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Abstract
The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a
high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimen-
tation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find
the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been
enabled by advances in lab automation and the introduction of machine learning algorithms. Therein, multiple reaction variables
can be synchronously optimized to obtain the optimal reaction conditions, requiring a shorter experimentation time and minimal
human intervention. Herein, we review the currently used state-of-the-art high-throughput automated chemical reaction platforms
and machine learning algorithms that drive the optimization of chemical reactions, highlighting the limitations and future opportu-
nities of this new field of research.
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Introduction
Organic synthesis plays a crucial role in drug discovery,
polymer synthesis, materials science, agrochemicals, and
specialty chemicals. Their synthesis and process optimization

require substantial resources and are labor-intensive, often
exploring only a single variable in search of the optimal condi-
tions while disregarding the intricate interactions among
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Figure 1: A high-level representation of the workflow and framework used for the optimization of organic reactions through optimization algorithms
and high-throughput experimentation (HTE) tools.

competing variables within the synthesis process. The complex-
ity of the problem requires consideration that process optimiza-
tion often demands solutions that meet multiple targets, such as
yield, selectivity, purity, cost, environmental impact, etc. In
recent years, the advancement of artificial intelligence (AI),
machine learning (ML), and automation has produced a para-
digm shift for chemical synthesis optimization techniques. By
leveraging on ML models to predict reaction outcomes and ML
optimization algorithms, this new approach has demonstrated
the ability to navigate the complex relationships between reac-
tion variables and finding the global optimal conditions within a
fewer number of experiments than with traditional methods
[1,2]. In addition, machine-guided optimization has emerged as
a promising framework to obtain reaction conditions that
perform optimally for single- or multiple-target objectives,
enabling researchers to explore diverse solution spaces and
uncover the optimal conditions that strike a balance between
consonant and/or conflicting targets. In addition, the incorpora-
tion of lab robotics into chemical synthesis has enabled the de-
velopment of closed-loop optimization platforms capable of
executing optimization campaigns rapidly with minimal human
intervention, relieving experimenters from labor-intensive tasks
and reducing the overall process development lead time [3,4].

A standard workflow and general methodology for organic
reaction optimization through ML methods is shown in
Figure 1. The workflow comprises (i) careful design of experi-
ments (DOE); (ii) reaction execution with commercial high-
throughput systems or in-house designed reaction modules;
(iii) data collection by in-line/offline analytical tools;
(iv) mapping the collected data points with the target objectives;
(v) prediction of the next set of reaction conditions towards
attaining optimal solutions; and (vi) experimental validation of
suggested optimization results. Through an examination of
methodologies, algorithms, and various case studies, this article
offers our perspective on the state-of-the-art techniques for opti-

mizing the synthesis of organic molecules, highlighting both
challenges and prospects. The structure of this review follows
the steps presented in Figure 1. In the following section, we
review the high-throughput platforms currently used to perform
chemical reaction optimization. Thereafter, we discuss the de-
velopment and use of analytical tools and data processing algo-
rithms. After that, we discuss the latest trends in the selection of
optimization algorithms for chemical synthesis. Finally, we
highlight the future directions and opportunities in the field. For
an in-depth overview on the topic of chemical reaction optimi-
zation, the readers are referred to prominent reviews by Taylor
et al. [5], Griffin et al. [6], and Sagmeister et al. [7]. The first
two offer valuable perspectives on chemical reaction optimiza-
tion, particularly focusing on process scale-up, while the latter
discusses the potential of flow platforms for self-optimization
reactions. Additionally, we refer the readers to the following lit-
erature in other areas relevant to the application of ML to chem-
ical synthesis that are not covered by our review, such as small
molecule discovery [8], drug discovery [9,10], retrosynthesis
[11,12], and catalyst selection and design [13,14].

Review
HTE platforms
HTE platforms were designed to accelerate the discovery and
development of organic molecules by the rapid screening and
analysis of large numbers of experimental conditions simulta-
neously. For the purpose of this article, we define HTE as a
technique that leverages a combination of automation, paral-
lelization of experiments, advanced analytics, and data process-
ing methods to streamline repetitive experimental tasks, reduce
manual intervention, and increase the rate of experimental
execution in comparison to traditional manual experimentation.
In conventional chemical synthesis, several sequential steps are
typically undertaken, involving the setup of the reaction, mixing
of reactants, reaction workup, product analysis, and product
purification. To perform all these basic chemistry tasks effec-
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tively, customizable HTE platforms are available from various
laboratory instrument manufacturers or can be assembled using
a mix of commercial and in-house developed equipment.
Normally, HTE for organic chemistry will include a liquid
transfer module, a reactor stage, and analytical tools for prod-
uct characterization. When the full experimental process is auto-
mated and coupled with a centralized control system per-
forming ML optimization, the HTE can function as a self-
driving platform where the next iteration of experiments is auto-
matically selected by algorithm without human intervention.
This section will highlight the key features of various HTE plat-
forms, including benefits, limitations, and applications to
organic molecule synthesis.

HTE using batch modules
Batch reactions occur without flow of the reagents/products into
or out of the reaction vessel until a target conversion has been
achieved. HTE batch platforms leverage on parallelization of
experiments to perform several reactions under different condi-
tions simultaneously to increase the experimental throughput.
Commonly, batch platforms include a liquid handling system
for setting up reactions based on a plunger pump (e.g., syringe,
pipette), a reactor capable of heating and mixing, and in-line/
online analytical tools. HTE in batch excels in the control of
categorical and continuous variables, in particular for the stoi-
chiometry and chemical formulation of reaction mixtures. Many
HTE batch experiments have been performed in self-contained
automated platforms developed by various instrument manufac-
turers (Chemspeed, Zinsser Analytic, Mettler Toledo, Tecan,
Unchained Labs, etc.). In these HTE platforms, microtiter well
plates (MTP) and reaction blocks containing 96/48/24-well
plates are widely used as reaction and characterization vessels
[5]. UltraHTE configurations typically incorporate 1536-well
plates, enabling the exploration of lager spaces of reaction pa-
rameters. While ultraHTE was initially tailored to biological
assays, the versatility of these modules has been extended to op-
timizing chemistry-related processes [5]. The Chemspeed
SWING robotic system, equipped with two fluoropolymers and
PFA-mat-sealed 96-well metal blocks, was used for the explo-
ration of stereoselective Suzuki–Miyaura couplings, offering
precise control over both categorical and continuous variables
(Figure 2a) [15]. The integrated robotic system containing a
four-needle dispense head facilitated the delivery of reagents in
low volume and slurries, ensuring the accuracy and throughput
of the process. The entire experimental workflow was further
optimized through parallelization, dividing reactions into eight
loops, enabling them to complete 192 reactions within 24 loops,
achieving a significant throughput in within four days. Other
reports for various reactions include the Buchwald–Hartwig
aminations [16-19], Suzuki couplings [16,17,20], N-alkylations
[21], hydroxylations [22], and photochemical reactions [23-29].

The versatility to handle multiple reagents and the widespread
availability of 96-well plates have facilitated the extensive
adoption of HTE under batch conditions for optimizing chemi-
cal synthesis. However, several challenges arise when MTP are
used as reaction vessels. First, the independent control of vari-
ables such as reaction time, temperature, and pressure within
individual wells is not possible due to the inherent design
constraints of parallel reactors that share the same MTP. In ad-
dition, challenges arise when standard MTP-based reaction
vessels are used at a temperature near the solvent's boiling
point, as this labware is not enclosed or able to cool the top of
the reaction vessel to facilitate reflux conditions. Although
some research groups have developed custom tools to enable
high-temperature reactions, these reactors are currently not
commercially available. For an in-depth discussion on the limi-
tations of batch reactors for HTE, we refer the readers to a
review by Taylor et al. on chemical reaction optimization [5].

