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Abstract

Background Existing fall risk assessment tools in clinical settings often lack accuracy. Although an increasing number
of fall risk prediction models have been developed for hospitalized older patients in recent years, it remains unclear
how useful these models are for clinical practice and future research.

Objectives To systematically review published studies of fall risk prediction models for hospitalized older adults.

Methods A search was performed of the Web of Science, PubMed, Cochrane Library, CINAHL, MEDLINE, and Embase
databases: to retrieve studies of predictive models related to falls in hospitalized older adults from their inception
until January 11, 2024. Extraction of data from included studies, including study design, data sources, sample

size, predictors, model development and performance, etc. Risk of bias and applicability were assessed using the
Prediction Model Risk of Bias Assessment Tool (PROBAST) checklist.

Results A total of 8086 studies were retrieved, and after screening, 13 prediction models from 13 studies were
included. Four models were externally validated. Eight models reported discrimination metrics and two models
reported calibration metrics. The most common predictors of falls were mobility, fall history, medications, and
psychiatric disorders. All studies indicated a high risk of bias, primarily due to inadequate study design and
methodological flaws. The AUC values of 8 models ranged from 0.630 to 0.851.

Conclusions In the present study, all included studies had a high risk of bias, primarily due to the lack of prospective
study design, inappropriate data analysis, and the absence of robust external validation. Future studies should
prioritize the use of rigorous methodologies for the external validation of fall risk prediction models in hospitalized
older adults.

Trial registration The study was registered in the International Database of Prospectively Registered Systematic
Reviews (PROSPERO) CRD42024503718.
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Background

Falls are a significant global concern, resulting in 684,000
deaths annually, according to the World Health Orga-
nization [1]. Falls represent a leading cause of disability
among older adults, posing a significant problem even
for those in good health. The growing older adults and
increasing life expectancy make fall prediction increas-
ingly important. Hospital-acquired falls (HAFs) are a par-
ticular concern for healthcare systems [2], with roughly
28% of hospitalized patients reporting a fall within the
past year and 15% experiencing one during their stay [3].
It is understood that approximately 1-3% of hospitalized
patients who experience falls may suffer from fractures
as a result [4]. In addition, falls may also lead to subdural
hematomas and hemorrhages, which not only have a sig-
nificant impact on the health and quality of life of older
adults but also place a heavy burden on families and the
healthcare system.

Despite a focus on fall reduction in many studies, cur-
rent fall risk assessment tools and evidence-based prac-
tices have limitations in effectiveness [5, 6]. This includes
the potential for a time-consuming assessment process
and the influence of subjective judgments by healthcare
professionals. Moreover, these assessment tools typi-
cally rely on static risk factors and fail to account for the
dynamic changes in patients’ conditions during their
hospital stay. Therefore, a highly accurate and easy-to-
use tool is crucial for identifying fall risks in hospitalized
older adults. Additionally, translating research findings
into clinical practice is essential to enhance safety for
hospitalized older adult patients [7].

In recent years, artificial intelligence (AI) has been
playing an increasingly important role in medical diagno-
sis by analyzing medical records, exams, and test results
to identify disease patterns and improve diagnostic accu-
racy [8]. Prediction models are a significant branch of
artificial intelligence and serve as a vital quantitative tool
for assessing clinical risks and benefits. However, despite
the increasing number of prediction models for fall risk
in hospitalized older adults, they commonly face several
key challenges, including insufficient data quantity, limi-
tations in clinical validation, and a lack of adaptability to
different patient populations. These issues restrict the
widespread application of these models in clinical prac-
tice. Our study aimed to conduct a systematic assessment
of these models, integrate the evidence pertaining to risk
factors for falls among hospitalized older adults, and pro-
vide valuable references for future research and clinical
practice.

Methods

Design

Following the established guidelines for evaluating pre-
dictive models [9] and the CHecklist for critical Appraisal
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and data extraction for systematic Reviews of predic-
tion Modelling Studies (CHARMS) [10], we conducted
a systematic review. The protocol for this review was
prospectively registered on the PROSPERO Interna-
tional Prospective Register of Systematic Reviews website
(CRD42024503718).

