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Abstract

The gut microbiota, which includes prokaryotes, archaea, and eukaryotes such as yeasts, some protozoa, and fungi, significantly im-
pacts fish by affecting digestion, metabolism, and the immune system. In this research, we combine various tasks carried out by
various bacteria in the gut of fish. This study also examines the gut microbiome composition of marine and freshwater fish, identi-
fying important bacterial species linked to different biological functions. The diversity within fish species highlights the importance
of considering nutrition, habitat, and environmental factors in microbiological research on fish. The ever-changing gut microbiome
of the fish indicates that microbial communities are specifically adapted to meet the needs of both the host and its environment.
This indicates that the fish can adjust to a specific environment with the help of gut microbiota. This important research is crucial
for comprehending the complex relationships between fish and their gut bacteria in different aquatic environments. These discov-
eries have implications for aquaculture practices, fisheries administration, and the broader ecological processes of both freshwater
and marine environments. With further progress in this area of study, the knowledge acquired would offer a valuable standpoint to

enhance our comprehension of aquatic microbiology and enhance the sustainability and nutrition of fish resources.

Keywords: gut microbiome; freshwater fishes; marine fishes; environmental factors; comparative analysis: aquaculture

Introduction

The gut of an animal consists of trillions of diverse microorgan-
isms that can have both positive and negative effects on the nu-
trition, immunity, and overall well-being of the host (Bairagi et al.
2002, Ray et al. 2012, Deb et al. 2020, Ghori et al. 2022, De Marco
et al. 2023). Its structure is influenced by factors such as micro-
bial diversity, spatial distribution, pH, and interactions with host
enzymes (Jordaan and Bezuidenhout 2013, Kim et al. 2021). Mi-
crobes in the gut of fish engage in competition, generate antimi-
crobials, communicate, and consume each other, impacting the
population dynamics and health of the host (Wang et al. 2018, Cui
et al. 2022, Luan et al. 2023). Struggles between microorganisms,
such as competition for resources and bacteriophage assaults, im-
pact the equilibrium of microbes (Di Maiuta et al. 2013, Parris et
al. 2019, Qi et al. 2023b). The fish has a unique assemblage of mi-
croorganisms residing within their gastrointestinal tract (Givens
et al. 2015, Deb et al. 2020, Zou et al. 2020, Xi et al. 2023). Some
of these microorganisms form a dynamic and symbiont relation-
ship with the host and impact various aspects of fish biology such
as digestion, absorption, synthesis of essential nutrients, antimi-
crobial peptides (AMPs), and bacteriocins’ cellular and humoral
immunity (Roeselers et al. 2011, De Marco et al. 2023). In return,
the host receives exogenous enzymes and nutrients, such as vi-

tamins and fatty acids, which cannot be produced by the host
body cells (Dhanasiri et al. 2011, Wu et al. 2024). A balanced mi-
crobiome composition reduces the colonization and proliferation
of harmful pathogens and controls diseases (Fjellheim et al. 2007,
Ou et al. 2024). Therefore, the microbiota of the gut is considered
an “extra organ” owing to powerful microbial genes, and the role
of microorganisms in digestion, immunity, and overall develop-
ment (Bairagi et al. 2002, Dhanasiri et al. 2011, Feng et al. 2018,
Butt and Volkoff 2019). Facultative anaerobes and aerobes are
present in greater numbers in the fish gut in comparison to ob-
ligate anaerobes (Cahill 1990, Clements 1997, Izvekova et al. 2007,
Trust et al. 2011). This is mainly because of the fish gut environ-
ment, which typically has higher oxygen levels, particularly in the
front parts such as the stomach and nearby intestine (Nelson and
Dehn 2010, Egerton et al. 2018). Facultative anaerobes can adjust
to changing levels of oxygen, while obligate anaerobes prefer en-
vironments with no oxygen, such as the lower regions of mam-
malian intestines (André et al. 2021, Lu and Imlay 2021, Duncan
et al. 2023). The gut microbiomes are divided into autochthonous
(i.e. native bacteria or when they can attach and colonize the gut
epithelial surface of the host) and allochthonous (i.e. foreign bac-
teria or when they accidentally enter the host gut and get re-
moved after some time without colonizing) (Nayak 2010, Navar-
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rete et al. 2013, Givens et al. 2015, Sharma et al. 2023). Therefore,
a thorough understanding of the fish gut microbiome is very im-
portant in aquaculture because it can be helpful in the manage-
ment of fisheries and conservation and has the potential to boost
fish health and sustainable seafood production (Van Kessel et al.
2011). In aquaculture, it is crucial to preserve a balanced gut mi-
crobiome to prevent diseases that could have a severe impact on
fish populations. Probiotic and prebiotic therapies are frequently
employed to improve advantageous microbial populations, result-
ing in improved feed efficiency and decreased expenses in fish
farming (Merrifield et al. 2010, Dutta 2015, Ghori et al. 2022, De
Marco et al. 2023). Moreover, a well-balanced gut microbiome can
aid in decreasing waste generation, thereby lessening the envi-
ronmental consequences of aquaculture operations. According to
Miranda et al. (2022), numerous fish species are at risk of extinc-
tion because of human activities and climate change, and yet little
is known about their microbiota, making the study of intestinal
microbiota crucial for the conservation of these species (Soh et
al. 2024). The gut microbiome is crucial for the health and sur-
vival of fish, particularly in captive breeding programs aimed at
species conservation (West et al. 2019, Ruiz et al. 2024). A properly
cared for microbiome helps fish adjust to shifting environmen-
tal conditions, especially crucial with climate change and habitat
damage. Having a strong gut microbiome can boost the chances
of survival for fish being released back into their natural habitat
by enhancing their overall health and ability to fight off diseases.
Comparative analysis of the fish gut microbiome is an important
field of research as it can unravel hidden realities that can help to
understand the relations between microorganisms, and microbial
interaction with their host besides functions and diversity of the
complex microbiota.