In recent years, research laboratories have deviated from tradi-
tional commercial tools to HTE systems custom-built to the
chemists’ requirements and demands. Burger et al. [30] have
creatively developed a mobile robot equipped with sample-
handling arms, tailored for the precise execution of photocata-
lytic reactions for water molecule cleavage to produce hydro-
gen. The mobile robot (Figure 2b) acted as a substitute of a
human experimenter by executing tasks and linking eight
separate experimental stations, including solid and liquid
dispensing, sonication, several characterization equipments, and
stations for consumables and sample storage. Remarkably,
through a tedious ten-dimensional parameter search spanning
eight days, the robot achieved an impressive hydrogen evolu-
tion rate of approximately 21.05 µmol⋅h−1. Despite the initial
investment and two-year development timeline, the versatility
of this robotic system promises remarkable applications in ma-
terials, polymers, and chemical synthesis. Most automated syn-
thesis platforms are based on expensive scientific equipment,
have a large equipment footprint, and need extensive reconfigu-
ration to adapt to new synthetic protocols. To address this issue,
Manzano et al. [31] have developed a small-footprint portable
chemical synthesis platform able to perform liquid and solid
phase organic reactions (Figure 2c). The platform utilizes
3D-printed reactors that can be generated on demand based on
the targeted reaction and features liquid handling, stirring,
heating, and cooling modules for enhanced versatility. In addi-
tion, the platform is capable of performing under inert and low-
pressure atmospheres, handling separation steps, and pressure
sensing for reaction monitoring. Its efficacy and robustness
were confirmed through the successful synthesis of five small
organic molecules, four oligopeptides, and four oligonucleo-
tides in high purity and impressive yield. Although, in the cur-
rent configuration, the platform lacks characterization modules
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Figure 2: (a) Photograph showing a Chemspeed HTE platform using 96-well reaction blocks. (b) Mobile robot equipment performing tasks normally
executed by human experimenters for the photocatalytic conversion of water to hydrogen. (c) Small-footprint portable chemical synthesis platform.
(d) Schematic of the SynBot platform developed by Samsung researchers, showing each module used for chemical synthesis. Figure 2a was repro-
duced from [15] (© 2021 M. Christensen et al., published by Springer Nature, distributed under the terms of the Creative Commons Attribution 4.0
International License, https://creativecommons.org/licenses/by/4.0). Figure 2b is from [30] and was reprinted by permission from Springer Nature from
the journal Nature (“A mobile robotic chemist” by B. Burger; P. M. Maffettone; V. V. Gusev; C. M. Aitchison; Y. Bai; X. Wang; X. Li; B. M. Alston; B. Li;
R. Clowes; N. Rankin; B. Harris; R. S. Sprick; A. I. Cooper), Copyright © 2020 The Author(s), under exclusive licence to Springer Nature Limited. This
content is not subject to CC BY 4.0. Figure 2c is from [31] and was reprinted by permission from Springer Nature from the journal Nature Chemistry
(“An autonomous portable platform for universal chemical synthesis” by J. S. Manzano; W. Hou; S. S. Zalesskiy; P. Frei; H. Wang; P. J. Kitson; L.
Cronin), Copyright © 2022 The Author(s), under exclusive licence to Springer Nature Limited. This content is not subject to CC BY 4.0. Figure 2d was
adapted from [32] (© 2023 T. Ha et al., published by American Association for the Advancement of Science, distributed under the terms of the
Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0).

and has a lower throughput in comparison to other automated
platforms, it does offer a low-cost alternative that can be
adapted to perform chemical reaction optimization.

In addition to academia, industry is increasingly recognizing the
value of investing in custom-built HTE setups to automate their
synthesis workflows for enhanced productivity. A fully inte-
grated, cloud-accessible, automated synthesis laboratory (ASL)
was designed and built by Eli Lilly [33]. This state-of-the-art
facility allowed for heating, cryogenic conditions, microwaving,
high-pressure reactions, evaporation, and workup, empowering
researchers to conduct an extensive array of chemical reactions.
The ASL comprises of three bench spaces dedicated to either
high temperature reactions, cryogenic/microwave reactions, or
reaction workup. On each bench, a translational combination of

robotic arms performs the specific experiments using the
modular platforms, while consumables and samples are trans-
ferred between benches through a conveyor belt, linking them
together. According to the report, the ASL has facilitated over
16,350 gram-scale reactions across various case studies, show-
casing the widespread capability. Researchers at Samsung have
pioneered the development of SynBot, an innovative autono-
mous synthesis robot that uses AI and robotic technology to
establish optimal synthetic procedures [32]. Similar to ASL,
SynBot consists of five modules connected through a conveyor
belt backbone, with a robot arm in charge of transferring the
samples between them. The modules include a pantry for chem-
ical storage and chemical selection, a dispensing module for
solids and liquids, a reaction module capable of heating and
stirring, a sample preparation module, and a LC–MS characteri-
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zation module (Figure 2d). The efficiency of the system has
been demonstrated in three reactions types, namely
Suzuki–Miyaura coupling, Buchwald–Hartwig amination, and
Ullmann coupling. These experiments showcased a conversion
rate that outperformed existing reference systems and provided
at least six times the efficiency in the experimentation, besides
synthesis planning, optimization, and downstream workup
tasks. The throughput of SynBot is estimated to be an average
of 12 reactions within 24 hours depending on the reaction time.
IBM has developed RoboRXN, a remotely accessible autono-
mous chemical laboratory that enables notable acceleration in
chemical synthesis by leveraging cloud computing, AI, and
automation [34]. The technology relies on an AI model that
recommends the sequence of operations needed to perform the
corresponding chemical reactions, including the order of
reagent addition [35]. This model facilitates that the synthesis
tasks are sent to a robotic research lab from anywhere in the
world, allowing the robot to execute the recommended retrosyn-
thesis provided by the user. The enhancements in RoboRXN
assist chemists in predicting the environmental impact of chem-
ical processes, and the new AI model also helps identify more
environmentally friendly enzymes for chemical reactions. Al-
though RoboRXN has demonstrated the ability to perform most
tasks in chemical and material synthesis, the hardware current-
ly cannot perform product purification and multistep synthesis
continuously.

HTE using flow platforms
Flow reactions are characterized by a constant flow of reagents
and products into and out of the reaction vessel. A flow plat-
form consists of a fluid delivery system, mixing tools, reactors,
quenching units, pressure regulation units, and collection
vessels. The fluid delivery is normally executed using either
high-pressure liquid chromatography (HPLC), a syringe, or
peristaltic pumps. A passive mixing stage where the reagents
are introduced to the system through a Y- or T-connection is the
most common approach observed for most flow reactions, while
more specialized mixing tools can be incorporated depending
on the reaction prerequisites. The most common reactors used
are either microfluidic chip- or coil-based reactors for solution
chemistry. Packed bed reactors are used when solid heterogen-
eous catalysts and reagents (e.g., inorganic bases) are handled.
Specialized reactors for electro- [36,37] and photochemical [38-
40] experiments have also been developed. Depending on the
flow of the reaction mixture, flow reactions can be continuous
or segmented (also known as slug). Segmented flow reactions
present an efficient means to gather diverse data points by
creating segmented or droplet flow within microfluidic reactors.
Each droplet is carefully separated by either an antisolvent or an
inert gas, thus providing every droplet with the functionality of
an individual reactor. This segmentation ensures precise control

over reactions and prevents interference between different reac-
tion environments. Moreover, the ratio of reagents within these
droplets is easily modulated using syringe pumps, providing
users with a convenient means to collect data efficiently and
coherently. This approach streamlines experimentation pro-
cesses, enhances reproducibility, and facilitates the exploration
of complex reaction spaces with unprecedented accuracy.

Droplet microfluidics has emerged as a powerful tool across
diverse scientific disciplines, with dedicated literature offering
concepts behind droplet formation [41,42]. An example of a
segmented flow droplet system was employed to screen a range
of organic solvents to obtain optimal conditions for the
monoalkylation of trans-1,2-diaminocyclohexane [43]. The
HTE methodology in combination with feedback DOE facili-
tated the rapid identification of appropriate solvents. Notably,
the use of DMSO, DMF, and pyridine led to an enhanced yield
of the monoalkylated product. An experimental setup was de-
veloped for single-droplet studies of visible-light photoredox
catalysis using an oscillatory flow strategy [44,45]. In an oscil-
latory reactor, an alternating pressure gradient is applied within
the reactor, causing a back-and-forth oscillation of the reaction
slugs, which leads to higher control in mixing and an extended
residence time of the reaction mixture. About 150 reaction
conditions were explored, using a total volume of 4.5 mL reac-
tion mixture, and the screening results can be readily translated
to continuous flow synthesis. The application of segmented
flow or microslug reactors was demonstrated in the decarboxyl-
ative arylation cross-coupling reaction promoted by catalysts
and light [40]. The design allows the screening to be more ma-
terial- and time-efficient in the optimization of both continuous
variables (e.g., temperature and residence time) and discrete
variables (e.g., catalyst, base). Pieber et al. [46] reported the ap-
plication of a segmental flow reactor for heterogeneous
solid–liquid reactions. In their report, they described the reac-
tion slugs as serial microbatch reactors (SMBRs) separated
through gas segments that incorporated liquid reagents and solid
photocatalysts in a continuous flow. The slugs were generated
by establishing a stable gas–liquid segmented-flow pattern
using a Y-shaped mixer, followed by the suspension of the cata-
lyst via a T-mixer. This technology was utilized to develop
selective and efficient decarboxylative fluorination reactions.
Recently, a slug flow platform was developed (Figure 3a) by
injecting segments of gas as a separating medium for enhancing
the optimization of the Buchwald–Hartwig amination interme-
diate, which is crucial for synthesizing the drug olanzapine [47].
The reactor setup was integrated with spectroscopic and chro-
matographic in-line analytical tools, enabling real-time monitor-
ing of products and reaction intermediates. A detailed discus-
sion on the optimization strategy is described in the section
Machine-learning-driven optimization of chemical reactions.
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Figure 3: (a) Description of a slug flow platform developed using segments of gas as separation medium for high-throughput data collection in a
Buchwald–Hartwig amination. A six-way mixer was used to mix the solvents and reagents. (b) Schematic representation of a computer-controlled seg-
mented flow pattern developed using degassed water as an antisolvent for the high-throughput polymerization of styrene in p-xylene. A staggered
infusion of organic and aqueous phases resulted in the exploration of a wider parameter space.

