
tional models of prototype-based and exemplar-based chaining can explain novel word uses
by (individual) children (Pinto & Xu, 2021; Xu & Xu, 2021), and future work can investigate
whether infinite mixture chaining might offer an individual-level account of word meaning
extension in light of cognitive efficiency.

We have developed a general probabilistic framework for reconstructing emerging word
meanings through time and explored a broad class of chaining models that trade off represen-
tational accuracy with memory complexity. Our work provides a unified account for the dif-
ferent forms of chaining grounded in that rational models of human and machine learning, and
it also opens the avenue for exploring the cognitive efficiency of word meaning acquisition
and representation in the mind.
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APPENDIX: RESULTS OF NOUN ARGUMENT PREDICTION PROBLEMS

Additionally to the task of head prediction described in the main text, we also assess the efficiency
of different chaining models on the task of predicting novel noun arguments. Figure A1 summa-
rizes the results for noun argument prediction of English head verbs in Case Study 1. We observe
that similar to the head prediction problems, among all the models examined, the infinite mixture
and exemplar models yielded near-equivalent predictive accuracy and are superior than the alter-
natives. The prototype and 1nn models perform better than the two baselines, but they are much
worse than the top 2 models. Similar trends are also observed in the noun argument prediction
problems of English adjectives (Figure A3) and Chinese numeral classifiers (Figure A5).

Figure A2 shows the efficiency trade-off result of noun argument prediction for English
verbs in Case Study 1. Again, similar to the trade-off results in head prediction problem, we
found that 1) by sweeping λ from 0 toward ∞ (in this case λ ≥ 0.5 suffices), the predictive
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accuracy drops only slightly from the exemplar model to the infinite mixture model (λ = 0.24)
but substantially to the prototype model—this finding confirms with our previous analysis, that
the infinite mixture model predicts on par with the exemplar model; and 2) the marginal gain
on accuracy of the exemplar model comes at a high cost in memory complexity: compared to
the infinite-mixture model, it requires over 25-fold more storage of cluster centroids to achieve
a gain of <0.01 in predictive accuracy. We observed a similar trade-off curve for the argument
noun prediction problems of English adjectives (Figure A4) and Chinese numeral classifiers
(Figure A6) as well. Overall, the infinite mixture model achieves a better balance between
precision and memory.

Figure A1. Model accuracy of argument noun prediction for English verbs through time (left panel)
and in aggregate (right panel). The infinite mixture model has λ = 0.24. Error bars represent the
standard deviations of accuracy across decades.

Figure A2. Accuracy of noun argument prediction problem and memory complexity (mean num-
ber of clusters per word used in prediction) on English historical verb-noun composition dataset.
The gray dots show the spectrum of infinite mixture models under different λ values. The left end
(red dot) of the x-axis corresponds to the prototype model with λ ≥ 0.5. The right end (green dot) of
the x-axis corresponds to the exemplar model with λ = 0. The blue dot corresponds to the infinite
mixture model with inferred optimal λ value.
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Figure A3. Model accuracy of argument noun prediction for English adjectives through time (left
panel) and in aggregate (right panel). The infinite mixture model has λ = 0.14. Error bars represent
the standard deviations of accuracy across decades.

Figure A4. Accuracy of noun argument prediction problem and memory complexity (mean num-
ber of clusters per word used in prediction) on English historical adjective-noun composition
dataset.
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Figure A5. Model accuracy in argument noun prediction for Chinese numeral classifiers through
time (left panel) and in aggregate (right panel). The infinite mixture model has λ = 3.0. Error bars
represent the standard deviations of accuracy across decades.

Figure A6. Accuracy of noun argument problem and memory complexity (mean number of clus-
ters per word used in prediction) on Chinese historical noun-classifier composition dataset.
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