The function and composition of the microbiome may vary
from species to species like other aquatic and terrestrial animals
(Sehnal et al. 2021, de Jonge et al. 2022). This intriguing scien-
tific endeavour involves studying and comparing the composition,
diversity, and functional roles of these microbial communities
across a wide spectrum of fish, ranging from freshwater to ma-
rine species, and from herbivorous to carnivorous feeders (Givens
et al. 2015). Thus, we aimed to gain a deeper understanding of
how microbial communities have evolved in response to the spe-
cific dietary, environmental, and physiological adaptations of fish
species. Through comparative analysis, researchers have uncov-
ered the profound impact of the fish gut microbiome on various
aspects of fish biology, including immunity, metabolism, growth,
and even behaviour (Collazos et al. 1994, Aquac et al. 2023). The
insights obtained from this study will not only contribute to our
understanding of fish health and ecology, but also have immense
promise for enhancing aquaculture practices, conserving endan-
gered species, and advancing gut microbial biotechnological ap-
plications (Ghanbari et al. 2015).

Thorough research was conducted using appropriate keywords
on online platforms such as Google Scholar, ResearchGate, Sci-
ence Direct, Scopus, and regular Google searches to find accurate
data. The Preffered Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) methodology used for systematic review
has been depicted in Fig. 1. Certain pertinent articles that were
connected to the keywords and subject have been incorporated in
the research. Articles that are not pertinent, lack crucial informa-
tion, are not in full text, and are off-topic were eliminated. Most
of the literature examined was from the years 2015 to 2024, with
some older literature included due to incomplete data.

Functional status of fish gut microbiome

The study on fish is increasing progressively due to the demand
for fish and fish-origin nutraceuticals The gut microbiota plays
a crucial role in regulating the growth and production of fish,
hence aiding in meeting the market demand for fish (Sullam et
al. 2012, Wong et al. 2013, Butt and Volkoff 2019, Liu et al. 2021).
Proper knowledge of bacterial function in a particular species of
fish can help us develop efficient probiotic strains or synbiotics
(as depicted in Fig. 2). For instance, Cetobacterium somerae, a Gram-
negative micro aerotolerant bacterium present in the gastroin-
testinal tract (GI) tract of some freshwater fish such as tilapia and
carp, produces large amounts of Vitamin By, (Tsuchiya et al. 2008).
The fish harbouring C. somerae in their gut, in general, did not re-
quire Vitamin By, in their diet, whereas species such as catfish and
Japanese eel that do not have C. somerae in their gut require Vita-
min By, (Tsuchiya et al. 2008, Jobling 2012). Cetobacterium somerae
is crucial for fish, particularly those consuming plant-based di-
ets or having low By, levels, as it aids in protein fermentation and
amino acid absorption for their growth and energy needs (Sugita
et al. 1991, Li et al. 2015). It generates a large quantity of acetate,
contributing to improved glucose regulation, enhanced gut barrier
function, and increased resistance to diseases (Wang et al. 2021, Qi
et al. 2023b). As a prevalent gut bacterium, it helps support a bal-
anced ecosystem by beating harmful bacteria and creating sub-
stances such as short-chain fatty acids (SCFAs) (Sugita et al. 1991,
Lietal. 2015, Bhardwaj et al. 2023). While it has positive effects on
fish, the impact on human health in aquaculture environments
is not clearly understood, and there may be risks of transmission
(Finegold et al. 2003). The generation of gases such as hydrogen
and methane in the process of fermentation is also a feature of C.
somerae (Li et al. 2015). In general, this bacterium plays a role in
supporting gut health, energy metabolism, and overall well-being
in fish such as carp, tilapia, and catfish, underscoring its signifi-
cance in keeping a balanced and healthy gut microbiome. More
studies are required to comprehend how it could affect human
health, and the dangers linked to its existence in aquaculture.

Many microbes are involved in the digestion process (Ray et
al. 2012, Karasov and Douglas 2013, Ringg et al. 2016, Sehnal et
al. 2021). The function is more clear in herbivorous and omnivo-
rous fish that eat diets with cellulose and plant secondary com-
pounds such as tannins, alkaloids, and flavonoids (Nelson et al.
1999, Francis et al. 2001, Li et al. 2016). Specific microbial com-
munities are needed to break down complex carbohydrates and
detoxify secondary metabolites. Bacteria such as Aeromonas sobria,
A.veronii, A. hydrophila, A. jandaei, Enterobacter aerogenes, E. ludwigii,
Clostridium sp., Citrobacter braakii, Raoultella ornithinolytica, Klebsiella
varticola, Pseudomonas veronii, Erwinia billingiae, Enterococcus faecium,
Brevibacillus laterosporus, Anoxybacillus sp., Bacillus megaterium, and
Sediminibacterium salmoneum provide the necessary enzymes for
plant-based diets (Bairagi et al. 2002, Saha et al. 2006, Ray et al.
2012, Ye et al. 2014, Li et al. 2016). The microbial consortia vary
according to the host species, diet, habitat and environmental fac-
tors (Kumar et al. 2023). Some of the bacteria producing fibrolytic
enzymes, reported from different fishes, have been summarized
in Table 1. Many carnivorous fish feed on crustaceans that are
digested by chitinase-producing gut bacteria such as Marinobac-
ter lutaoensis, Pseudoalteromonas piscicida, Pseudomonas spp., Ferri-
monas balearica, Enterovibrio norvegicus, Grimontia hollisae, Photobac-
terium damselae spp., Acinetobacter spp., Vibrio spp., Enterobacter spp.,
Aeromonas spp., Flavobacterium spp., and Photobacterium spp. (Ray et
al. 2012).
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Figure 1. PRISMA methodology was followed during the literature survey.

