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Abstract

Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients

share similar symptoms including post-exertional malaise, neurocognitive impairment, and

memory loss. The neurocognitive impairment in both conditions might be linked to alter-

ations in the hippocampal subfields. Therefore, this study compared alterations in hippo-

campal subfields of 17 long COVID, 29 ME/CFS patients, and 15 healthy controls (HC).

Structural MRI data was acquired with sub-millimeter isotropic resolution on a 7 Telsa MRI

scanner and hippocampal subfield volumes were then estimated for each participant using

FreeSurfer software. Our study found significantly larger volumes in the left hippocampal

subfields of both long COVID and ME/CFS patients compared to HC. These included the

left subiculum head (long COVID; p = 0.01, ME/CFS; p = 0.002,), presubiculum head (long

COVID; p = 0.004, ME/CFS; p = 0.005), molecular layer hippocampus head (long COVID;

p = 0.014, ME/CFS; p = 0.011), and whole hippocampal head (long COVID; p = 0.01, ME/

CFS; p = 0.01). Notably, hippocampal subfield volumes were similar between long COVID

and ME/CFS patients. Additionally, we found significant associations between hippocampal

subfield volumes and severity measures of ‘Pain’, ‘Duration of illness’, ‘Severity of fatigue’,

‘Impaired concentration’, ‘Unrefreshing sleep’, and ‘Physical function’ in both conditions.

These findings suggest that hippocampal alterations may contribute to the neurocognitive

impairment experienced by long COVID and ME/CFS patients. Furthermore, our study high-

lights similarities between these two conditions.

Introduction

Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are com-

plex conditions that affect multiple parts of the body. Both illnesses share a range of symptoms

including post-exertional malaise, neurocognitive impairment, fatigue, sleep disturbance,

pain, and physical disability [1–4].

The COVID-19 pandemic has impactedmillions worldwide, with many individuals

experiencing long-term health issues, including effects on the brain [5]. Approximately10% of
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individuals infected with COVID-19 develop long COVID [6] which is defined as the continu-

ation or development of new symptoms 3 months after the initial infection with the virus, with

these symptoms lasting for at least 2 months with no other explanation [7]. Studies suggest

that 13–58% of long COVID patients meet ME/CFS criteria [8–10] and exhibit similar symp-

toms [11, 12]. Both conditions commonly affect brain function, causing problems with con-

centration [13], decision-making, and information processing [2].

The hippocampus is a vital part of the brain responsible for learning and memory functions

[14]. It consists of several subfields, each with specific roles, such as memory performance,

memory integration, and delayed recall [15]. Previous studies have reportedreduced volumes

of the cornu ammonis, fimbria, subiculum, presubiculum, and parasubiculum in neurodegen-

erative diseases [16–19]. Conversely, larger volumes of the left subiculum, presubiculum, and

fimbria have been observed in ME/CFS patients [20].

Our previous research identified changes in hippocampal subfield volumes in ME/CFS

patients using 3T MRI [20]. While long COVID and ME/CFS share similar symptoms, studies

have not yet examined hippocampal subfield volumes in long COVID patients. Therefore, this

study aims to use ultra-high field 7 Tesla MRI 1) to investigate alterations in hippocampal sub-

fields in long COVID and ME/CFS patients compared to healthy controls (HC), and 2) explore

associations between the size of different hippocampal subfields and with the severity measures

in both conditions.

Materials and methods

Participant recruitment

The study was approved by the Griffith University Human Research Ethics Committee (ID:

2019/1005, 2021/518, 2022/666), conducted in accordance with the relevant guidelines and

regulations under the Helsinki Declaration. Written informed consent was obtained from all

participants. This cross-sectional investigation was conducted at the National Centre for Neu-

roimmunology and Emerging Diseases (NCNED) on the Gold Coast, Queensland, Australia.