Robochem, a HTE platform, was designed to streamline the
screening of photochemical reactions, facilitating the rapid gen-
eration of diverse reaction mixtures, each comprising 650 µL
within a slug flow reactor [48]. This innovative system features
precise monitoring of the reaction slug through a dedicated
array of phase sensors and an algorithm designed for detecting
its passage. As a result, the workflow delivers a notable boost in
productivity, surpassing traditional batch reactions by over a
500-fold and outperforming flow reactions with a five-fold
improvement. A fully integrated automated multistep chemical
synthesizer (AutoSyn) was reported to be able to autonomously
synthesize milligram- to gram-scale amounts of any organic or
drug-like molecule [49]. The system comprised of a flow chem-
istry synthesis platform, a reagent delivery system, a packed
bed reactor, process-analytical tools, and an integrated software
control system that automates end-to-end process operations
and monitoring. The system has been used to demonstrate the
synthesis of at least ten drug molecules autonomously, and it
does not include a closed-loop optimization framework. The
Pfizer research team developed a custom-designed flow system
for rapid reaction screening of the Suzuki–Miyaura coupling
reaction on a nanomolar scale [50]. The platform included a
modified HPLC system that supplied a flowing stream of 12
selectable solvents, an autosampler that injected microliter
amounts of preselected reaction mixtures, and an LC–MS
device for product characterization. Approximately 5,760 reac-
tions were screened across a selection of 11 ligands, seven

bases, and four solvents, along with appropriate control experi-
ments being performed. The nanomolar droplet system enabled
a very high throughput, exceeding 1,500 reactions every
24 hours. This extensive and intelligent screening approach
identified optimal conditions for scaling up selected reactions to
50–200 mg under batch and flow conditions.

In addition to organic synthesis, the slug flow methodology has
found application in polymer synthesis. A flow platform
capable of polymerizing 397 unique copolymer compositions
was developed by Reis et al. [51] using a droplet flow reactor.
The methodology and high-fidelity data enabled them to
discover more than ten copolymer compositions of promising
19F MRI agents that outperformed state-of-the-art materials. A
rapid generation of copolymer libraries was achieved by
forming a droplet flow in an automated HTE flow setup [52].
This approach not only assists in overcoming viscosity chal-
lenges in conventional photopolymerization reactions but also
helps to identify structure–property relationships for copolymer
libraries. We have generated a segmented flow pattern
(Figure 3b) by alternating the infusion of organic components
and degassed water to create nine different compositions [53].
The organic components consisting of styrene, α,α′-azobisiso-
butyronitrile (AIBN), and p-xylene were infused using a com-
puter-controlled segmented-flow platform. These approaches
allow the compartmentalization of reaction mixtures without
cross-contamination and enhance experimental throughput sig-
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Figure 4: Schematic representation (a) and photograph (b) of the flow parallel synthesizer intelligently designed for screening optimal conditions for
diazonium chemistry (c) for 24 products within two sequences. Figure 4 was reproduced from [54] (© 2021, G.-N. Anh et al., published by Springer
Nature, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0).

nificantly. The concept of parallel flow reactors, where several
distinct reactions conditions are tested simultaneously, has been
proposed as a pathway to increase the throughput of flow reac-
tions. Ahn et al. [54] designed and fabricated a complete proto-
type equipped with a unique built-in flow distributor (Figure 4)
and 16 microreactors capable of executing diverse conditions in
parallel, including photochemistry. The temperature of the
capillary reactors can be controlled independently, providing
flexibility in experimentation. The reservoir-type distributor,
featuring a baffle structure, not only ensures uniform flow of
reagents even when one or more reactors experience clogging
but also allows for variation of the residence time of individual
capillary reactors. The authors demonstrated the capabilities of
their platform by executing 12 distinct reactions, which encom-
passed six different types of chemical transformations based on
diazonium chemistry, in parallel (Figure 4). A total of 96 reac-
tion conditions were tested, leading to optimized reaction pa-
rameters in less than an hour.

Chatterjee et al. [55] introduced the concept of radial synthesis
to perform multiple single-step chemical reactions or to
decouple multistep reactions into parallel processes. Individu-
ally accessible reactors are arranged around a central switching
station that enables the delivery of independent reaction mix-
tures or reagents. Each reactor loop functions as an indepen-
dent unit to carry out thermal or photochemical reactions under
different conditions. This parallel reactor setup was successful-
ly utilized for the multistep synthesis of 18 compounds of an
anticonvulsant drug, employing various reaction pathways to
perform photoredox carbon–nitrogen cross-coupling reactions.
A parallel droplet flow system was developed by Eyke et al.
[56] to significantly increase the throughput of reaction
screening. A closed-loop Bayesian optimization (BO) frame-
work was integrated to optimize reactions involving both con-
tinuous and categorical variables. The team upgraded the oscil-
latory droplet reactor platform to a high-throughput version
consisting of multiple independent parallel reactors. This paral-
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Figure 5: (a) Schematic representation of an ASFR for obtaining an optimal solution with minimal human intervention. Selected case studies (b–d)
with closed-loop optimization are provided. Abbreviations “Obj” and “NOI” represent “objective functions” and “number of interactions”.

lelization enables the collection of high-fidelity data for reac-
tion kinetics and optimization for at least six different chemical
reactions. The major bottleneck in HTE synthesis lies in the
challenge of isolating and purifying reaction products once ex-
periments are performed. Despite this bottleneck, the landscape
is evolving, with various practical tools emerging to streamline
purification processes. From prepacked silica gel tubes to the
precision semipreparative liquid chromatography and the versa-
tile capabilities of various scavenger resins, laboratories are
witnessing a surge in options for efficient high-throughput
purification, particularly in chemical synthesis on a modest
scale. A change in thinking beyond conventional purification
methods presents an opportunity to revolutionize HTE flow
platforms. A completely novel design, differing from estab-
lished isolation and separation techniques, holds the promise of
not only enhancing the efficiency of HTE flow synthesis but
also paving the way for more sustainable growth in this research
area.

Autonomous self-optimizing flow reactors
Autonomous self-optimizing flow reactors (ASFRs) represent a
promising advancement in the process optimization of chemi-
cal reactions. ASFR combines principles of automation, AI,
in-line analytics, and robotics to streamline and accelerate the
process optimization workflow. ASFRs enhance the yield and

throughput of synthesis by minimizing waste. Engaging in-line/
online analytics and integrating them with flow systems is rela-
tively straightforward. The real-time processing of analytical
data allows for immediate adjustments to the reaction parame-
ters, enabling the attainment of optimal solutions rapidly.
Consequently, the process can lead to lower energy consump-
tion and reduced use of hazardous materials, contributing to
more sustainable chemical processes. Integrating ML algo-
rithms to simultaneously optimize multiple parameters such as
yield, purity, and cost within a closed-loop represents a signifi-
cant advancement in process design. Furthermore, automation
in ASFRs reduces the need for constant human oversight,
lowering operational costs and minimizing the risk of human
errors. A schematic representation of ASFR is provided in
Figure 5a.

A self-optimizing microreactor system has been devised specifi-
cally for closed-loop optimization of the Heck reaction, em-
ploying a "black-box" optimization strategy directed by
Nelder–Mead simplex method algorithm [57]. In-line HPLC
analysis was performed to determine the product yield in real
time and give feedback to the control system to direct the input
conditions to achieve the optimum product yield in 19 auto-
mated experiments. The optimum conditions for the formation
of the monoarylated product 1 (Figure 5b) identified in a
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Figure 6: (a) A modular flow platform developed for a wider variety of chemical syntheses. (b) Various categories of chemical reactions optimized and
molecules synthesized in a continuous flow system are given. Figure 6a is from [62]. Reprinted with permission from AAAS. This content is not subject
to CC BY 4.0.

microfluidics system were successfully translated to a mesoflu-
idics system on a 50-fold scale to afford 26.9 g of the product 1.
LeyLab, a modular software system developed by Fitzpatrick et
al. [58], allows researchers to oversee chemical reactions
online. The hydration of 3-cyanopyridine to an amide was
monitored by online MS, offering real-time conversion insights.
Through 30 experiments within ten hours, five key reaction pa-
rameters were finely tuned for optimal conditions.

Photochemical reactions require uniform light penetration of the
reaction mixture, and flow setups with uniform path lengths
would be ideal for such reactions. A self-optimizing continu-
ous-flow reactor was designed by Poscharny et al. [59] for
[2 + 2]-cycloaddition reactions promoted by light. The optimi-
zation (modified simplex) algorithm elaborated the optimal
conditions within 25 iterative experiments to afford compound
3 (Figure 5c) in good yield. A modular autonomous flow
reactor controlled via MATLAB was designed for the synthesis
of carpanone (7, Figure 5d) using a modified Nelder−Mead
algorithm [60]. The four-step process involves allylation,
Claisen rearrangement, isomerization, and oxidative dimeriza-
tion. Each reaction step was optimized independently by using
either online HPLC or in-line benchtop NMR spectroscopy to
afford an overall yield of 67% in 66 iterative experiments over
four linear reaction steps. Nandiwale et al. [61] reported the au-
tonomous optimization of three multiphase catalytic reactions

involving the handling of solid substrates, operating the
photoreactor, and feeding of the slurries, catalysts, and inorgan-
ic bases in an automated flow platform comprising a continu-
ous stirred tank reactor (CSTR) cascade. The platform allowed
to showcase the autonomous optimization to find the ideal reac-
tion conditions for Suzuki–Miyaura and photoredox-catalyzed
coupling reactions.