Various studies also reported about microbes fighting against
harmful bacteria and diseases such as Streptococcus sp., Pediococcus
spp., Aerococcus spp., Enterococcus spp., Vagococcus spp., Carnobac-
terium spp., Lactobacillus spp., and Bacillus spp., Leuconostoc spp.,
and Lactococcus lactis (Ringg and Gatesoupe 1998, Gatesoupe 2007,
Izvekova et al. 2007, Nayak 2010, Ringg et al. 2010, Kong et al. 2021,
Luan et al. 2023). Various types of bacteria found in the intestines
create diverse bioactive substances and specific genes that play
a crucial role in the production of secondary metabolites. In Ta-
ble 2, some of the important genes are presented that are known
to play a role in producing secondary metabolites within the mi-
crobiome of fish guts. Genes, including cobA, cobG, and cobT, are
essential for synthesizing Vitamin B in fish and can be found in
Cetobacterium somerae, Clostridium spp., and Propionibacterium spp.
(Fang et al. 2017, Guo and Chen 2018, Balabanova et al. 2021, Qi et
al. 2023b). The production of SCFAs, such as butyrate and propi-
onate, depends on genes such as but and buk present in Clostridium
and Bacteroides species (Vital et al. 2014, Tarnecki et al. 2017, Meng
and Shu 2024). Fish use genes such as iucA and pvd from Pseu-
domonas and Vibrio species for siderophore biosynthesis to acquire
iron (Ravel and Cornelis 2003, Hassan and Troxell 2013, Mydy et
al. 2020). The production of antimicrobial peptides such as lantibi-
otics and nisin is crucial for preserving a balanced microbial pop-
ulation in fish, and it involves genes such as lantA and nisA that
are present in Lactobacillus and Bacillus species (Siegers and Entian
1995, McAuliffe et al. 2001, Kuipers et al. 2011, Egerton et al. 2018).
PKS and NRPS pathways in marine Streptomyces and Pseudomonas
species synthesize secondary metabolites such as antibiotics and
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pigments, with regulation by PKS gene clusters. NRPS gene clus-
ters are in charge of creating non-ribosomal peptides, which have
the ability to serve as antibiotics or signalling molecules, impact-
ing both microbial competition and fish health (Ray et al. 2012,
Wang et al. 2014, Borsetto et al. 2019, Komaki et al. 2020, Yin et
al. 2023b). Molecules involved in quorum sensing, such as acyl-
homoserine lactones (AHLs) produced by genes luxI and [uxR, en-
able bacteria such asVibrio, Aeromonas, and Pseudomonas to reg-
ulate activities such as biofilm formation and virulence factors
(Miyashiro and Ruby 2012, Rajput and Kumar 2017). The tnaA gene
encodes tryptophanase, which aids bacteria such as Escherichia coli
and Lactobacillus in generating indole and its derivatives that im-
pact gut barrier integrity and inflammation (Li and Young 2013,
Boya et al. 2021). The genes cysJIH found in organisms such as
Desulfovibrio play a role in generating hydrogen sulphide, which
can exhibit anti-inflammatory properties when present in small
amounts (Ostrowski et al. 1989, Alvarez et al. 2015). The srfA
operon found in Bacillus and Pseudomonas helps in the produc-
tion of biosurfactants, which support bacterial colonization and
prevent biofilm formation (Kisil et al. 2023, Xu et al. 2023, Qi et
al. 2023a). Genes involved in terpenoid biosynthesis, such as dxs
and ispG, are responsible for signalling and possible antimicro-
bial roles in the GI tract of Streptomyces and Cyanobacteria (Xue
et al. 2015, Marshall et al. 2023). These procedures demonstrate
the various crucial functions that bacterial genes and molecules
have in maintaining gut health and communication. In general,
these processes are crucial for the well-being of fish, their en-
ergy metabolism, the health of their digestive system, and their
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Figure 2. Function of microorganisms in fish gut. Some bacteria showing probiotic and pro-health benefits have been highlighted. Microbial feed

additives (probiotics and synbiotics) are available commercially to improve fis

defence against infections, demonstrating the complex relation-
ships between microbes and genetic processes in aquatic settings.

The fish intestinal microbiome is an intricate network of sym-
biotic connections between the host and its microbial residents,
encompassing mutualistic, commensal, and antagonistic rela-
tionships (Ray et al. 2012). Bacteria play a crucial role by breaking
down complex nutrients and producing essential nutrients for
the fish, showing the importance of nutrient availability and
metabolism (Nayak 2010). The immune system of the host helps
tolerate helpful bacteria and inhibits the growth of harmful
bacteria (Bledsoe et al. 2022). Quorum sensing enables bacterial
populations to communicate and synchronize behaviours such
as forming biofilms (Miyashiro and Ruby 2012, Rajput and Kumar
2017, Moreno et al. 2024). Microorganisms compete and spread
out in the gut, leading to niche separation, where various bacteria
inhabit specific regions and carry out unique functions (Melo-
Bolivar et al. 2019). Biofilm development on the intestinal lining
provides protection for the host and bacteria against stressors
and pathogens (Harika et al. 2020). In general, the microbiome
of fish intestines is a constantly changing setting where different
types of microbes engage in a fragile equilibrium of collaboration
and rivalry.