Search strategy
We conducted a comprehensive search of multiple data-
bases and search platforms, including Web of Science,
PubMed, Cochrane Library, CINAHL, MEDLINE, and
Embase, from their inception until January 11, 2024,
that investigated fall risk prediction models in hospital-
ized older adults aged 65 and older. We also conducted a
manual review of the references from the retrieved stud-
ies. Our search utilized a combination of medical subject
headings (MeSH) and text words, incorporating the fol-
lowing four concepts: (1) inpatients, inpatient, hospital*;
(2) aged, elderly, senium, older adults, senior citizen; (3)
accidental falls, fall, falling; (4) prediction model, risk
score, risk assessment, risk prediction. A complete list
of search terms is available in Appendix A. A detailed
description of the population, interventions, compari-
sons, outcomes, timing, and settings (PICOTS) for this
systematic review is provided below:

P (Population): =65 years old hospitalized older
patients.

I (Intervention): Risk prediction models for falls.

C (Comparator): Not applicable.

O (Outcome): Presence of fall.

T (Timing): During the hospitalization.

S (Setting): Hospitalized patients only.

Inclusion and exclusion criteria

To be included in this review, studies had to meet the
following criteria: (1) participants were hospitalized
patients aged 65 years or older, (2) the study design was
observational, (3) the study developed and/or validated
a multivariable predictive model with at least two pre-
dictors of falls, and (4) the primary outcome of interest
was falls during hospitalization. Studies were excluded if
they did not meet any of the following criteria: (1) Falls
were assessed using an assessment scale, (2) they used a
cross-sectional survey design, (3) the outcome measure
focused on adverse events due to falls rather than falls
themselves, (4) the language of the study was not English,
or (5) the full text of the article was not available.

Study selection

Duplicate records were removed using Zotero soft-
ware. Two independent reviewer pairs (MAL and RMZ)
screened titles and abstracts against the inclusion/exclu-
sion criteria for fall prediction model studies. Disagree-
ments were resolved through discussion, with a third
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reviewer (CSY) consulted when needed. After reach-
ing a consensus, two reviewers (MAL and SJ) indepen-
dently screened full texts. Additionally, reference lists of
included studies were reviewed for potentially relevant
articles.

Data extraction

Two reviewers(MAL and SJ) independently extracted
data based on the critical appraisal and data extraction
for systematic reviews of prediction modelling studies
(CHARMS) [10]. Extracted information included basic
details like authors, publication year, study design, partic-
ipants, data sources, and sample size. Specific to predic-
tive modeling, we extracted details on variable selection
methods, model development techniques, validation
types, performance measures, handling of missing data
and continuous variables, predictors used in the final
model, and the model presentation format. For studies
with multiple models, we focused on the one with the
best predictive performance. Any disagreements in data
extraction were resolved through discussion (MAL, SJ,
and ZHF).

Quality assessment

To assess the risk of bias (ROB) and applicability of pre-
diction models in the included studies, we utilized the
Prediction Model Risk of Bias Assessment Tool (PRO-
BAST) [11]. This tool features 20 key questions across
four domains: study population, predictors, outcomes,
and statistical analysis. The first three domains assess
applicability, similar to the Risk of Bias tool but excluding
specific risk of bias questions. Each question has answer
options like “yes’, “probably yes’, “no’, “probably no’, or
“no information” A domain is considered high risk if it
has at least one “no” or “probably no” answer. If one or
more domains are unclear and the others are low risk, the
overall bias is unclear. Overall low risk of bias requires all
domains to be judged low risk. Two authors (MAL and
SJ) independently assessed quality using PROBAST. In
case of disagreements regarding quality assessment, a
discussion involving three authors (MAL, SJ, and ZHF)
was held to reach a consensus.

Data analysis

When more than two studies reported the same outcome
measure, a meta-analysis was performed. We used the
‘metamisc’ package in R software (version 4.2.3) to esti-
mate unreported AUC confidence intervals and calculate
predictive intervals. The random-effects model with the
Hartung-Knapp-Sidik-Jonkman (HKS]J) method was used
to calculate the 95% confidence interval for the average
performance (The HKS] method can provide more accu-
rate type I error rates and confidence intervals when het-
erogeneity exists) [12, 13]. Heterogeneity was estimated
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using the predictive intervals calculated by the HKS]
method, with a wider predictive interval compared to the
confidence interval indicating the presence of heteroge-
neity among the original studies [14]. To investigate the
sources of variation, subgroupings of different modelling
approaches were performed. Sensitivity analyses were
performed to further explore potential sources of this
heterogeneity. If heterogeneity cannot be resolved, narra-
tive synthesis will be used in this study to analyze, sum-
marize and compare the included studies. Funnel plots
and Egger’s test [15] were employed to assess publication
bias. Symmetrical distribution of data points in the fun-
nel plot and a p-value greater than 0.05 from Egger’s test
suggest no significant publication bias. In the event of
evident publication bias, the trim-and-fill method will be
employed to further assess the impact of publication bias
on the results of the meta-analysis.