A plug-and-play, continuous-flow chemical synthesis system
(Figure 6a) was intelligently designed by Bédard et al. [62] to
mitigate some of the challenges in traditional organic synthesis
by the integration of hardware, software, and analytics. Com-
prising an array of modular components, including units for
heating, cooling, LED light exposure, and packed bed reactors,
it provides a flexible platform for various reaction categories.
The system consists of a liquid–liquid separator and an in-line/
online analytical tool to facilitate closed-loop autonomous opti-
mization. The capability of the system was demonstrated in the
optimization of C–C and C–N cross-coupling, olefination, re-
ductive amination, photoredox-catalytic, and nucleophilic aro-
matic substitution reactions, as well as in the two-step synthesis
of cyclobutanone. The molecules synthesized under the optimal
conditions are presented in Figure 6b, employing the stable
noisy optimization by branch and fit (SNOBFIT) algorithm.
SNOBFIT offers a convenient methodology for global optimi-
zation, eliminating the necessity of a theoretical model. A
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Table 1: Different analytical methods depending on their position within the experimental workflow.

analytical method description

in-line Analyzed in real time during the reaction or production process by directly integrating appropriate
devices.

online Sampling and analysis take place while the reaction or process is running. The analysis is done on a
device located nearby. Online analyses can be carried out continuously or at set intervals.
Autonomous sampling allows for direct online analysis with the instrument.

at-line Like online analysis, the samples are analyzed usually within a manufacturing facility. An aliquot of
the reaction mixture is taken for analysis. Human intervention is often required for this task. At-line
analysis still provides relatively rapid results compared to offline methods, offering a balance
between real-time monitoring and convenience.

offline Analysis conducted outside of the process environment and separate from ongoing operations.
Provides a more detailed and comprehensive analysis compared to real-time monitoring.

reconfigurable automated flow platform integrating online
HPLC monitoring was used for the cobalt-catalyzed aerobic ox-
idative dimerization of desmethoxycarpacine (6) to carpanone
(7) in the presence of oxygen as an oxidant [63]. A gas−liquid
segmented or a tube-in-tube strategy was adopted to achieve a
higher yield within a shorter residence time. Substantial further
developments have been made in applying ASFR in multiobjec-
tive optimizations, which will be discussed in detail below in
the section "Machine-learning-driven optimization of chemical
reactions".

Real-time analytics and high-throughput data
processing
Real-time analytics play a critical role in the optimization of
chemical reactions via high-throughput synthesis and ML algo-
rithms. Process-analytical technology (PAT) tools empower
researchers to obtain chemical insights from a large number of
experiments, facilitating the precise measurement of optimiza-
tion targets. The integration of real-time analysis in HTE
presents a multitude of advantages over traditional, one-time
final product evaluations, as outlined below:

(i) Real-time analysis facilitates rapid decision-making,
enabling researchers to continuously monitor and analyze data
as it is generated and allows for immediate adjustments to
process parameters during experiments.

(ii) Early detection of trends or anomalies are made possible
through real-time analysis, providing valuable insights that can
guide subsequent experiments and inform iterative improve-
ments and optimizations in experimental protocols.

(iii) By optimizing experimental workflows and minimizing
waste through real-time analysis, researchers can allocate
resources more efficiently, ensuring that resources are utilized
effectively to maximize experimental outcomes.

(iv) Enhanced experimental control on the process to deliver
constant product quality to meet desired specifications and stan-
dards.

(v) By providing instantaneous feedback, real-time analysis
accelerates the optimization process, reducing the experimenta-
tion time and expediting the discovery of optimal reaction
conditions with minimum material use.

Analytical tools are integral components of high-throughput
platforms and are found in various configurations, such as
in-line, online, at-line, and offline, contingent upon their place-
ment within the experimental workflow. In Table 1, we describe
the subtle disparities for clarity and reference.

Self-optimizing HTE throughput platforms require in-line and/
or online characterization as well as data analysis and process-
ing for rapid optimization of organic reactions. Chromatograph-
ic (i.e., HPLC, GC) and spectroscopic (e.g., NMR, FTIR,
UV–vis, Raman) characterization methods are commonly used
in real-time reaction monitoring. To quantify the products of a
chemical reaction, a calibration curve is required before the op-
timization campaign. The following sequential steps are typical-
ly employed to refine raw data into actionable inputs for build-
ing ML models for optimization: (i) extraction and categoriza-
tion of appropriate spectra; (ii) fitting of spectral peaks utilizing
predefined functional models, alongside deconvolution of over-
lapping signals; (iii) consolidation of extracted peak informa-
tion and generation of relevant data plots; and (iv) extracting the
relevant information and formatting into input data for ML
models. A recent review by Felpin and Rodriguez-Zubiri [64]
highlighted the selection of in-line/online analytical tools that
can be integrated into flow reactors for the monitoring of chem-
ical reactions. In the current review, we focus on the high-
throughput data processing that complements the HTE plat-
forms for rapid optimization of organic reactions. Although



Beilstein J. Org. Chem. 2025, 21, 10–38.

20

Figure 7: Implementation of four complementary PATs into the optimization process of a three-step synthesis.

multivariate data analysis has frequently been adopted in analyt-
ical chemistry for rapid data processing, the availability of rele-
vant open-source code is relatively low [65,66]. Consequently,
the development of open-source code for data processing is
interesting for the scientific community.

Jansen et al. [67] have developed HappyTools, a tool for the
analysis of HPLC measurements, able to calibrate retention
time, perform peak quantification, and use various quality
criteria to curate the compiled data. For the quantification and
calibration of chromatographic peaks, the user can either input a
peak list containing the retention time window of the target
chemicals, or the tool can use an automated peak detection
algorithm, removing the need of user input. The peak detection
algorithm was developed using a loop to attain the user-speci-
fied cut-off value of the highest-intensity peak. A new
univariate spline is fitted for each iteration, from which the
local maxima and minima are determined. Overall, Happy-
Tools showed similar or better performance in comparison to
existing commercial software. In particular, HappyTools
showed an enhanced throughput, demonstrating up to a ten-fold
reduction of the total processing time for biopharmaceutical
samples. The authors have released the source code and an
executable program in an online repository to be employed
freely for research purposes.

In addition to HappyTools, there are other available open-
source Python packages to analyze chromatographic and spec-
troscopic data. A cross-platform Python package named Aston
can be used to process both UV–vis and MS data. The open-
source library is written using Python, NumPy, and SciPy and is
openly hosted in an online repository [68]. Similarly, for pro-
cessing chromatographic data from GC–FID, HPLC–UV, or
HPLC–FD, packages are also available open source. Embed-
ding these codes into HTE and ML workflow dramatically im-

proves the efficiency and speed of the optimization processes.
Liu et al. [69] developed a custom-built Python script to study
the kinetics of carbonyldiimidazole-mediated amide formation
by analyzing data from online HPLC and in-line FTIR-spectros-
copic measurements. Their algorithm was able to automatically
detect peaks from chromatographic spectra and to automati-
cally assign the peaks to reagents or products depending on the
decrease or increase in peak intensity over time. In addition to
monitoring the evolution of the reaction, the IR spectral data
was processed in real time. This was to ensure the complete
consumption of acid reactant and to feed this information back
to the pump for immediate quenching of carbonyldiimidazole to
prevent any side reactions. The entire process allows to control
the acid activation and amide formation precisely to afford the
desired final product in quantitative yield.

Recently, Sagmeister et al. [70] assembled four complementary
PATs, including in-line NMR, UV–vis, IR, and online ultra-
high-performance liquid chromatography (UHPLC) to meticu-
lously monitor the intricate three-step linear synthesis of the
drug mesalazine (18, Figure 7) with a 1.6 g⋅h−1 throughput. In
the first step, the nitration reaction was monitored by in-line
NMR. The overlapping peaks were resolved for accurate quan-
tification by building a chemometric model. The model also
allowed for flexibility to small changes in peak positions and
shapes in repetitive analyses. An in-house-designed flow cell
equipped with a reflectance probe was employed for real-time
monitoring of hydrolysis by in-line UV–vis spectroscopy. The
raw data was processed using a sophisticated neural network
algorithm, yielding rapid quantification with an impressive pro-
cessing time of 1.4 ms per spectrum. This streamlined approach
ensured efficient and timely data analysis, facilitating seamless
real-time monitoring of the hydrolysis of 16. The final hydroge-
nation step was monitored by an in-line IR probe. The spectral
data was processed using a partial least squares regression
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Figure 8: Overlay of several Raman spectra of a single condition featuring the styrene vinyl region (a) and the p-xylene region (b). (c) Waterfall plot
depicting the decrease in the vinyl peak AUC over time. (d) A representative conversion plot shows an increasing conversion with residence time.
Figure 8 is adapted from [53]. Figure 8 was reprinted with permission from [53], Copyright 2023 American Chemical Society.

model and quantified. An online UHPLC was used to analyze
the final composition of the reaction mixture after three reac-
tion steps. The integration of all PAT tools into the three-step
reaction was carefully executed with an open platform commu-
nications unified architecture (OPCUA) platform for interplat-
form equipment communication. The adoption of the OPCUA
platform ensured seamless communication between different
equipment platforms for enhanced efficiency and accuracy in
data analysis.