Antagonistic relationships within the gut microbiome are cru-
cial for upholding microbial equilibrium and hindering the exces-
sive growth of harmful bacteria. These interactions involve the
creation of antimicrobial substances such as bacteriocins and or-
ganic acids, which hinder the growth of other bacteria (Egerton
et al. 2018). Competition for nutrients and space is another fac-

h nutrition and health.

tor, as helpful bacteria outcompete harmful ones for limited re-
sources and sites on the gut lining (Tarnecki et al. 2017). Further-
more, bacterial siderophore competition entails the production of
molecules to procure iron, which restricts the proliferation of rival
organisms (Nayak 2010). Quorum quenchingis a different process
in which specific bacteria break down signalling molecules pro-
duced by pathogens, interrupting their communication and de-
creasing their ability to cause harm (Rajput and Kumar 2017). In
general, these hostile interactions contribute to supporting gut
health by preserving a varied and well-balanced microbiome.

Comparative study of fish gut microbiome:
freshwater versus marine water

Marine and freshwater fish have distinct gut microbiomes, influ-
enced by the different environments (Li et al. 2017). Studies reveal
that the gut microbiomes of freshwater fish and marine fish are
dominated by the phyla Fusobacteria and Proteobacteria (Givens
et al. 2015, Li et al. 2017, Deb et al. 2020). Common microbial
species found in freshwater fish include Proteobacteria such as
Aeromonas, Pseudomonas, and Enterobacter, Firmicutes such as Lac-
tobacillus and Streptococcus, Actinobacteria, including Micrococcus,
and Bacteroidetes such as Flavobacterium and Chryseobacterium
(Sullam et al. 2012, Wu et al. 2012, Llewellyn et al. 2014, Givens et
al. 2015, Deb et al. 2020). Marine fish often contain Proteobacteria
species such as Vibrio, Photobacterium, and Shewanella, as well as
Firmicutes, including Bacillus and Clostridium, and Bacteroidetes
such as Cytophaga (Llewellyn et al. 2014, Givens et al. 2015, Egerton
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Table 1. List of microbes along with its functions reported by different researchers who conducted studies in different fishes.

Sl. No. Microbes Functions/role References
1 Aeromonas sobria, A. veronii, A. hydrophila, A. jandaei, Cellulose degradation (Bairagi et al. 2002, Saha et al.
Enterobacter sp., E. aerogenes, E. ludwigii, Clostridium sp., 2006, Ray et al. 2012, Wu et
Citrobacter braakii, Raoultella ornithinolytica, Klebsiella variicola, al. 2012, Ye et al. 2014, Li et
Pseudomonas veronii, Erwinia billingiae, Enterococcus faecium, al. 2016)
Brevibacillus laterosporus, Anoxybacillus sp., Bacillus
megaterium, Sediminibacterium salmoneum
2 Cetobacterium somerae Synthesizes Vitamin Bqy; (Kim et al. 2021, Wang et al.
produces acetate, propionate, 2021, Qi et al. 2023a)
and butyrate; and promotes
glucose homeostasis
3 Lactococcus lactis and Enterococcus faecalis Enhance the activity of (Luan et al. 2023)
digestive enzyme
4 Lactococcus lactis Promotes an increase in (Luan et al. 2023)
beneficial microbes and
decrease pathogenic bacteria
5 Bacillus cereus and B. thuringiensis Function against Aeromonas (Kong et al. 2021, Luan et al.
hydrophila infection 2023)
6 Carnobacterium sp. Inhibits several pathogens (Nayak 2010)
7 Aeromonas hydrophila, Aeromonas spp., Bacteroidaceae, Amylase production (Bairagi et al. 2002, Ray et al.
Clostridium spp., Bacillus circulans, B. pumilus, B. cereus, 2012)
Aeromonas spp., Enterobacteriaceae, Pseudomonas spp.,
Flavobacterium spp., Citrobacter freundii, B. subtilis, Brochothrix
sp., Brochothrix thermosphacta
8 Enterobacter spp., Vibrio spp., Pseudomonas spp., Acinetobacter Protease production (Bairagi et al. 2002, Ray,
spp., Aeromonas spp., Flavobacterium balustinum, Bacillus Ghosh and Ringg 2012)
cereus, B. circulans, B. pumilus, Citrobacter sp., Citrobacter
freundii, B. licheniformis, B. subtilis
9 Agrobacterium sp., Brevibacterium sp., Microbacterium sp., Lipase production (Bairagi et al. 2002, Ringp et
Staphylococcu sp., Vibrio spp., Acinetobacter spp., al. 2010, Ray et al. 2012)
Enterobacteriaceae, Pseodomonas spp., Bacillus thuringiensis, B.
cereus, Bacillus sp., Brochothrix sp., Brochothrix thermosphacta
10 Marinobacter lutaoensis, Ferrimonas balearica, Chitinase production (Ray, Ghosh and Ringg 2012)
Pseudoalteromonas piscicida, Enterovibrio norvegicus, Grimontia
hollisae, Photobacterium damselae spp. damselae, P. leiognathi, P.
lipolyticum, P. phosphoreum, P. rosenbergii, Vibrio campbelli, V.
chagasii, V. fischeri, V. fortis, V. gallicus, V. harveyi, V. natrigenes,
V. nigripulchritudo, V. ordalii, V. parahaemolyticus, V. pomeroyi, V.
ponticus, V. proteolyticus, V. rumoiensis, V. shilonii, V.
tasmaniensis and V. tubiashii, Enterobacter spp., Vibrio spp.,
Pseudomonas spp., Aeromonas spp., Vibrio spp., Acinetobacter
sp., Enterobacteriaceae, Flavobacterium sp., Photobacterium spp.
11 Streptococcus sp., Leuconostoc sp., Pediococcus sp., Aerococcus Lactic acid fermentation and (Ringg and Gatesoupe 1998,

sp., Enterococcus sp., Vagococcus sp., Carnobacterium sp.,
Carnobacterium divergens, C. piscicola, Lactobacillus spp., L.
plantarum, L. rhamnosus, L. bulgaricus

produce organic acids,
hydrogen peroxide, and some
other substances suppressing
the growth of pathogenic
microorganisms