Results

Selection process

Figure 1 presents the PRISMA 2020 flowchart for the lit-
erature search and selection process. Our initial search
retrieved a total of 8086 records from various data-
bases (Web of Science, PubMed, MEDLINE, EMBASE,
CINAHL, and the Cochrane Library) and manual
searches (n=5). After removing duplicates (n=1094),
6992 records underwent title and abstract screening.
Ultimately, 13 studies meeting the inclusion criteria
were included in this review, encompassing a total of
13 prediction models. A table summarizing the number
of retrieved records from each database is presented in
Fig. 1.

Study characteristics

Thirteen studies were included in this review. Six
employed retrospective cohort designs, five used pro-
spective cohorts, and two were case-control studies
(Table 1). Most studies (z=11) utilized data from reha-
bilitation organizations, primarily hospitals. Public
databases provided data for two studies. One study spe-
cifically focused on older adults with dementia (Table 1).
The size of the study populations used to build the mod-
els ranged from 30 to 72,314 individuals (Table 1).

Table 2 summarizes the characteristics of the models
used in the included studies. The studies employed vari-
ous modeling techniques, including traditional logistic
regression (n=4), machine learning (n=4), or a combina-
tion of both (1 =5). Only four studies incorporated exter-
nal validation methods, while the remaining eight relied
on internal validation (Table 2). Eight studies reported
the model’s discrimination performance, with AUC val-
ues ranging from 0.630 to 0.851 (Table 2). Two studies
used calibration curves to assess calibration, while oth-
ers reported metrics like sensitivity, specificity, positive
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Identification of studies via databases and registers

/Records identified from the following
databases(n=8081): Web of Science
(n=1164). PubMed (n=363), MEDLINE
(n=2328). Embase (n=2623), CINAHL
(n=564), Cochrane Library (n=1039)

Identification

Additional records identified through
cher sources (n=5)

ﬂ[

Records after duplicates
removed (n=1094)

A

Records screened
(n =6992)

Full-text articles assessed
for eligibility
(n=52)

Screening

Y

Studies included in review
(n=13)

A
Studies included
in quantitative synthesis
(n=38)

Included

Records excluded based on title
and abstract (n=6940)

Full-text articles excluded (n=39):
Lack of prediction model (n=7)
Non-hospitalized patients (n=22)
Non-elderly patient (n=10)

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart of literature search and selection
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Table 1 Overview of basic data of the included studies

Author (year) Country Study design Data sources Participants Main outcome Fall cases/

Sample
size

Dormosh [16] 2023 Netherlands Retrospective An academic tertiary care  Inpatient(aged>70) Fall(>24 h of 470/21,286
cohort study hospital* admission)

Adeli [17] 2023 Canada Prospective cohort  The Specialized Dementia  Hospitalized Falls while standing or ~ 25/54
study Unit* demented older walking

inpatient
Zhao [18] 2020 China case-control study  Three hospitals in Inpatient(aged > 65) Injurious falls 115/345
Shanghai*

Wijesinghe [19] Australia Retrospective MIMIC-II Inpatient(aged >65) Falls in Clinical Records  4314/12,911

2020 cohort study

Kawazoe [20] 2022  Japan Retrospective University of Tokyo Inpatient(aged >65) Fall(>48 h of admission 1728/72,314
cohort study Hospital* and within 30 days)

Chu [21] 2022 China Retrospective Taichung Veterans General Inpatient(aged >65) Fall(during the hospital  349/1101
cohort study Hospital* stay)

Alharbi [22] 2022 Saudi Arabia Retrospective SERV-112 and the SV- Older inpatient Fall(during the hospital ~ A:7295/9305
cohort study S2017 datasets stay) B:7408/9708

Peel [23] 2021 Australia Prospective cohort  Acute Care in Australian Inpatient(aged>70) Fall(during the hospital  75/1288
study Hospitals* stay)

Vratsistas-Curto Australia Prospective cohort  General rehabilitation unit -~ Older inpatient fall(during rehabilita- 41/300

[24] study at a public hospital* tion stay)

2018

Beauchet [25] 2018 France Prospective cohort  Acute care medical wards  Inpatient(aged >65) Fall(during the hospital  73/848
study of Angers University stay)