Participants were recruited as described by Thapaliya et al. [21] between 28th July 2021 and 9th

August, 2023. Long COVID patients were eligible if their symptoms persisted for at least three

months following COVID-19 infection, as defined by the WHO working case definition [7].

ME/CFS patients were recruited if they met the Canadian Consensus Criteria (CCC) and/or

International Consensus Criteria (ICC) for diagnosis [2, 22], had received a formal diagnosis

of ME/CFS by a physician, and reported no history of COVID-19 infection. Healthy controls

were recruited if they reported no chronic health conditions, underlying illness and had no

current or prior COVID-19 infection. Participants were aged between 18 and 65 years. Medi-

cal histories were reviewed to identify comorbid symptoms or exclusionary diagnoses includ-

ing mental illness, malignancies, autoimmune, neurological, or cardiovascular diseases.

Female participants were excluded if they were pregnant and/or breastfeeding. Ultimately, 17

long COVID as defined by the WHO clinical case definition [7], 30 ME/CFS patients fulfilling

the CCC and/or ICC criteria [2, 22], and 15 age-matched HC subjects were included in this

study. Table 1 provides demographic information.

Symptom severity measures. Symptom severity was assessed using the Research Registry

questionnaire developed by NCNED with the Centres for Disease Control and Prevention

(CDC) and distributed online through Lime Survey and Redcap. Validated patient-reported

outcome measures were used to evaluate participant’s quality of life (QoL) and functional

capacity. The 36-item short-form health survey (SF-36) [23] was administered to both long

COVID and ME/CFS [24]. SF36 scores were assigned values between 0 and 100, and the aver-

age was calculated for each domain.
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For subsequent correlation analysis, the severity measures for ‘Duration of illness’, ‘Pain’,

and ‘Physical function’ were extracted from SF36v2, while the severity of ‘Fatigue’, ‘Impaired

concentration’, and ‘Unrefreshing sleep’ was obtained via the NCNED Research Registry ques-

tionnaire. The severity of ‘Pain’ and ‘Physical function’ was assessed on a 0 to 100 point scale, 0

represented very severe symptoms and 100 indicatedno symptoms. The severity of ‘Fatigue’,

‘Impaired concentration’, and ‘Unrefreshing sleep’ was scored on a five-point scale: 1) very

mild; 2) mild; 3) moderate; 4) severe; and 5) very severe.

MRI scans and data processing. MRI data was acquired using the same MRI protocol as

published previously [21]. In brief, MRI was performed on a 7 T whole-body MRI research

scanner (Siemens Healthcare, Erlangen, Germany) with a 32-channel head coil (Nova Medical

Wilmington, USA). T1-weighted data was acquired using a Magnetisation prepared 2 rapid

acquisition gradient echo sequence (MP2RAGE) as in [25]. MP2RAGE data was acquired sag-

ittally using the following parameters: repetition time (TR) = 4300 ms, echo time (TE) = 2.45

ms, inversion times: first (TI1) = 840 ms, second TI2 = 2370 ms, flip angles FA1 = 5˚, FA2 = 6˚

and spatial resolution = 0.75 mm3 with matrix size = 256 × 300 × 320.

MP2RAGE data was processed similarly to our previous publications [21]. In brief,

MP2RAGE data was anatomically segmented using FreeSurfer version 7.4.1 [26] (https://

surfer.nmr.mgh.harvard.edu/) with the default FreeSurfer command ‘recon-all’ on a Macin-

tosh computer (Operating system: Catalina, RAM = 36GB, and core: 8). The ‘recon-all’ pro-

cessing pipeline includes motion correction, non-linear spatial normalisation to Talairach

space, intensity normalization, removal of non-brain tissue, cortical parcellation, sub-cortical

segmentation, grey and white matter boundary tessellation, automated topology correction,

and surface deformation. Detailed information about the pipeline can be found at (https://

surfer.nmr.mgh.harvard.edu/fswiki/recon-all).