Gatesoupe 2007, Izvekova et
al. 2007, Ringg et al. 2010)

etal. 2018, Ou et al. 2021, Uniacke-Lowe et al. 2024). Planctomyces
species, specifically Planctomycetes, are marine microorganisms
with unique metabolic abilities such as anaerobic ammonium
oxidation (Fuerst and Sagulenko 2011). The improvements in
high-throughput sequencing techniques have led to the discov-
ery of previously uncultured or poorly understood species in the
digestive systems of freshwater and marine fish (Ghanbari et al.
2015, Rasmussen et al. 2022, Brar et al. 2023). A few instances
include Cetobacterium somerae, which synthesizes Vitamin By,
in freshwater fish (Sugita et al. 1991); ZOR0006, discovered in
carp and tilapia aiding in nutrient uptake (Zhou et al. 2023); and
Endozoicomonas spp. in marine fish promoting gut health and im-
munity (Neave et al. 2016). Aliivibrio and Pseudoalteromonas species
have important functions in the gut of marine fish, being involved

in bioluminescence and interactions with the host, respectively
(Klemetsen et al. 2021, Drgnen et al. 2022). Researchers are still
studying Tenericutes found in the intestines of marine fish to un-
derstand their ecological role as bacteria with smaller genomes,
potentially adapted to live in hosts (Givens et al. 2015, Egerton
et al. 2018). These results highlight the diverse and important
bacteria present in fish guts across different environments.
Some of the reported bacterial groups in marine and freshwater
fish guts are presented in Figs 3, 4, and 5. According to Izvekova et
al. (2007), these data are obtained as a result of isolation and iden-
tification by traditional techniques. The figures include only the
popular groups whose composition varies according to habitat. In
Fig. 3,1t is found that the dominant aerobic Gram-negative bacte-
ria of marine fish are Flavobacterium spp., Achromobacter spp., Pho-
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Table 2. Some of the important genes known to play a role in the creation of secondary metabolites in the fish gut microbiome.

Metabolites

Key genes

Bacteria

Function

Reference

Vitamin By, (cobalamin)

Short-chain fatty acids

Siderophores

Antimicrobial peptides

Polyketides/NRPs

Quorum sensing

Indole (tryptophan)

Hydrogen sulphide

Biosurfactants

Terpenoids

cobA, cobG, cobL, cobM,
cobT

but, buk, propionate
CoA-transferase

lucA, iucB, pvd

lantA, lantB, lantC, nisA

PKS, NRPS

luxI, luxR

thaA

cysJIH

STfAA, sTfAB, sTfAC

dxs, ispD, ispG

Cetobacterium, Clostridium

Clostridium, Bacteroides

Pseudomonas, Aeromonas

Lactobacillus, Bacillus

Streptomyces, Bacillus

Vibrio, Pseudomonas

E. coli, Lactobacillus

Desulfovibrio, Clostridium

Bacillus, Pseudomonas

Streptomyces,
Cyanobacteria

Cobalamin biosynthesis
(DNA synthesis,
metabolism)

Butyrate, propionate, and
acetate production (gut
health)

Iron acquisition via
siderophore production

Bacteriocin production
(inhibition of pathogens)

Production of antibiotics
and immunomodulatory
compounds

Bacterial communication
(biofilm formation,
colonization)

Gut health regulation and
anti-inflammatory
signalling

Sulphate reduction (gut
signalling, motility)
Surfactin production
(colonization, biofilm
inhibition)

Signalling molecules and
antimicrobial functions

(Fang et al. 2017, Guo and
Chen 2018, Balabanova et al.
2021, Qi et al. 2023b)

(Vital et al. 2014, Tarnecki et
al. 2017, Meng and Shu 2024)

(Ravel and Cornelis 2003,
Hassan and Troxell 2013,
Mydy et al. 2020)

(Siegers and Entian 1995
1995, McAuliffe et al. 2001,
Kuipers et al. 2011, Egerton et
al. 2018)

(Ray et al. 2012, Wang et al.
2014, Borsetto et al. 2019,
Komaki et al. 2020, Yin et al.
2023a)

(Miyashiro and Ruby 2012,
Rajput and Kumar 2017)

(Li and Young 2013, Boya et
al. 2021)

(Ostrowski et al. 1989,
Alvarez et al. 2015)

(Kisil et al. 2023, Qi et al.
2023a, Xu et al. 2023)

(Xue et al. 2015, Marshall et
al. 2023)
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Figure 3. Aerobic Gram-negative bacteria reported in the gut of wild freshwater and marine water fish.