A recent study introduced a novel approach for directly process-
ing and analyzing HPLC−DAD raw data using Python [71].
This method leverages the Multivariate Online Contextual
Chromatographic Analysis (MOCCA) package, designed for in-
tegration into both automated and manual workflows. MOCCA
offers a range of benefits, including automated management of
internal standards for precise relative quantification, reliable
peak assignments, accelerated sample processing, and efficient
deconvolution of overlapping peaks. Its versatility was show-
cased through the successful completion of four comprehensive
case studies, demonstrating its broad applicability across
diverse analytical scenarios. Recently, we implemented in-line
Raman spectroscopy to monitor the real-time conversion of
styrene to polystyrene, utilizing a custom Python package de-

veloped in-house [53]. This approach enabled us to track the
conversion process at different residence times. Specifically, we
quantified the conversion by analyzing the area under the curve
(AUC) of the Raman-active vibrational modes associated with
the styrene–vinyl C=C stretch (≈1630 cm−1), which we calibrat-
ed against signals from p-xylene (≈830 cm−1). To resolve over-
lapping peaks, we employed curve-fitting techniques utilizing
Lorentzian functional forms, facilitated by the lmfit Python
package. This methodology (Figure 8) allowed us to accurately
calculate conversion rates and to make precise predictions using
ML models. Traditionally, the optimization of a chemical reac-
tion, the development of kinetic models, and optimization of an-
alytical characterization parameters are undertaken indepen-
dently. With this approach, many overlapping tasks are per-
formed in parallel, thus leading to long lead times and ineffi-
cient personnel allocation. To overcome these issues,
Sagmeister et al. [72] developed a dual modelling approach
using a single platform that seamlessly integrates the calibra-
tion of PAT, reaction optimization, kinetic modelling, and
parametrizes a process model for scale-up within approxi-
mately eight hours. Their platform consisted of a flow reactor
connected to an in-line FTIR spectrometer. In addition, the plat-
form has two valves that allow a stream of reagents or target
product to bypass the reactor coil directly into the in-line FTIR
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spectrometer. Using this configuration, the platform can
perform a calibration of the reagent and product concentration
through a standard addition method. Once the PAT is calibrat-
ed, the platform performs dynamic experiments where the con-
centration of the reagents is ramped to explore the parametric
space. Finally, using a scientific programming language called
Julia, the collected data can be fitted to the kinetic model pa-
rameters, and in silico optimization of the reaction parameters
can be performed.

Machine-learning-driven optimization of
chemical reactions
Historically, optimization of chemical reactions has been per-
formed based on DOE methodologies, with the objective of
maximizing the yield of the reaction product. However, these
techniques are not well suited to find the global optimal condi-
tions and scale exponentially with the number of variables.
Computational approaches that rely on optimization algorithms
offer more efficient ways to obtain the optimal conditions, with-
out requiring an exponential number of experiments per vari-
able to be optimized. Early examples of chemical reaction
conditions optimization through computational approaches
focused on the application of black-box optimization algo-
rithms, such as steepest descent, SNOBFIT, and Nelder–Mead
simplex, which demonstrated positive results and the ability to
perform self-optimizing automated workflows with little human
intervention [57,58,60,62,73-75]. In recent years, ML optimiza-
tion methods have demonstrated the ability to obtain optimal
reaction conditions within a reduced number of experiments in
comparison to human intuition, traditional DOE, and other
black-box optimization algorithms [2,76,77]. Unlike traditional
optimization algorithms, the ML approach focuses on building
predictive surrogate models for objective functions. These
models learned the relationships between the reaction condi-
tions and the target optimization objectives based on experi-
mental data. In a second step, these models are efficiently
probed to identify the most promising values for optimizing the
objective function. In this section, we review the latest develop-
ments in ML optimization strategies for the optimization of
chemical reactions.

Figure 9a outlines the basic steps for the optimization of chemi-
cal reactions using ML methods. The workflow requires an
initial set of experimental data that contains different variables
for reaction conditions (i.e., temperature, time, solvent, catalyst,
etc.) and the corresponding outcome values for the target opti-
mization objectives (e.g., yield, purity, cost, etc.). The initial
dataset is commonly obtained by sampling a combination of
reaction variables from the parametric space, performing the
synthetic experiments under the selected reaction conditions,
and measuring the values for the target optimization objectives.

The sampling of the initial reaction variables is often per-
formed through near-random statistical methods, such as Latin
hypercube sampling (LHS), Sobol sampling, full factorial
sampling, and centerpoint sampling methods. Alternatively, the
initial dataset can be obtained from values previously reported
in the literature. After that, one or various predictive models are
fitted to the initial dataset to predict the expected values of the
optimization objectives. The number of models that are fitted
depends on the number of optimization objectives, and
normally one model is constructed for each optimization objec-
tive. The next step involves the application of an optimization
algorithm to find the parameters that would most likely lead to
optimal outcomes of the target optimization objectives. Finally,
a set of the most promising suggestions is selected and tested
experimentally. The dataset is then updated with the outcomes
of the latest experimental parameters, and the process is
repeated until the optimal conditions have been found.
Depending on the number of objectives, optimization
campaigns are classified as single-objective (Figure 9b) or
multiobjective optimizations (Figure 9c). In single-objective op-
timizations, the algorithm will explore the parametric space to
determine the optimal conditions by finding the variables that
either maximize or minimize the target objective function. In
multiobjective optimizations, the algorithms will search for
optimal conditions that either maximize or minimize each
objective function. On the other hand, when competing objec-
tives are optimized, the algorithm aims to discover the set of
solutions where the improvement of one objective results in the
deterioration of the other. This set of solutions is called the
Pareto front of the system (also known as nondominated solu-
tions), and all other solutions that are not part of the Pareto front
are not optimal for any of the objectives and are referred to as
dominated solutions. Since all solutions in the Pareto front are
optimal, the user is responsible for choosing the set of condi-
tions for their specific application.

The first reports on the application of ML in the optimization of
chemical reactions appeared over 20 years ago. A handful of
studies used ML algorithms, such as neural networks and
support vector machines, to fit models to chemical reaction data
that were then optimized by genetic algorithms [78-80]. How-
ever, the use of ML for chemical reaction optimization did not
become popular until the introduction of BO techniques by
Lapkin and Bourne et al. [81]. BO is a global optimization
method that fits a probabilistic function to model the objective
function and utilizes it to search for parameters that will likely
lead to optimal objective values. Commonly, BO uses a
Gaussian process (GP) to create surrogate models that map the
relationships between the variables and objectives (Figure 9a).
Then, the surrogate model is sampled, and the output values are
passed to an acquisition function that balances the surrogate
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Figure 9: (a) Schematic description of the process of chemical reaction optimization through ML methods. (b) 3D representation of the objective func-
tion depending on two variables, showing the path of five optimization iterations that aim to minimize the value of the objective function. (c) Represen-
tation of the outcomes of a multiobjective optimization campaign. Each data point represents one experimental reaction condition. The Pareto front of
the system, where the improvement of one objective leads to the deterioration of the other, is highlighted in red.

model predictions and uncertainties to find variable combina-
tions that are likely to lead to optimal solutions (Figure 9a). The
application of GPs and BO to optimize chemical reactions has
the advantages of being able to model complex nonlinear rela-
tionships between multiple variables and of incorporating
uncertainty into the predictions, making them suitable for the
optimization of noisy and expensive evaluation functions.

Multiobjective optimization of chemical synthesis
Different BO algorithms can be implemented depending on the
acquisition function used to evaluate the surrogate models and
the strategies used to suggest the most likely optimal values for
a target objective. Table 2 summarizes the use of various ML
algorithms for the optimization of chemical syntheses with
multiple objective functions. For chemical reaction optimiza-

tion, the Thompson sampling efficient multiobjective optimiza-
tion (TSEMO) algorithm has been the most widely used due to
its capability to model noisy functions, efficient computation,
and ability to model functions in the absence of any prior know-
ledge. The TSEMO algorithm utilizes a GP to model each
objective function and utilizes an approach based on Thompson
sampling to recommend the next set of conditions that maxi-
mizes the evaluated objective functions [82]. The use of
TSEMO for the optimization of a chemical reaction was first re-
ported by Schweidtmann et al. [81]. In this study, the multiob-
jective Bayesian optimization (MOBO) was used to optimize an
SNAr reaction (Table 2, entry 1) and an N-benzylation reaction
(Table 2, entry 2) using an automated flow reactor. The objec-
tives of the optimization were to maximize the space–time yield
(STY) while minimizing either the E-factor of the SNAr reac-
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.

entry platform algorithm variables objectives Refs.