Hippocampus subfield volumes were segmented using the FreeSurfer 7.4.1 hippocampus

subfield module [27] as shown in Fig 1 similar to our previous publication [20]. Using this

module, the left and right hippocampal subfields: hippocampal: head, body, and tail; cornu

ammonis (CA1, CA3, and CA4); head and body of subiculum, presubiculum, granular cell lay-

ers of the dentate gyrus (GC-ML-DG), molecular layer of the hippocampus (HP); parasubicu-

lum, fissure, fimbria, and hippocampus-amygdala transition area (HATA) were defined. All

hippocampal subfields were visuallyinspected to ensure distortion-free segmentation. Two

long COVID and one ME/CFS patient were excluded from the analysis due to inadequate seg-

mentation, resulting in a final inclusion of 15 long COVID and 29 ME/CFS patients.

Table 1. Demographic and clinical characteristics of ME/CFS, long COVID patients, and HC. Superscripts a, b, and c label the p-values for long COVID vs HC, ME/

CFS vs HC, and long COVID vs ME/CFS respectively. F = Female, M = male, ICV = intracranial volume.

Diagnostic criteria ME/CFS

(n = 29)

Long COVID

(n = 15)

HC

(n = 15)

p-value

17 CCC and ICC

12 CCC only

WHO N/A

Age 43.31 ± 11.24 51.65 ± 11.26 38.26 ± 12.74 0.18a, 0.004b, 0.023c,

F/M 23/7 11/4 10/5 N/A

ICV 974,630.76 ±165,764.26 1,085,129.17 ± 262,361.73 990,048.89 ± 132,754.36 0.94a, 0.22b, 0.16c

Duration (years) 13.24±11.13 0.60±0.46 N/A 0.15c

Pain 38.4±18.32 52.14±22.1 88.5±17.6 <0.001a, <0.001b, 0.04c

Severity of fatigue 3.8±0.84 3.4 ± 0.5 N/A 0.1c

Impaired concentration 3.5±0.93 3±0.75 N/A 0.06c

Unrefreshing sleep 3.75±0.78 3.06±1.43 N/A 0.04c

Physical function 33.14±24.5 66.3±25.45 97±10.3 <0.001a, <0.001b, <0.001c

https://doi.org/10.1371/journal.pone.0316625.t001
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Statistical analysis

Multivariate general linear model (GLM) statistical analysis was performed to examine hippo-

campal subfield volume differences among long COVID and ME/CFS patients, relative to HC

using SPSS version 29. After confirming homogeneity using Levene’s test, the GLM was

applied to assess differences across the three groups. Correction for multiple comparisons was

conducted using the Bonferroni method. Then Spearman correlations were performed to

investigate the relationships between hippocampal subfield volumes and severity measures in

long COVID and ME/CFS patients, also using SPSS version 29. The normality condition for

data was assessed prior to the correlations using the Shapiro-Wilk test available in the SPSS

version 29. Age, sex, and total intracranial volume were included as nuisance covariates in

both analyses. Multiple comparison correction was applied to account for testing across the

three groups.

Results

Group comparison: Long COVID vs. HC

Long COVID patients exhibited significantly larger subfield volumes in the left: subiculum

head (p = 0.01), presubiculum head (p = 0.004), molecular layer HP head (p = 0.014), and

whole hippocampal head (p = 0.01) after adjusting for multiple group comparisons (see Fig 2).

Group comparison: ME/CFS vs. HC

ME/CFS patients also exhibited significantly larger subfield volumes in the left: subiculum

head (p = 0.002), pre-subiculum head (p = 0.005), para-subiculum (p = 0.007), molecular

layer HP head (p = 0.011), and whole hippocampal head (p = 0.01) after adjusting for multiple

group comparisons (Fig 2).

Group comparison: Long COVID vs. ME/CFS

There were no significant differences in hippocampal subfield volumes between long COVID

and ME/CFS patients. Detailed subfield volumes for both conditions can be found in S1 Table.