25

tobacterium spp., Vibrio spp., and Pseudomonas spp., which proves
the variation in the gut of marine and freshwater fish. Similarly,
the aerobic Gram-positive bacterial data presented in Fig. 4 show
that Bacillus spp., Cornebacteriaceae spp., Streptococcus spp., Lactococ-
cus spp., Micrococcus spp., Staphylococcus spp., Actinomyces spp., and

Carnobacterium spp. are present more in freshwater fish than in
marine fish (Izvekova et al. 2007). Surprisingly, more anaerobes
have been reported in freshwater fish, i.e. Eubacterium spp., Pep-
tostreptococcus spp., Fusobacterium spp., Clostridium spp., and Bac-
teroides spp., than in marine fish (depicted in Fig. 5). This might be
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Figure 4. Aerobic Gram-positive bacteria reported in the gut of wild freshwater and marine water fish.
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Figure 5. Anaerobic bacteria reported in the gut of wild freshwater and marine water fish.

due to insufficient studies conducted on marine fish and the diffi-
culty involved in isolating anaerobic bacteria. The reason for shar-
ing these data is to demonstrate the difference in gut microbiome
among fish living in various environments. Researchers compared
the gut microbiomes of 51 fish species and found that 47 species
had Gram-negative aerobes, 34 species had Gram-positive aer-
obes, 10 species had Gram-negative anaerobes, and 8 species had
Gram-positive anaerobes (Table S1) (Izvekova et al. 2007). Nev-
ertheless, with the recent development of techniques such as
next-generation sequencing, pyrosequencing, etc. (Van Kessel et
al. 2011, Terova et al. 2018), we now have a more reliable option for
obtaining authentic data. Traditional methods such as isolation

and identification, although time-consuming and laborious, still
provide a basic understanding of microorganism composition and
diversity. Gram-negative bacteria were found in more species and
at similar rates in both freshwater and marine fish. Greater quan-
tities of Gram-positive aerobic bacteria were present in freshwater
fish and were also observed to host anaerobic bacteria, as depicted
in Figs 3,4, and 5. In order to gain more insight, we also contrasted
certain data from freshwater and marine fish presented in Table 3.

Freshwater fish gut microbiome

Based on the next-generation sequencing (NGS) technique, di-
verse groups of microbes have been detected in freshwater fishes.
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Factors responsible for variation in fish gut microbiome.
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Figure 6. Some factors responsible for variation in fish gut microbiome.

The core microbiomes are resistant to variation in diet and rear-
ing density as claimed by researchers who experimented on GI mi-
croorganisms of Onchorhynchus mykiss (Wong et al. 2013). However,
an alteration in diet can cause a change in the health status of fish
(Wong et al. 2013). In herbivorous and omnivorous fish, the break-
down of cellulose can be enhanced by microbes, such as Bacillus
circulans and B. megaterium (Saha et al. 2006). A study conducted on
Carassius auraus gibrlio concluded that the first phylum of the mi-
crobe to develop in the gut is Proteobacteria (Li et al. 2017). How-
ever, the actual reason behind this fact is still unknown. We can
assume that proteobacteria in environmental water enable the
ability to interact with the host as bacteria are ubiquitous in wa-
ter and are found to be the most abundant and diverse. They play
an important role in nutrient cycling, decomposition, and organic
matter breakdown. Common bacterial phyla found in water in-
clude Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacte-
ria, and Firmicutes (Cottrell et al. 2005, Jordaan and Bezuidenhout
2013, Xia et al. 2013, Savio et al. 2015, Brar et al. 2023). Proteobac-
teria are the most dominant gut species in freshwater fish fol-
lowed by Firmicutes, Actinobacteria, and Bacteroidetes (Wu et al.
2012). Actinobacteria spp. are well-known producers of secondary
metabolites such as hydrolytic enzymes, e.g. amylase, protease,
and lipase. Studies have revealed that Actinobacteria spp. play an
important role in the fermentation of a large variety of oligosac-
charides in the gut (Ventura et al. 2007). Fusobacteria spp. are most
frequent in freshwater fishes (Kim et al. 2021). The freshwater
fish gut is dominated by the species of Enterobacter, Aeromonas,
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and Acinetobacter (Cahill 1990, Mondal et al. 2008, Tsuchiya et
al. 2008, Deb et al. 2020, Suescun-Sepulveda et al. 2023). In-
testinal microflora also includes species of Escherichia, Klebsiella,
Proteus, Serrata, Aermonas, Alcaligenes, Eikenella, Bacillus, Listeria,
Propionibacterium, Bacteroides, Citrobacter freundii, Hafnia alvei, Cy-
tophaga/Flexibacter, Staphylococcus, Mycoplasma, Streptococcus, Lac-
tococcus, Peptostreptococcus, Deefgea, Cetobacterium, Moraxella, and
Pseudomonas (Austin 2002, Brown et al. 2018, Hernandez et al. 2021,
Singh et al. 2021).

A comparison of the gut microbiome of rainbow trout (On-
chorhyncus mykiss) and grass carp (Ctenopharyngodon idella) was
done to better understand the variation in fish gut microbiome
(Table 3). Based on their habitat, feeding habits, and access to
freshwater, the species were chosen.

Rainbow trout is a freshwater carnivorous fish. It feeds on
a wide variety of aquatic insects and crustaceans as well as
small fish and even land insects that wash up on the surface
of the water. Their diet can vary depending on where they live
and what food sources are available (Huyben et al. 2018). Rain-
bow trout prefer chilled water having temperatures from 10 to
15°C. They may seek out certain parts of their habitat that have
optimal temperature ranges. Several bacterial phyla, including
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, of-
ten dominate the gut microbiome of rainbow trout (Betiku et
al. 2023). However, these phylas’ relative abundance can change.
Aeromonas, Pseudomonas, Acinetobacter, Shewanella, Clostridium, and
Bacteroidetes are the common genera discovered in rainbow trout
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gut. Mycoplasma, Cetobacterium, Lactococcus, Lactobacillus, Leuconos-
toc, Ureaplasma, and Propionibacterium were reported as an abun-
dant genus (Llewellyn et al. 2014, Betiku et al. 2023). The gut mi-
crobiota in rainbow trout helps with digestion, modulating the im-
mune system, and potentially protecting against pathogens. Some
intestinal bacteria help in the digestion and utilization of complex
polysaccharides and the synthesis of vitamins (Mondal et al. 2008,
Liet al. 2016, Podell et al. 2023, Qi et al. 2023b).