1 [81]

flow BO (TSEMO) residence time
equiv of 20
concn of 19
temp

↑a STY of 21
↓b E-factor

2 [81]

flow BO (TSEMO) flow rate
24/25 ratio
solvent
temp

↑ STY of 26
↓ yield of 27

3 [86]

flow (CSTR) TSEMO residence time
equiv of 29
temp

↑ STY of 30
↓ yield of 31

4 [86]

flow (CSTR) TSEMO flow of 32
equiv of 33
equiv of NaOH
temp

↑ STY of 34
↓ yield of 35
↑ RMEc of 32

5 [87]

flow TSEMO equiv 33
equiv of NaOH
temp
residence time

↑ yield of 34
↓ cost
↓ E-factor
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

6 [15]

batch Phoenics
Gryffin

ligand
ligand/Pd ratio
Pd loading
equiv of 38
temp

↑ yield of (E)-39
↓ yield of (Z)-39
↓ Pd loading
↓ equiv of 38

7 [88]

batch TSEMO temp
concn of H2SO4
aqueous/organic phase ratio
time
equiv of 40
equiv of 41
equiv of 42
equiv of 43

↑ conversion of 40–43
↑ yield of 44–47

8 [88]
flow TSEMO temp

air flow
liquid flow
time
equiv of 44
equiv of 45
equiv of 46
equiv of 47

↑ conversion of 44–47
↑ yield of 48

9 [83]

flow TSEMO temp
residence time
concn of 19
equiv of 20
Et3N

↑ conversion of 19
↑ STY of 21
↓ E-factor
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

10 [83]
flow TSEMO equiv of 49

concn of 49 and 50
residence time of step 2
temp of step 1
temp of step 2
equiv of Et3N

↑ yield of 51
↑ STY of 52
↓ equiv of 49 and Et3N

11 [84]

flow Dragonfly temp
residence time
equiv of 53
equiv of DIPEA
leaving group X

↓ cost
↑ productivity of 55
↑ yield of 55

12 [84]

flow Dragonfly activation time
55/57 equiv ratio
temp of step 2
reactor vol
substituent R

↑ yield of 58
↑ productivity of 58

13 [89]
flow TSEMO equiv of 59

temp
concn of 60
equiv of AcOH
light intensity
residence time

↑ STY of 61
↑ conversion of 60
↑ selectivity
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

14 [85]

flow BOAEId residence time
equiv of 64
temp
equiv of TsOH

↑ yield of 66

15 [90]

flow MVMOOe solvents
residence time
concn of 19
equiv of 20
temp

↑ yield of 21
↑ yield of 22

16 [90]

flow MVMOO ligands
residence time
equiv of 68
temp

↑ RME
↑ STY of 69

17 [48]

photoflow reactor
(Robochem)

BO concn of 70
cat. loading
concn of CF3SO2Na
(NH4)2S2O8 loading
residence time
light intensity

↑ yield of 72
↑ throughput
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Table 2: Multiobjective optimization of synthetic organic case studies using ML methods and single-objective optimization of telescoped reactions.
(continued)

18 [48]

photoflow reactor
(Robochem)

BO concn of 73
concn of 74
cat. loading
residence time
light intensity

↑ yield of 75
↑ throughput

19 [48]

photoflow reactor
(Robochem)

BO concn of 76
loading of 76
TBADT loading
residence time
light intensity

↑ yield of 78
↑ throughput

20 [47]
slug flow reactor TSEMO residence time

concn of 79 and 80
equiv of 80
temp
equiv of DBU
cat. loading

↑ yield of 81
↑ STY of 81
↓ cost

21 [91]

flow ALaBOf residence time
cat. loading
temp
phosphine ligand

↑ yield of 84
↑ turnover number

aMaximization. bMinimization. cReaction mass efficiency. dBayesian optimization algorithm with an adaptive expected improvement acquisition func-
tion. eMixed-variable multiobjective optimization. fAdaptive latent Bayesian optimization.

tion or the impurity concentration of the N-benzylation reaction.
For both reactions, there were four variables to optimize, in-
cluding metrics for reaction time, reagent concentration, and
temperature. After an initial sampling of 20 experimental condi-
tions by LHS, the choice of reaction conditions was left to the
TSEMO algorithm, optimizing the SNAr within a total of 48
iterations and the N-benzylation reaction within a total of 58
iterations. Both optimizations resulted in the discovery of a

dense Pareto front with approximately 30–50% of the total sug-
gested conditions resulting in nondominated solutions. Since
then, multiple reports have demonstrated the ability of TSEMO
to optimize multiobjective optimizations for the synthesis of
organic molecules (see examples in Table 2, entries 3–5 and
7–9). A particularly noteworthy development is the application
of TSEMO for the optimization of synthetic routes composed of
two and more successive reaction steps or telescoped reactions
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[83-85]. Sagmeister et al. [83] reported the optimization of a
two-step telescoped synthesis of the active pharmaceutical
ingredient edaravone (52, Table 2, entry 10). In this study, a
self-optimizing flow reactor was used to run the optimization of
seven continuous variables, including three variables for the
first step and four variables for the second step. The optimiza-
tion had the objective of maximizing the yield of the imine
intermediate 51 obtained after the first reaction, the STY of 52,
and minimizing the overall used equivalents of the reagents.
After 85 iterations, a maximum yield of 95% for the synthesis
of 51 and a maximum STY of 5.42 kg/h for the synthesis of
edaravone (52) were achieved. Setting the objective to reducing
the quantity of reagents led to the discovery of unexpected reac-
tion conditions where a substoichiometric amount of triethyl-
amine was sufficient to promote the second reaction step, de-
creasing the waste produced during synthesis. Although no
global solution that provided the optimal reaction conditions for
all three objectives was found, a distinct set of reaction condi-
tions was identified that led to a high yield and a low overall
number of equivalents of reagent.

Accelerating optimization campaigns
Shortening the optimization time is desirable, especially when
manufacturing active pharmaceutical ingredients where only
small amounts of materials are available in each step in the de-
velopment. Currently, optimization methods require an initial-
ization step where reaction conditions are sampled and executed
to train the surrogate models used during the optimization
(Figure 9a). Sagmeister et al. [83] performed a multiobjective
optimization of an SNAr reaction in an automated flow reactor
platform and compared initialization sampling methods to
understand how different methods affect the final number of ex-
periments required to find optimal conditions (Table 2, entry 9).
They compared LHS (20 experiments), full factorial DoE (17
experiments), and centerpoint (only one experiment) as the
starting data points. They found that LHS and full factorial DoE
required a smaller number of optimization iterations after the
initial set of experiments was conducted due to the better
predictive capability of GPs trained with larger amounts of data.
However, when the total number of experiments including the
initialization set was considered, the number of experiments re-
quired to obtain optimal reaction values was larger than, or
equal to the situation where only one starting point was used as
the only initial sample of reaction conditions. Thus, the authors
concluded that it is beneficial to start the algorithm-driven opti-
mization as soon as possible instead of performing an initial
thorough exploration of the parametric space. However, they
did not fully explore if there was a trade-off between a reduced
number of initialization sampling and a total number of experi-
ments to achieve the optimal reaction conditions. Further
studies are required to understand this relationship.

Recently, Taylor et al. [92] introduced the concept of multitask
Bayesian optimization (MTBO) for chemical reaction optimiza-
tion. Analogous to transfer learning in ML models, the idea
behind multitask learning is to pretrain the surrogate GP models
with data that has been previously collected from similar reac-
tions to eliminate the need of an initial sampling step and
reduce the overall number of experiments required to obtain the
optimal reaction conditions. In MTBO, the standard GP surro-
gate models are replaced with multitask GPs that use kernels
able to create correlations between multiple GPs. The GP that
models the experimental conditions that are being optimized is
called the main task, while any other GP trained on previous
data is called an auxiliary task (Figure 10a). The authors bench-
marked MTBO in silico for a single objective optimization for a
Suzuki–Miyaura reaction. They discovered that in most cases,
pretraining the multitask GPs using a single dataset as an auxil-
iary task resulted in fewer iterations in comparison to standard
BO in order to achieve the optimal conditions. Moreover, the
authors observed that when four auxiliary tasks were used
instead of 1, the number of iterations required to the obtain
optimal reaction conditions was reduced from 15 to fewer than
five experiments (Figure 10b). Finally, the authors tested the
performance of MTBO in a series of palladium-catalyzed C–H
activation reactions of chloroacetanilides in an automated flow
reactor to produce the corresponding oxindoles (Figure 10c).
For all reactions, three continuous and one categorical variable
were optimized to maximize the reaction yield. The authors first
performed a standard single-objective BO of reaction (i) in
Figure 10c. The optimization was initialized with a set of 16
distinct reaction conditions sampled by LHS, reaching optimal
reaction conditions within seven further BO iterations. Subse-
quently, reaction (ii), yielding a similar oxindole product, was
optimized using MTBO, wherein the data gathered from the
previous optimization was used to train the auxiliary GP, ob-
taining the optimal conditions within only 11 iterations, in com-
parison to 18 required for the first reaction. Reaction (iii),
yielding another similar oxindole product, was optimized using
the previous data from the first two optimization campaigns to
train the auxiliary task GP. The authors found the optimal
conditions within five iterations by the algorithm. Further, the
authors tested the ability of MTBO to learn from previous ex-
periments by performing the optimization of two other C–H ac-
tivation reactions, where the structure of the substrate 91 was
substantially different in comparison to the first three optimiza-
tions. Thus, for the fourth campaign, they tested the optimiza-
tion of a reaction that produced a six-membered quinolinone
ring instead of the five-membered ring present in oxindoles.
The MTBO was able to find optimal reaction conditions within
ten iterations, demonstrating the capability of the algorithm to
handle the optimization of reactions that show small structural
deviations from the auxiliary task. Finally, the limits of the
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Figure 10: (a) Comparison between a standard GP (single-task) and a multitask GP. Training an auxiliary task using data collected from a similar
reaction reduces the uncertainties associated with the GP predictions. (b) Comparison of reaction optimizations performed in silico for single-task and
multitask BO. Multitask BO requires a reduced number of iterations to find optimal parameters that maximize the reaction yield. The performance is
further improved by incorporating a larger number of auxiliary tasks. (c) Reactions used to test multitask BO under experimental conditions. Reaction
(i) was performed using standard single-task BO, where each subsequent reaction incorporated the previously collected data to train auxiliary tasks.
(d) Example of SeMOpt algorithm maximizing a sine function. The upper row shows the ground truth function with the sampled points and the best
suggested candidate by the BO algorithm. The bottom row shows the values from the acquisition function from the surrogate of the target objective,
the neural processes (NPs), and their combination. Figure 10a and 10b were reproduced from [92] (© 2023 C. J. Taylor et al., published by American
Chemical Society, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/
by/4.0). Figure 10d was republished with permission of The Royal Society of Chemistry, from [93] (“Equipping data-driven experiment planning for
Self-driving Laboratories with semantic memory: case studies of transfer learning in chemical reaction optimization” by R. J. Hickman et al., React.
Chem. Eng., vol. 8, issue 9, © 2023); permission conveyed through Copyright Clearance Center, Inc. This content is not subject to CC BY 4.0.