Hippocampal subfield volume correlations with severity measures in long COVID. In

long COVID patients, we observed associations between hippocampal subfield volumes and

Fig 1. Hippocampal subfield segmentation of a healthy participant overlaid on a reference T1-weighted image. Different colors representdistinct subfields.

https://doi.org/10.1371/journal.pone.0316625.g001
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Fig 2. Plots of estimated volumes for five hippocampal subfields. In four cases (A, B, C and D), ME/CFS (red) and long COVID (green) were larger than

HC (blue) and were similar for ME/CFS and long COVID. For one case (E), a subfield volume was significantly larger only in ME/CFS (red) compared to

HC (blue). A) left subiculum head, B) left presubiculum head, C) molecular layer HP head, and D) whole hippocampal head and E) left parasubiculum.

Differences between ME/CFS and long COVID were not significant.

https://doi.org/10.1371/journal.pone.0316625.g002
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severity measures of ‘Unrefreshing sleep’, ‘Pain’, ‘Severity of fatigue’, and ‘Duration of illness’

(see Fig 3).

A significant negative correlation was found between Unrefreshing sleep’ and the right pre-

subiculum body volume (r = -0.65, p = 0.022). Similarly, ‘Pain’ intensity showed negative cor-

relations with volumes in several left hippocampal subfields including presubiculum body (r =

-0.69, p = 0.018), fimbria (r = -0.61, p = 0.045), HATA (r = -0.67, p = 0.023), and the right fim-

bria (r = -0.75, p = 0.008) volume (Fig 3). ‘Severity of fatigue’ exhibited a negative relationship

with left subiculum head volume (r = -0.65, p = 0.02) while ‘Duration of illness’ was negatively

associated with right hippocampal tail volume (r = -0.63, p = 0.028) (see Fig 3).

Hippocampal subfield volume correlations with severity measures in ME/CFS. In ME/

CFS patients, several severity measures, ‘Unrefreshing sleep’, ‘Pain’, ‘Severity of fatigue’,

Fig 3. Correlation between hippocampal subfield volumes and clinical measures for long COVID (left) and ME/CFS patients (right). Left: (A) right presubiculum

body volume with ‘Unrefreshing sleep’ score, (B, C) bilateral fimbria volumes with a ‘Pain’ score with larger volume associated with more severe pain (lower pain

score), (D) left subiculum head with ‘Severity of Fatigue’, and (E) right hippocampal tail with ‘Duration of illness’. Right: (A,B) left subiculum and whole hippocampal

body volume correlation with the ‘Unrefreshing sleep’ score, (C) left subiculum and fimbria volumes were correlated with ‘Pain’ score with lower volume associated

with more severe pain (lower pain score), (D) left presubiculum head associated with ‘Severity of fatigue’, (E) left CA4 body volume associated with ‘Impaired

concentration’, and (F, G) right CA1 head and CA3 body volumes associated with ‘Physical function’ with lower volume associated with lower physical function (lower

physical function score). The Y-axis is the volume in mm3 and the X-axis is the clinical scores. Lines are the linear regression fit.

https://doi.org/10.1371/journal.pone.0316625.g003
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‘Impaired concentration’, and ‘Physical function’ were associated with hippocampal subfield

volumes (see Fig 3).

A significant positive correlation was observed between ‘Unrefreshing sleep’ and left subi-

culum body (r = 0.5, p = 0.01), and whole hippocampal body volume (r = 0.45, p = 0.022) (see

Fig 3). Similarly, ‘Pain’ and left: presubiculum head (r = 0.47, p = 0.03), ‘Impaired concentra-

tion’ and left CA4 body volume (r = 0.41, p = 0.034), and ‘Physical function’ and Right: CA1

head (r = 0.46, p = 0.022) and CA3 body volumes (r = 0.44, p = 0.031) showed significant posi-

tive correlations (see Fig 3). Conversely, ‘Severity of fatigue’ exhibited a negative correlation

with the left presubiculum head volume (r = -0.44, p = 0.024) (see Fig 3).