Grass carp like freshwater habitats such as rivers, lakes, ponds,
and reservoirs. Because their diet comprises primarily of plant
material, they are usually found in places with abundant aquatic
vegetation. Grass carp are noted for their herbivorous feeding
habits, in which they consume a variety of aquatic plants (Ray
et al. 2012). It can tolerate a wide range of temperatures but
prefers warmer water. Temperatures ranging from 20 to 30°C
are ideal. Different bacteria reported from grass carp gut mi-
crobiome include Aeromonas, Bacillus, Clostridium, Bacteroides, and
lactobacilli. Streptococcus, Lactobacillus, Flavobacterium, Veillonella,
Pseudomonas, Anoxybacillus, Citrobacter, Clostridium, and Leuconostoc
were reported as abundant microbial genera in the Ctenopharyn-
godon idella intestine (Wu et al. 2012, Llewellyn et al. 2014). These
occurrences and family abundance can be modified by factors
such as food and environmental conditions.

The contrast underscores how diet and environmental factors
affect the gut microbiomes of both species. The carnivorous ten-
dencies and preference for cool water of rainbow trout have led
to the development of a gut microbiome that is well adapted for
digesting protein and fat efficiently, as well as for maintaining ro-
bust immune defences. On the other hand, the grass carp’s plant-
based diet and preference for higher water temperatures help to
create a digestive system full of beneficial bacteria that special-
ize in breaking down tough plant fibers and producing important
nutrients from plants.

Marine water fish gut microbiome

The higher concentration of salt in water creates a challenging
environment for fish; similarly, there is a possibility of variation
in the environmental microbes. Although at the phylum level Fir-
micutes, Proteobacteria, and Actinobacteria are the most abun-
dant species in the fish gut, at a lower taxonomic level, varia-
tions are observed. The marine fish intestinal flora consists of
dominant species of Vibrio, Pseudomonas, Achromobacter, Corynebac-
terium, Flavobacterium, and Micrococcus (Cahill 1990, Izvekova et al.
2007, Ou et al. 2021) as well as Aeromonas spp., Alcaligenes sp., Al-
teromonas sp., Micrococcus sp., Carnobacterium sp., Flavobacterium sp.,
Photobacerium sp., Pseudomonas spp., Staphylococcus sp., and Vibrio
sp. (Austin 2002, Izvekova et al. 2007, Huang et al. 2020, Ou et al.
2021), whereas in freshwater fish the composition varies as shown
in Figs 3,4, and 5.

A comparison of the gut microbiomes of Atlantic salmon (Salmo
salar) and surgeonfish (Acanthurus triostegus) was done to better
comprehend the variations in fish gut microbiota (Table 3). The
species were chosen based on their habitat, feeding habits, and
access to saltwater (Egerton et al. 2018, Huang et al. 2020, Ou et
al. 2021, De Marco et al. 2023).

Atlantic salmon spend most of their lives in the Atlantic
Ocean. They are recognized for their anadromous habit, which
means that they travel from freshwater to the ocean and re-
turn at various phases of their lives. Atlantic salmon prefer
cold, well-oxygenated waters. Their adaptation to varied envi-
ronmental circumstances is demonstrated by their capacity to
live in both freshwater and saltwater (Morales et al. 2022). At-
lantic salmon are opportunistic eaters in the ocean, devouring

a wide range of marine creatures. Pseudomonas, Janthinobacterium,
Stenotrophomonas, Delfia, Herbaspirillum, Burkholderia, Sphingomonas,
Propionibacterium, Ochrobacterium, Variovorax, Microbacterium, Phyl-
lobacterium, Rhodococcus, and Acinetobacter are the abundant gen-
era in the Salmo salar GI tract (Llewellyn et al. 2014, Gajardo et al.
2016).

Acanthurus triostegus, sometimes known as the Convict Tang,
is commonly found in tropical marine settings with warm water
temperatures. It thrives at the temperatures found in coral reef
ecosystems. They are herbivorous and mostly eat algae. Epulopis-
cium, Acinetobacter, Arcobacter, Arthrospira, Brevinema, Cetobacterium,
Fusobacterium, Methylobacterium, Photobacterium, Pelomonas, Vibrio,
and Pseudoalteromonas are the most prevalent microbial genera
found in the digestive tract of surgeonfish (Miyake et al. 2016,
Ngugi et al. 2017a, Parata et al. 2020).

The gut microbiomes of both Atlantic salmon and Convict Tang
species are varied and can be affected by what they eat and the
surroundings they live in. Atlantic salmon, as anadromous fish,
do well in cold waters and eat a range of marine animals be-
cause they are opportunistic feeders. The bacteria found in their
gut microbiome, such as Pseudomonas and Burkholderia, help with
absorbing nutrients (Moore et al. 2006, Wang et al. 2018). On the
other hand, Convict Tang species live in tropical marine habi-
tats and mainly eat algae. The bacteria found in their gut micro-
biome, such as Epulopiscium and Vibrio, are specifically designed
to break down algal material (Thompson and Polz 2006, Miyake
et al. 2016, Ngugi et al. 2017b, Sampaio et al. 2022). This points
out how diet and environmental conditions affect the composi-
tion of the gut microbiome, with Atlantic salmon containing bac-
teria that digest protein and Convict Tang having bacteria that
degrade algae, which helps them thrive in their specific diets and
habitats.