Hospital*

GholamHosseini New Zealand Prospective cohort  North Shore Hospital* Inpatient(aged >65) Fall(during the hospital  17/30

[26] study stay)

2014

Neumann [27] Germany Retrospective An academic teaching Inpatient(aged =65) Fall(during the hospital  508/4735

2013 cohort study hospital* stay)

Marschollek [28] Germany case-control study  Evangelisches Geria- Older inpatient Fall(during the hospital 493/5176

2012

triezentrum Berlin*

stay)

MIMIC-Ill= Medical Information Mart for Intensive Care-Ill; A=Dataset SERV; B=SV-52017 datasets; * Data obtained from routine electronic health record data

predictive rate, and negative predictive rate derived from
the confusion matrix (Table 2). The final model predic-
tors fell into four main categories: general demograph-
ics, physical and cognitive function, medications, and
biochemical markers. The most frequently reported pre-
dictors (used in at least two studies each) were activity
capacity (n=7), history of falls (n=4), medication (n=4),
mental cognition (n=4), gender (n=2), disease (n=2),
and vital signs (n=2).

Risk of bias and applicability assessment

We used the PROBAST tool to evaluate the risk of bias
and applicability of all 13 included models (shown in
Fig. 2). A detailed quality assessment is provided in
Appendix B.

Our analysis revealed a high risk of bias across all mod-
els. Eight studies had a high ROB due to unsuitable data
sources (e.g., retrospective design). Similarly, eight stud-
ies were rated high ROB in the predictor domain due
to the retrospective design lacking blinding, potentially
influencing predictor assessment by outcome informa-
tion. In the outcome domain, nine studies were judged

high ROB given that they did not exclude outcome-
related factors from the predictor definition, and one
study was unclear due to missing information on the
time interval between predictor assessment and out-
come determination. Finally, all studies except Dormosh
et al. [16] had high ROB in the analysis domain. Here,
two studies fell short of the recommended sample size
(EPV > 20), three studies involved the transformation of
continuous data, and three studies excluded a portion of
the data from the final analysis. Regarding data samples,
two studies lacked data preprocessing (e.g., interpola-
tion), and three used univariate analysis for predictor
selection. Evaluation of model performance revealed that
five studies omitted discrimination metrics, eleven omit-
ted calibration metrics, and five neglected model fit
assessment. Nine out of thirteen studies were classified
as low risk for applicability, while four were considered
high risk. All high-risk classifications stemmed from the
participant domain. One study focused solely on older
adults with dementia, a subgroup of the broader target
population in this review. The remaining three high-risk
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Low risk

Risk of bias (Participants)
Risk of bias (Predictors)
Risk of bias (Outcome)
Risk of bias (Analysis)
Applicability (Participants)
Applicability (Predictors)
Applicability (Outcome)
Overall (Risk of bias)
Overall (Applicability)
0%

10% 20%

Unclear

30%
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®m High risk

40% 50% 60% 70% 80% 90% 100%

Fig. 2 Risk of bias and applicability assessment of included studies using the Prediction model Risk of Bias Assessment Tool (PROBAST)

studies did not define the age criteria for their older adult
participants.

Meta-analysis of validation models included in the review
Due to the under-reporting of model assessment metrics,
only eight studies were included in the meta-analysis for
AUC. Notably, the prediction interval was significantly
wider than the confidence interval, indicating substan-
tial heterogeneity among the studies (shown in Fig. 3).
Results of the sensitivity analysis (Appendix C) showed
that after excluding individual studies in turn, the over-
all prediction interval was still significantly wider than
the confidence interval, implying that there was still large
heterogeneity. Subgroup analysis (Appendix D) revealed
no significant difference in model performance between
traditional logistic regression and machine learning algo-
rithms. However, the within-group prediction interval
was still significantly wider than the confidence interval,
suggesting significant heterogeneity. Finally, Egger’s test
yielded a p-value of 0.102 indicating no significant pub-
lication bias.

Discussion

Hospital-acquired falls are serious adverse events, espe-
cially for older patients, leading to injuries, prolonged
stays, and increased healthcare costs. Fall prevention is
a crucial safety priority for healthcare providers, requir-
ing individual fall risk assessments for each patient. This
systematic review identified and assessed the quality of
13 studies on predictive models for falls in hospitalized
older adults. The models exhibited significant perfor-
mance variation in internal/external validation (AUROC:

0.630-0.851). However, the high risk of bias in all studies
limits the real-world applicability of these findings.