Discussion

Our study using ultra-high field 7T MRI found alterations in the hippocampal subfields of

both long COVID and ME/CFS patients compared to HC. Notably, we identified larger vol-

umes on the left in: subiculum head, pre-subiculum head, molecular layer HP head, and whole

hippocampal head; in both conditions. Furthermore, we found significant associations

between hippocampal subfield volumes and severity measures ‘Unrefreshing sleep’, ‘Pain’,

‘Severity of fatigue’, ‘Impaired concentration’, ‘Physical function’, and ‘Duration of illness’ in

both conditions. These shared hippocampal subfield volume changes may contribute to the

neurocognitive symptoms experienced by individualswith long COVID and ME/CFS.

Group comparison

This study found larger volumes in specific hippocampal subfields in long COVID and ME/

CFS patients compared with HC. The hippocampus is a complex region critical for neurocog-

nitive function [28] and is often affected in neurodegenerative diseases [29]. Importantly, a

large proportion of both conditions (70% of long COVID) and (83% of ME/CFS) [30] patients

suffer from neurocognitive problems [31].

Recently, larger left subiculum and pre-subiculum head volumes were reported in ME/CFS

patients compared to HC [20]. A study of COVID-19 survivors also showed an increase in the

grey matter volume in the bilateral hippocampus regions compared to non-covid-19 volun-

teers [32]. Our study found larger volumes in the left subiculum head, presubiculum head,

molecular layer hippocampal head, and whole hippocampal head in long COVID and ME/

CFS patients compared with HC. These enlarged volumes may be due to increased neurogen-

esis and/or functional compensation. Increased hippocampal neurogenesis could be a

response to environmental factors and/or stress [33, 34] known to trigger ME/CFS symptoms.

An animal study supports this notion, as lower hippocampal neurogenesis was observed in

poor-learning rats compared to better-learning rats [35]. Sex hormones also influence neuro-

genesis within the hippocampus. Estrogens modulate neurogenesis in females [36], and andro-

gens play a similar role in males [37]. Both have been reported to be higher in ME/CFS than

HC [38]. Addtionally, there is a strong connection between the hippocampus and brainstem

regions [39]. The hippocampus may undergo hypertrophy to compensate for brainstem defi-

cits, which have been reported in both long COVID and ME/CFS patients [21, 40, 41].

The similar hippocampal subfield volumes observed in both long COVID and ME/CFS

patients align with the known overlap of symptoms between these conditions [4]. These find-

ings are consistent with our previous work demonstrating similar brainstem volumes in differ-

ent long COVID and ME/CFS cohorts [21]. Additionally, dysfunction of Transient receptor

potential cation channel subfamily M member 3 (TRPM3) receptors which are highly

expressed in the central nervous system [42], has been linked to both long COVID and ME/

CFS [43]. Given that neurocognitive impairment is a shared symptom of both conditions [4],
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our findings suggest that structural alterations within the hippocampus might contribute to

the neurocognitive dysfunction seen in both long COVID and ME/CFS.

Correlation with severity measures in long COVID and ME/CFS patients

Severity of unrefreshing sleep. Most long COVID and ME/CFS patients experience

unrefreshing sleep and sleep deprivation [44]. In our study of long COVID patients, the right

pre-subiculum body showed a negative correlation with the ‘Severity of unrefreshing sleep’

(r = -0.65, p = 0.02), indicating that reduced sleep quality was associated with smaller hippo-

campal subfield volume. In contrast, in ME/CFS patients, we found a positive correlation

between ‘Severity of unrefreshing sleep’ and the contralateral left subiculum body volume

(r = 0.5, p = 0.01) and whole hippocampal body volumes (r = 0.45, p = 0.022), indicating that

larger volumes were associated with greater sleep problems. Our previous research in ME/CFS

patients also showed an association between greater sleep disturbance and larger hippocampal

subfield volumes [20]. A recent longitudinal study [45] showed that patients with post-COVID

ME/CFS suffered from more severe sleep disturbance compared to those with post-COVID

condition. The contrasting correlations for long COVID and ME/CFS patients could relate to

their different symptom severity.