MTBO were tested by using a chloroacetanilide 93 having an
electron-rich aromatic ring. Therein, the MTBO was unable to
discover satisfying reaction conditions.

Recently, researchers from Atinary Technologies reported the
development of SeMOpt, a BO framework that, similarly to

MTBO, aims to transfer knowledge obtained from previous op-
timization campaigns to accelerate chemical reaction optimiza-
tion [93]. In comparison to MTBO, SeMOpt has the advantage
of being an agnostic model, and thus it can be applied to any
combination of surrogate model and acquisition function used
during the BO campaign. In addition to the surrogate model

https://creativecommons.org/licenses/by/4.0
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used for BO (see Figure 9a), SeMOpt introduces a surrogate NP
to model and make predictions based on previously gathered
data. Then, an acquisition function is used to select likely candi-
dates by evaluating both the surrogate model and NP predic-
tions. SeMOpt introduces the knowledge learnt by biasing the
acquisition function of the surrogate model for the target
optimization with the acquisition function evaluated using
the NP model (Figure 10d). In addition, the bias introduced
to the acquisition function by the NP is continuously updated
and decreases as the number of optimization iterations in-
creases. In this way, the optimization surrogate will eventually
disregard the bias introduced by the NP whenever it becomes
uninformative. The authors benchmarked the performance of
the SeMOpt framework by performing an in silico single-objec-
tive optimization of a simulated cross-coupling reaction and a
Buchwald–Hartwig cross-coupling of aryl halides. For the
benchmarking, the authors used several different BO algo-
rithms and compared their performance when paired with
SeMOpt. The authors observed that in all cases, the application
of SeMOpt outperformed the single-task implementation of the
same BO algorithm. In addition, they compared the perfor-
mance of SeMOpt against other algorithms that include some
knowledge transfer into the optimization workflow, including
MTBO. The authors observed that SeMOpt outperformed most
of the other algorithms, with MTBO closely matching the per-
formance of SemMOpt.

Mixed-variable optimizations
A challenge in BO is to include categorical variables (i.e.,
noncontinuous) into the optimization procedures due to the
inherent limitations of standard GPs to include discrete vari-
ables into their predictions. Categorical variables, such as
choice of solvent, catalyst, ligands, additives, etc., are crucial
for many chemical reactions. For this purpose, new algorithms
have been developed to include categorical variables into
MOBOs. Kershaw et al. [90] utilized an MVMOO algorithm
developed in house, employing GP regression surrogate models
tailored for predictions with discrete variable inputs. Their
study employed a self-driving flow reactor to optimize the syn-
thesis of ortho- and para-isomers 21 and 22 of an SNAr reac-
tion, leveraging four continuous variables alongside a single
discrete variable representing the solvent (Table 2, entry 15).
After 99 sequential reactions (25 LHS steps and 74 optimiza-
tion iterations), the researchers found 20 nondominated solu-
tions that mapped the Pareto front from a highly dominant
ortho-product 21 to a 50:50 split between the isomers. In addi-
tion, the researchers explored the optimization of a Sonogashira
cross-coupling to optimize the STY and RME for the synthesis
of 69 (Table 2, entry 16). In this case, the optimization involved
three continuous variables and the selection of a ligand for the
catalyst as a discrete variable. After 69 sequential experiments

(25 LHS steps, 44 optimizations), the platform was able to iden-
tify 12 nondominated solutions that demonstrated the trade-off
between RME and STY. In general, most Pareto solutions were
obtained when triphenylphosphine was used as the catalyst
ligand. Interestingly, triphenylphosphine was the least steri-
cally hindering ligand, which is counterintuitive to expert intu-
ition that may identify sterically demanding ligands as more
favorable choices for cross-coupling reactions.

Another noteworthy approach for the optimization of both con-
tinuous and categorical variables for a Suzuki–Miyaura cou-
pling reaction was reported by Christensen et al. [15] using BO
algorithms developed in house called Phoenics and Gryffin
(Table 2, entry 6). The Gryffin algorithm uses Bayesian neural
networks to construct the surrogate model, circumventing the
limitations of GPs to fit categorical variables. The authors chose
a total of four continuous reaction variables and selected a cata-
lyst ligand as the unique categorical variable for the optimiza-
tion. The algorithm targeted the optimal reaction variables for
four objectives, including the maximization of the targeted
stereoisomer (E)-39, the minimization of the undesirable one
(Z)-39, catalyst loading, and reagent equivalents. Twelve
ligands were initially selected based on domain expert know-
ledge, and after 120 trials, the best conditions were found to be
similar to those previously reported in the literature. To further
improve the performance of the reaction, the authors used DFT
simulations to compute the chemical properties of 365 commer-
cially available phosphine ligands, and by using k-means clus-
tering, they grouped the ligands into 24 distinct regions.
Through the strategic selection of a representative ligand from
each distinct region, the researchers identified a novel set of
ligands that differed from conventional recommendations based
on domain expertise. Following the optimization of the reaction
conditions using these 23 new ligands, the authors observed en-
hanced performance, surpassing that of previous reports
(Figure 11). This study showcased how data science, ML algo-
rithms, and reaction optimization can be used to discover reac-
tion conditions that would have otherwise been overlooked by
human intuition. Another great example of a combination of
ML and AI cheminformatic tools and reaction optimization was
reported by Nambiar et al. [84], who presented the use of a
computer-aided synthesis planning (CASP) tool to find a three-
step reaction pathway for the synthesis of the active pharmaceu-
tical ingredient sonidegib (58). After the generation of multiple
reaction pathways by the CASP tool, the authors manually
selected a highly ranked route based on synthetic feasibility.
This three-step reaction comprised an SNAr, hydrogenative
reduction of a nitro group, and an amide coupling (Table 2,
entries 11 and 12). Using an automated flow reactor, the
researchers attempted to perform the optimization of the fully
telescoped reaction. However, the optimization campaign had to
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Figure 11: Comparison of the reaction yield between optimizations campaign where the catalyst ligand selection was based on (a) expert intuition and
(b) sampling the distinct ligand clusters obtained from k-means clustering in the calculated chemical space. Figure 11 was adapted from [15] (© 2021
M. Christensen et al., published by Springer Nature, distributed under the terms of the Creative Commons Attribution 4.0 International License, https://
creativecommons.org/licenses/by/4.0.

be restructured into two independent optimizations due to the
side products of the SNAr reaction poisoning the Pd catalyst
used in the hydrogenation reaction. Thus, the MOBO of the
SNAr reaction was performed to maximize the yield of 55, the
productivity, and to minimize the cost of the reagents per mole
of product by optimizing four continuous and one categorical
variable. The second optimization campaign was performed for
the telescoped reaction, which included the hydrogenation step
and the amide coupling. Therein, the objectives of the optimiza-
tion were to maximize the yield and productivity by optimizing
two categorical and three continuous variables.

Dragonfly, an open-sourced BO package, was used to optimize
both categorical and continuous reaction variables. An increase
in yield and productivity was observed as the optimization
progressed. The authors found that the selection of F as a

leaving group led to the highest yield (98.3%) and productivity
(5.97 g/h) for the synthesis of 58. However, if Cl was selected
as the leaving group, only a marginal reduction in yield and
productivity was observed (93.8% and 5.70 g/h), but a 33%
reduction in the cost. In the second reaction, both a high yield
and productivity were achieved concurrently. Because these
objectives were positively correlated, no trade-offs were ob-
served in the optimization suggestions. Recently, Aldulaijan et
al. [91] reported a novel single-objective ALaBO algorithm that
can optimize continuous and categorical variables simulta-
neously. This algorithm first encodes the continuous and cate-
gorical variables into a 2D latent space, creating a continuous
response surface for the objective function, which can be
modeled by standard GPs and optimized by standard acquisi-
tion functions, such as adaptive expected improvement. Once
the likelihood for the optimal variables is determined within the

https://creativecommons.org/licenses/by/4.0
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latent space, they can be decoded into their original continuous
and categorical forms. Thus, this approach enables a “one-shot”
optimization of both kinds of variables without the need for
specialized GP modeling techniques. The authors evaluated the
efficacy of the ALaBO through the optimization of catalytic
reactions, demonstrating a faster convergence to optimal values
in comparison to Dragonfly.