This systematic review identified several critical meth-
odological issues. Eight studies did not report how they
handled missing data, while one study simply excluded
it. This can introduce bias in effect size estimates and
reduce the models’ discriminative power. Multiple impu-
tation [29] is the preferred approach for handling miss-
ing values in both model development and validation due
to its accuracy and reduced bias. However, researchers
should be mindful of “data leakage” [30]when using this
method. Furthermore, four studies converted continuous
variables into categorical ones. This can lead to informa-
tion loss and reduced analytical power, ultimately result-
ing in lower model performance as documented in the
literature [31].

Three of the included models used logistic regres-
sion, while the remaining five employed various machine
learning algorithms. Machine learning is often viewed as
superior to logistic regression for real-world data [32],
which can be nonlinear and have complex relationships
between features. This allows machine learning to handle
large, high-dimensional datasets effectively. However,
it should be borne in mind that machine learning mod-
els are not always superior [33]. In some cases, logistic
regression models can be simpler and more effective.
First, its simple form makes it easy to understand and
interpret. Second, it can efficiently converge and provide
stable results even with smaller datasets. The resulting
regression coefficients indicate how strongly each vari-
able influences the outcome. This interpretability is cru-
cial for clinicians, as it allows them to identify key factors
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Fig. 3 Forest plots of fall risk prediction models for hospitalized older adults

in disease development and progression, informing pre-
ventive measures or treatment plans. Machine learning
models are generally more complex than logistic regres-
sion, making them less interpretable, hence the “black
box” label [34]. However, advancements are being made
to enhance interpretability in these complex algorithms.
SHapley Additive exPlanations (SHAP) is a popular
example [35]. This game theory-based approach unveils
the average contribution of each feature, enabling both
global and local interpretability. Local interpretability
allows clinicians to tailor rehabilitation programs to indi-
vidual patients. Therefore, researchers must make trade-
offs based on specific data characteristics when selecting
modeling methods. To maximize the predictive perfor-
mance and generalizability of the model, we recommend
that researchers consider multiple modeling methods
when constructing a prediction model.

Differing from static data, the construction of fall pre-
diction models based on dynamically collected real-time
or recent data holds broad prospects for development.
In this study, the two studies that employed dynamic
data to construct models both demonstrated favorable
prediction accuracy (0.731-0.740). By segmenting the
data or conducting time-series analysis to capture indi-
vidual dynamic changes, it is possible to predict fall risk
in real-time, which is crucial for the realization of early

0.74 [0.49 ; 0.89]

warnings. However, the data collection process may
be plagued by issues of equipment stability and noise
interference. The heterogeneity of the data further com-
plicates data processing and increases the difficulty of
model training. Consequently, it is imperative for the
future to surmount the knowledge barriers between dif-
ferent fields through technological innovation and inter-
disciplinary collaboration.

Validation studies, both internal and external, can
only assess a prediction model’s performance in spe-
cific contexts, highlighting the need to confirm model
robustness before clinical use [36]. In addition to con-
ducting multicenter studies, researchers can utilize pub-
licly available databases to enhance cost-effectiveness
and generalizability by leveraging comprehensive data
and larger datasets. However, it is crucial to attend to
the temporal sequence between the extracted predic-
tors and the occurrence of outcomes, neglecting this
aspect could undermine the stability of the model and
elevate the likelihood of missteps in clinical decision pro-
cesses. Accurate reporting of model results is crucial for
informed decision-making, transparency, and continu-
ous model improvement. The PROBAST assessment tool
emphasizes reporting on model discrimination (AUC
ranges from 0.5 for random chance to 1 for perfect accu-
racy [37]) and calibration metrics. Additionally, clinical
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applicability metrics like positive and negative predictive
values can provide a more comprehensive assessment.
In our study, although two studies reported calibration
metrics, the provision of an Observed-to-Expected (O/E)
ratio can offer more informative insights into the assess-
ment of model calibration. For imbalanced datasets, the
F1-Score and Matthews Correlation Coefficient (MCC)
can be employed to comprehensively gauge model per-
formance. Evaluating from multiple perspectives will
provide a more holistic reflection of the predictive capa-
bilities of the model, thereby ensuring the effectiveness of
the chosen model in real-world applications. To improve
reporting quality, researchers should strictly follow the
Transparent Reporting of a Multivariate Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD)
statement [38].