Pain. In long COVID patients, we observed a negative correlation between ‘Pain’ and vol-

umes of the left presubiculum body (r = -0.69, p = 0.018), left fimbria (r = -0.61, p = 0.044), left

HATA (r = -0.67, p = 0.023) and right fimbria (r = -0.75, p = 0.008) (see Fig 3). In contrast, in

ME/CFS, we observed a positive correlation between ‘Pain’ and left presubiculum head volume

(r = 0.47, p = 0.03), indicating that lower volume is associated with increased ‘Pain’ intensity

(see Fig 3). Our previous study [20] also showed a positive correlation between ‘Pain’ and hip-

pocampal subfield volumes in a different cohort of ME/CFS. Similarly, a study in elderly

women found that enlarged hippocampal subfield volumes were associated with ‘Pain’ inten-

sity [46], and Smallwood et al. [47] reported increased grey matter volume in the hippocampus

of chronic pain patients. The association between hippocampal subfield volumes and ‘Pain’

intensity could be explained by impaired cortico-limbic connectivity, which integrates pain

characteristics into the hippocampus [48]. These findings demonstrate a link between pain

intensity and altered hippocampal subfields in both long COVID and ME/CFS. A recent longi-

tudinal study [45] showed that pain scores were more affected in Post COVID Syndrome-ME/

CFS patients. However, while Post COVID Syndrome patients showed improvement in the

pain score in the follow-up there was only a minor improvement among ME/CFS patients.

The contrasting correlations for long COVID and ME/CFS patients could be due to the per-

manency of symptoms in ME/CFS, whereas these symptoms might improve over time in long

COVID patients [45].

Severity of fatigue. Fatigue is one of the most common symptoms experienced by long

COVID and ME/CFS patients [4]. Our study found a negative correlation between the ‘Sever-

ity of fatigue’ and hippocampal subfield volumes in both conditions. In long COVID, this cor-

relation was observed in the left subiculum head volume (r = -0.65, p = 0.02), while in ME/CFS

patients, it was in the left presubiculum head (r = -0.44, p = 0.024). This suggests that greater

fatigue severity is associated with smaller hippocampal subfield volumes in both conditions.

These findings align with other research. A recent study by Wasson et al [49] found an associa-

tion between reduced hippocampal subfield volume and fatigue. Our previous work [20] simi-

larly showed a negative association between fatigue severity and hippocampal subfield

volumes in ME/CFS patients.

Duration of illness. In long COVID patients, we observed a negative correlation between

the ‘Duration of illness’ and right hippocampal tail volume (r = -0.63, p = 0.028), indicating
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that this smaller hippocampal subfield volume is associated with a longer illness duration. A

study in long COVID patients reported severity of cognitive impairment increased with illness

duration [13]. Interestingly, we did not find a significant correlation between the ‘Duration of

illness’ and hippocampal subfield volumes in ME/CFS patients. This difference could be due to

the disease course. Altered Hippocampal volumes in ME/CFS may be progressive only in the

early stages of the disease. Furthermore, the average illness duration in our study was markedly

shorter for long COVID patients (0.60±0.46 years) compared to ME/CFS patients (13.24

±11.13).

Impaired concentration. ME/CFS patients showed a positive correlation between severity

of ‘Impaired concentration’ and left CA4 body volume (r = 0.41, p = 0.034), indicating that a

larger volume is associated with greater impairment in concentration. This supports our recent

report of a positive correlation between hippocampal subfield volumes and ‘Impaired concen-

tration’ in a different cohort of ME/CFS patients [20]. Another ME/CFS study using diffusion

tensor imaging showed abnormal regression with ‘Impaired concentration’ in the hippocam-

pus region [50]. Lim et al. [51] demonstrated an association between hippocampal subfield

volumes and constructional recall scores and memory tests. Similarly, a larger cornu ammonis

volume was associated with complex figure delayed recall [52], indicating that the CA4 sub-

field plays a crucial role in memory retrieval.