Impact of environment on fish gut microbiome

The fish gut microbiome is critical to their health, development,
and overall well-being. Quality of water, habitat and diet can all
have a substantial impact on—composition and function of their
gut microbiome (Sullam et al. 2012, Wong and Rawls 2012, Dehler
et al. 2017, Huyben et al. 2018, Huang et al. 2020, Kim et al. 2021,
Leeper et al. 2021, Karlsen et al. 2022, Brar et al. 2023, Herrera
et al. 2023, Yin et al. 2023a, Kanika et al. 2024). Recent studies
on the gut microbiota of tilapia concluded that the optimal
composition and functions of the gut microbiota are not always
accurately represented by the highest growth outcomes of the
host (Ou et al. 2024). The negligent inclusion of macronutrients
negatively affects the gut microbiota. Hence, it is important to
take into account both growth performance and gut microbiota
when assessing specific macronutrients (Ou et al. 2024). A study
conducted on rainbow trout by changing the water temperature
and diet found a decrease in the number of important microbes
(order Lactobacillales) in the gut (Huyben et al. 2018). The studies
also assumed that a high proportion of gut bacteria represented
by Mycoplasma sp. (phylum Tenericutes) is nutrient-dependent,
which means that these bacteria develop only in the presence
of specific nutrients, because many studies on the same species
did not report this bacteria (Huyben et al. 2018). A study was
conducted in which the intestinal microbiota of Atlantic salmon
was evaluated in two different habitats, namely a recirculated
aquarium facility and an open freshwater loch cage. The re-
searchers found variations in the composition of the microbiome
such as the greater presence of phylum Tenericutes in aquarium
fish samples, whereas Proteobacteria were more abundant in



loch samples; similarly, Mycoplasmataceae (phylum Tenericutes)
was the second most common family in aquarium fish samples
but less common in loch fish samples (Dehler et al. 2017). A study
conducted on yellowtail kingfish found that an increase in water
temperature (26°C) caused changes in the microbial communities
of young yellowtail kingfish, influencing their growth trajectory
and immunological condition (Horlick et al. 2020). Temperature is
essential in determining the composition of the gut microbiome
in humans and fish (Wang et al. 2018, Sepulveda and Moeller
2020, Larios-Soriano et al. 2021). Elevated temperatures may
boost metabolic rates, aiding heat-resistant microbes and harm-
ful bacteria, whereas lower temperatures can slow microbial
metabolism and benefit cold-adapted species (Abram et al. 2017,
Huyben et al. 2018, Ghosh et al. 2022). Fish are significantly
affected by temperature changes because they are cold-blooded,
which can impact their health and size (Wu et al. 2022). Tem-
perature, diet, and habitat all affect the gut microbiome of fish,
leading to changes in metabolism, immune response, and overall
health (Collazos et al. 1994, Horlick et al. 2020, Sepulveda and
Moeller 2020, Li et al. 2023). Keeping the ideal water temperature
is crucial in aquaculture to improve gut bacteria health, boost
fish growth, and strengthen disease defences.

Our comparative study also indicates that environmental fac-
tors cause changes in gut microbial composition in the host. In
Table 3, the most abundant bacterial genera are found to be differ-
ent due to their different habits, habitats, and species they belong
to. It is assumed that the gut microbiome helps in the adaptation
of the host to different environments and requirements. Multiple
factors such as environment, diet, host immunity, microbes, habit,
habitat, water quality, etc. can make a host capable of sustainable
survival. A clear visualization is presented in Fig. 6, which shows
some factors responsible for variation in fish gut microbiome (Al-
Harbi and Uddin 2004, Escalas et al. 2021, Kim et al. 2021, Podell et
al. 2023, Bharti et al. 2023, Herrera et al. 2023, Sadeghi et al. 2023,
Small et al. 2023, Viver et al. 2023).

Conclusion and future directions

There are notable shifts in the microbial communities of the gut
microbiomes of marine and freshwater fish. These variations are
influenced by both the diet and the surrounding water sources. In
spite of these differences, there are certain resemblances in the
gut microbiomes of marine and freshwater fish. Aeromonas, Vib-
rio, Pseudomonas, and other species are present in the GI tract of
marine and freshwater fish, contributing to nutrition metabolism,
fermentation, and overall gut health. Different microbes present
in the intestines of fish create bioactive compounds by using spe-
cific genes. Examples include cobA, cobG, and cobT for Vitamin By
creation; but and buk for short-chain fatty acid output; iucA and
pud for obtaining iron; lantA and nisA for generating antimicrobial
peptides; PKS and NRPS routes for producing antibiotics and pig-
ments; luxI and luxR for regulating population density; and tnaA
for creating indole. These genetic mechanisms are essential for
preserving the health of the fish gut and protecting against infec-
tions. The gut microbiome of fish is made up of symbiotic connec-
tions between the host and microbes, with bacteria breaking down
nutrients and generating Vitamin Bq,. The immune system ac-
cepts beneficial bacteria and suppresses harmful ones, as quorum
sensing enables bacteria to communicate. Microbes vie for space
and nutrients, leading to the development of specific ecological
niches. Antagonistic interactions in a balanced microbiome con-
sist of creating antimicrobial substances, resource competition,
and interrupting pathogen communication. Comprehending the
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fish microbiome is essential for grasping the intricate connections
between microbes and their hosts. Continuing research is provid-
ing an understanding of the functional roles of these microorgan-
isms and their effects on the health of fish in different aquatic
environments. As advancements are made in the field, new find-
ings can influence aquaculture, the management of fisheries, and
our comprehension of aquatic ecology. More research is required
to comprehend how host-microbiome interactions coevolve and
adapt, as well as the specific roles of certain microorganisms in
processing nutrients and regulating the immune system. It is im-
portant to study the gut microbiomes of wild fish populations in
order to understand their natural microbial communities and eco-
logical functions besides focusing on aquaculture or laboratory
fish. This comparative study will help increase the understanding
of aquatic microbiology and develop techniques to enhance the
health and sustainability of fish populations in various aquatic
habitats.
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