Falls in older adults are a complex issue with both
intrinsic (individual characteristics) and extrinsic (envi-
ronmental) risk factors. Most falls involve a combination
of advanced age, health conditions, and interactions with
the environment [39]. Due to this complexity, predict-
ing fall risk is challenging. This study summarized the
most commonly reported influences on falls based on the
final models’ results. The top four factors identified were:
mobility limitations, history of falls, medications, and
mental cognition. While mobility testing is crucial for fall
risk assessment, relying solely on a single test (e.g., Single
Leg Stance Test, Timed Up and Go) is insufficient [40,
41]. Combining these tests with other factors improved
the accuracy. Indeed, although numerous fall risk assess-
ment tools exist, achieving both high sensitivity and
specificity remains difficult [42]. Therefore, a more pre-
cise prediction model for hospitalized older adults is
urgently needed for clinical application. A history of falls
is a strong predictor of future falls and a major focus in
clinical assessments [43]. This is likely due to both the
physical consequences (functional decline) and psycho-
logical impact (fear of falling (FOF)) of falls. Notably,
FOF is prevalent, affecting 40-73% of older adults with
a history of falls, and even half of those without [44].
Polypharmacy and specific medications like cardiovascu-
lar and psychotropic drugs significantly increase fall risk
in hospitalized older adults with high comorbidity [45].
Certain medications, including antiepileptic drugs, opi-
oids, and those used in high quantities (polypharmacy),
have been associated with an increased risk of falls in
older adults. These factors should be considered during
fall risk assessment. Cognitive impairment in older adults
can impair their ability to cope with their environment,
which can be detrimental to balance and gait [46]. How-
ever, more research is warranted to determine if there’s
a link between cognitive impairment and falling [47, 48].
In addition, falls can be influenced by various charac-
teristics, including gender, medical conditions, and vital
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signs. Due to the complexity of falls, accurate assessment
necessitates considering multiple factors. Future studies
should prioritize incorporating well-established risk fac-
tors like those discussed above (mobility limitations, fall
history, medications, and cognition) into fall risk models.
Expanding the model’s predictor base can address mis-
classification arising from variations in patient charac-
teristics. However, it is important to avoid overfitting the
model by introducing excessive complexity.

Strengths and limitations

Our study systematically reviewed multiple databases
to evaluate research on fall prediction models for hos-
pitalized older adults and conducted a critical assess-
ment of the retrieved studies, providing comprehensive
and objective evidence to support subsequent research.
However, this study has several limitations that should
be acknowledged. First, by only including English litera-
ture, we may have limited the diversity and generalizabil-
ity of our findings. Additionally, although statistical tests
indicated no significant publication bias, funnel plot and
the exclusion of relevant studies from the grey literature
databases may still lead to potential bias. Second, some
studies lacked comprehensive reporting of results, hin-
dering a meta-analysis on the calibration of the predictive
models. Finally, the meta-analysis revealed a high degree
of heterogeneity, which could be attributed to variations
in study design, participant populations, and baseline fall
risks. Although the current limitations preclude us from
endorsing the clinical application of any specific model,
our study can still provide valuable reference points for
designing future high-quality studies with transparent
reporting practices.

Implications

Our study aggregates and interprets the critical evi-
dence related to fall risk factors in older adults admit-
ted to hospitals, thereby serving as a cornerstone for the
future development of precise and clinically actionable
fall prediction models. Nevertheless, owing to the limi-
tations in study design quality and the absence of robust
model validation, the applied significance of the fall pre-
diction models for hospitalized older adults as included
in this research is not yet fully elucidated. The direc-
tion of future endeavors should be aimed at meticulous
study design and the augmentation of external validation
for established prediction models, with the objective of
enhancing the broader applicability and generalizability
of the research conclusions.

Conclusion

This study identified 13 studies with a total of 13 predic-
tion models for fall risk in hospitalized older adults. The
AUC values (0.630-0.851) indicate some discriminative



Mao et al. BMC Geriatrics (2025) 25:29

ability. However, all studies exhibited significant method-
ological shortcomings including a lack of rigorous experi-
mental design or valid external validation. Consequently,
we cannot recommend any model for clinical use at this
stage. Future research should prioritize rigorous model
validation adhering to the PROBAST standards for qual-
ity control. Additionally, leveraging big data for external
validation can enhance model applicability and general-
izability. Continuous optimization is crucial to maximize
the model’s practical value.
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