Physical activity. ME/CFS patients often experience limited physical activity due to post-

exertional malaise [53]. We found a positive correlation between ‘Physical activity’ levels and

hippocampal subfield volumes on the right: CA1 head (r = 0.46, p = 0.022) and CA3 body

(r = 0.44, p = 0.031) in ME/CFS patients, indicating that smaller subfield volumes are associ-

ated with lower ‘Physical activity’. A Brain-derived neurotrophic factor (BDNF) is elevated by

physical activity in the hippocampus and is crucial for neurogenesis and neuroplasticity [54],

which is impaired in ME/CFS patients [54]. Interestingly, no such relationship between physi-

cal activity and hippocampal subfield volumes was observed in long COVID patients. This dif-

ference could be due to the potentially greater disease severity and longer illness duration in

ME/CFS patients compared to long COVID patients.

Contrasting clinical associations in long COVID and ME/CFS. We observed some con-

trasting relationships between between hippocampal subfield volumes and clinical measures in

long COVID and ME/CFS. Hippocampal subfield volumes were negatively correlated with

unrefreshing sleep and pain scores in long COVID patients, whereas the pain score correlation

was positive in ME/CFS patients. This difference might be due to symptom severity. Most ME/

CFS patients met the stringent diagnostic criteria of CCC or ICC, unlike many long COVID

patients.

Previously, we demonstrated that ME/CFS patients meeting stringent criteria (CCC or

ICC) exhibited altered hippocampal subfield volumes compared to those meeting less strin-

gent criteria (Fukuda) [20]. Similarly, another study using diffusion tensor imaging revealed

tissue microstructural changes in ME/CFS patients meeting CCC or ICC criteria but not in

those meeting only the Fukuda criteria [50]. A recent longitudinal study [45] indicated that

sleep disturbances and pain scores were more significantly affected in Post COVIDSyndrome-

ME/CFS patients, and while Post COVID Syndrome patients showed improvement in pain

scores over time, improvement was minor among ME/CFS patients.

The contrasting relationships between hippocampal subfield volumes and clinical measures

in long COVID and ME/CFS patients could be attributed to the more severe symptoms of

ME/CFS. Further longitudinal studies are needed to determine whether long COVID patients

who eventually meet ME/CFS criteria exhibit similar correlations between hippocampal sub-

field volumes and clinical measures.
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Limitations

Hippocampal subfield volumes are known to differ with sex and handedness (left versus right)

[55, 56]. However, due to our limited sample size, this study was unable to explore these sex

and handedness differences in long COVID and ME/CFS patients. Another limitation is that

this study design was cross-sectional. Therefore, a longitudinal study is needed to confirm

whether the hippocampal volume changes are progressive in long COVID and ME/CFS

patients. A longitudinal study may potentially confirm whether similar volume behaviour per-

sists in long COVID and ME/CFS patients. Additionally, all clinical measures for long COVID

and ME/CFS were obtained via online surveys, which may yield under and over-reporting of

clinical measures.

Conclusion

Our analysis revealed altered hippocampal subfield volumes in both long COVID and ME/

CFS patients. Notably, no significant differences in hippocampal subfield volumes were

observed between two conditions. Furthermore, we found significant associations between

hippocampal subfield volumes and severity measures in both long COVID and ME/CFS

patients. These findings suggest that structural alterations in the hippocampus may contribute

to overlapping symptoms, such as cognitive problems in long COVID and ME/CFS patients.

Future research investigating long COVID and ME/CFS patients together could provide

deeper insights into the potential neurological underpinnings shared by these conditions.

Supporting information
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