Benchmarking of optimization algorithms
With an increasing number of optimization algorithms, an effort
to benchmark their performance is required. Felton et al. [76]
have highlighted the fact that the ability of an algorithm to
perform well in a specific task may not translate universally to
other problems, and thus a specific algorithm for chemical reac-
tion optimization may have different performances depending
on the nature of the target variables, objectives, and chemical
reaction. Also, the computational time required to execute an
algorithm varies, and it should be taken into consideration in
order to select the most appropriate variation for each case
study. To benchmark different optimization algorithms, Felton
et al. released Summit, a Python module containing several op-
timization algorithms and two benchmark in silico models, to
compare the performance of algorithms. Initially, the bench-
marking models included in Summit were a kinetic model for
the SNAr reaction of difluoronitrobenzene with pyrrolidine and
a neural network forward model for the prediction of the yield
of diphenylamine in a Pd-catalyzed C–N cross-coupling reac-
tion trained on a previously published dataset containing 96
unique sets of reaction conditions. The optimization for the
SNAr reaction included four continuous variables and two opti-
mization objectives, while the C–N cross-coupling included
three continuous variables, two categorical variables, and two
optimization objectives. The algorithms used during the optimi-
zation included non-ML algorithms (Nelder–Mead, SNOBFIT),
BO algorithms (Gryffin, SOBO, TSEMO), and distributionally
robust optimization (DRO), a pretrained reinforcement learning
agent algorithm. For the optimization of SNAr reaction, BO
methods were superior to any other of the algorithms, reaching
a higher hypervolume within a smaller number of iterations.
When the BO algorithms were compared, TSEMO outper-
formed Gryffin and SOBO by a significant margin. For the C–N
cross-coupling, all models had a similar hypervolume perfor-
mance, including a random search of reaction conditions, due to
the small parametric space for the selected categorical variable.
Müller et al. [77] also conducted a benchmarking in silico study
for six different chemical reactions using previously reported
kinetic models. Therein, three distinct BO algorithms (TSEMO,
ParEGO, EIM-EGO) and a genetic algorithm (NSGA-II) were
compared. The authors demonstrated that BO methods outper-
formed non-BO methods such as NSGA-II, which is consistent
with the earlier studies by Felton et al. [76].

Conclusion
In this article, we outlined the latest advances in ML-driven
multiobjective optimization for chemical synthesis, in addition
to breakthroughs in HTE and analytical techniques. The recent
developments of ML algorithms, HTE tools, data processing
techniques, and self-optimizing reactors has been a transforma-
tive force for chemical optimization processes. Nonetheless,
there are still plenty of research opportunities to continue the
transformation of the field and to accelerate the execution of
chemical reaction optimization. Given the time-consuming
nature inherit to organic synthesis and characterization, optimi-
zation campaigns are significantly limited by the time required
to test new reaction conditions. This is importantly true for
campaigns aimed to map a Pareto front, which can often
require too many evaluations to be conducted experimentally.
Innovative approaches such as MTBO and transfer learning
have already demonstrated improvements in reducing the
number of experiments to find optimal solutions. However,
developing novel algorithms that address the limitations
of traditional BO approaches would also yield substantial
benefits. For example, existing BO algorithms are often
concerned with optimizing the objective and fail to uniformly
map the Pareto front [94,95]. New algorithms that integrate
sampling procedures based on single-step evolutionary algo-
rithms in conjunction with BO have demonstrated fast conver-
gence, decreased sampling wastage, and uniform exploration of
the Pareto front, which could be promising in the field of
organic reaction optimization [95]. We anticipate that further
advancements will lead to better-performing algorithms that
require a minimal number of experiments to achieve optimal
solutions.

The field has experienced substantial progress in optimizing
multiple continuous variables, yet the utilization of categorical
variables in chemical synthesis optimization has predominantly
been confined to single-step reactions with one or two optimiza-
tion objectives. The development of ML algorithms that can
efficiently optimize a larger number of categorical variables
will be crucial to unlocking the full potential of optimization
methods. This is particularly true when objective functions that
go beyond direct measurements of the reaction product outputs
(e.g., yield, throughput, selectivity, etc.) are targeted. For exam-
ple, optimizations that aim to minimize the environmental
impact of chemical synthesis are becoming a priority in
industry. The environmental impact of a reaction not only
depends on the efficiency of the process (i.e., yield and through-
put) but will be highly affected by the nature of the solvent,
catalyst, reagents, downstream workup, etc. used in the synthe-
sis. To obtain optimal reaction conditions that minimize the
environmental impact, the exploration of a large number of dif-
ferent reagents may be required, which is not possible through
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traditional optimization methodologies. Nonetheless, ML algo-
rithms could offer an efficient approach to navigating the para-
metric space and to reduce the experimentation time to find the
conditions that minimize the environmental impact of a particu-
lar manufacturing process. However, the state-of-the-art optimi-
zation algorithms that incorporate mixed variables still fall short
of handling the large number of categorical variables required
for these studies.

Manufacturing of pharmaceutical and specialty chemicals com-
monly involves multiple reaction steps in order to transform the
starting reagents into the final product. So far, optimization
algorithms have been mostly applied to single-step reactions or
step by step to each reaction of a multistep procedure. Few ex-
amples in the literature have demonstrated the ability of ML
methods to optimize telescoped reactions in automated flow
reactors, but the positive results should encourage further
research in this field. However, situations where the telescoped
reactions are not feasible due to competing chemical interac-
tions of the reagents in the reaction mixture are bound to occur.
Thus, more research should investigate optimization strategies
in multistep reaction procedures in which the final objective
function has input variables from multiple steps of the synthetic
route.

The application of ML algorithms to aid the discovery of new
chemistry knowledge is flourishing, from generative design to
property prediction and reaction planning. Further work should
incorporate the diverse applications of ML into chemical reac-
tion optimization campaigns to open new avenues for research
and discovery. In particular, ML tools have great potential for
the planning of reaction optimization campaigns to assist the
selection of categorical chemical variables (e.g., catalysts,
ligands, additives, etc.). Christensen et al. [15] have already
demonstrated the advantages of applying ML clustering
methods to discover new ligands for catalysts that would have
been missed if the selection of test ligands had only relied on
human chemical intuition. Taylor et al. [92] also highlighted the
use of DFT or ML alternatives to find similarities between reac-
tion models in order to apply efficient multitask learning to
chemical reaction optimization. Another potential application of
ML tools is the use of CASP to discover alternative reaction
routes, with the potential to improve the efficiency of current
manufacturing methods. Finally, leveraging on the large quanti-
ties of data generated from self-optimizing chemical platforms
and their experimental versatility, we envision the incorpora-
tion of reaction optimization methods with generative design to
create full-driving laboratories. These could tackle both the
discovery of new molecules and the search for optimal synthe-
sis conditions to meet the production requirements for a chemi-
cal commodity.

Future research on the optimization of organic chemistry reac-
tions should leverage advanced deep learning models. In partic-
ular, we highlight large language models (LLMs) as a promis-
ing technology to enable the extraction of chemical knowledge
from previous literature. LLMs can be used to generate synthe-
sis protocols for target materials through data mining of peer-
reviewed literature [96,97]. Bran et al. [98] recently demon-
strated an advanced LLM-powered chemistry engine called
ChemCrow that is capable of planning and executing the syn-
thesis of organic molecules. The LLM integrated 18 cheminfor-
matic tools and performed the reasoning steps based on the
information supplied by these tools to accomplish specific
chemistry tasks. Along these lines, we envision that the integra-
tion of CASP tools and LLMs could accelerate the optimization
of organic reactions by providing viable reaction routes with
starting conditions that are close to the reaction optimum based
on previous studies. LLMs could also assist researchers with
limited coding experience to write the code required for
automating their experimental workflows and execute their
reaction optimizations. However, the use of LLMs to drive ex-
perimental campaigns is still in its early stages, making it
crucial to understand their limitations and potential shortcom-
ings in generating valuable content for chemical sciences. A
recent study has shown that LLMs can generate erroneous and
misleading information regarding chemical safety, which
requires to be addressed to avoid accidents in autonomous plat-
forms controlled by these models [99]. Early findings suggest
that prompt engineering [100], fine-tuning [97], and retrieval-
augmented generation [101] could improve the reliability of
LLMs in chemistry-related tasks and enable their widespread
application in the field.

Standardizing benchmarking methods for ML optimization
algorithms will be crucial as the number of optimization meth-
odologies increases. Foundational work has been laid by the
Lapkin research group with the release of the Summit open-
source software package [76]. Given the vast spectrum of chem-
ical reactions, there is a necessity to develop a diverse array of
reaction models to comprehensively assess the suitability of op-
timization methods for various scenarios. The field should
leverage the ability of HTE to produce large amounts of data to
create reliable forward models that can be incorporated into an
online repository. Thus, researchers could access this online
repository to benchmark new optimization algorithms by per-
forming in silico optimization campaigns of the chemical reac-
tion models.

For the continued advancement of this research, it is paramount
to democratize access to proprietary autonomous platforms and
algorithms and to foster collaboration to share expertise within
academia. While particularly significant advances have been
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made in addressing immediate challenges, we are convinced
that the full potential of ML and AI is yet to be realized. This
highlights the importance of raising cross-functional expertise
both within universities and at preuniversity levels, thereby
nurturing a broader knowledge base. Such an approach will
empower young researchers to tackle complex scientific chal-
lenges holistically right from the outset, thereby unlocking new
possibilities for innovation and advancement.
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