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a b s t r a c t 

Contemporary research in 3D object detection for au- 

tonomous driving primarily focuses on identifying standard 

entities like vehicles and pedestrians. However, the need for 

large, precisely labelled datasets limits the detection of spe- 

cialized and less common objects, such as Emergency Med- 

ical Service (EMS) and law enforcement vehicles. To address 

this, we leveraged the Car Learning to Act (CARLA) simula- 

tor to generate and fairly distribute rare EMS vehicles, auto- 

matically labelling these objects in 3D point cloud data. This 

enriched dataset, organized in the KITTI 3D object detection 

benchmark format by the Karlsruhe Institute of Technology 

and the Toyota Technological Institute, improves its utility for 

training and evaluating autonomous vehicle systems . 

To bridge the gap between simulated and real-world scenar- 

ios, our methodology integrates a wide range of scenarios 

simulation in CARLA, including variations in weather condi- 

tions, human presence, and different environmental settings. 

This approach enhances the realism and robustness of the 

dataset, making it more applicable to practical autonomous 

driving scenarios. The data provided in this article offers 

a valuable resource for researchers, industry professionals, 

and stakeholders interested in advancing autonomous vehi- 

cle technologies and improving emergency vehicle detection. 
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Furthermore, this dataset contributes to broader effort s in 

road safety and the development of AI systems capable of 

handling specialized vehicle identification in real-world ap- 

plications. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Computer Vision and Pattern Recognition 

Specific subject area 3D Object Detection in Autonomous Vehicle for the Emergency Vehicles such as 

Ambulance, Police car, with non-EMS objects such as Pedestrian, Car and Bikers 

Type of data Image 1382px ∗512 px, 

Point Cloud data in NumPy Binary, 

Label and Calibration information with .txt 

Data collection The CARLA simulation was employed to generate various scenarios involving EMS 

vehicles alongside other traffic entities, ensuring a balanced presence of EMS vehicles 

within the traffic environment. Diverse traffic situations were emulated to capture 

objects within each scene. Four ego vehicles were deployed at different locations on 

the map to introduce randomization. These vehicles were equipped with both cameras 

and LiDAR sensors and were programmed to follow predefined paths across the entire 

map of a specific town to ensure comprehensive coverage. All other traffic objects and 

their movements were controlled by CARLA’s AI, allowing for fully randomized 

behaviors to simulate realistic traffic conditions. The ego vehicles captured a total of 

3,0 0 0 images, saving every third frame to introduce variation between captured 

scenes. Raw data collected through this method was then converted into the KITTI 3D 

format, facilitating its immediate use in AI model training. This conversion ensures 

compatibility with existing deep learning frameworks, which natively support the 

KITTI format, thereby minimizing the need for additional data preprocessing efforts. 

Data source location North Carolina A&T State University Greensboro, North Carolina, USA . 

Data accessibility Repository name: Zenodo 

Data identification number: 10.5281/zenodo.13824217 

Direct URL to data: https://zenodo.org/records/13824218 

The dataset is licensed under the Creative Commons Attribution 4.0 International (CC 

BY 4.0) license. This license allows for the redistribution and reuse of the dataset, 

provided proper credit is given to the original creators. 

Related research article C. Jaiswal, H. Penumatcha, S. Varma, I. W. AlHmoud, A. K. Islam and B. Gokaraju, 

“Enriching 3D Object Detection in Autonomous Driving for Emergency Scenarios: 

Leveraging Point Cloud Data with CARLA Simulator for Automated Annotation of Rare 

3D Objects,” SoutheastCon 2024, Atlanta, GA, USA, 2024, pp. 1137-1143 , doi: 

10.1109/SoutheastCon52093.2024.10500173 [ 1 ]. 

. Value of the Data 

• This dataset addresses a significant gap in most publicly available computer vision datasets

by overcoming the challenge of limited data for rare objects, specifically focusing on emer-

gency vehicles such as ambulances and police cars. 

• This dataset is designed for seamless integration into deep learning model training work-

flows, with a specific focus on identifying emergency vehicles such as ambulances and police

cars. It has been preprocessed and formatted into the widely used KITTI 3D format, ensuring

compatibility with existing AI frameworks. As a result, researchers and developers can utilize

the dataset directly without requiring extensive data preparation, massaging, or preprocess-

ing. This streamlined approach significantly reduces the time and effort needed to prepare

the dataset for training, allowing for a more efficient and straightforward application in EMS

vehicle detection tasks. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.13824217
https://zenodo.org/records/13824218
https://doi.org/10.1109/SoutheastCon52093.2024.10500173
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• The synthetic dataset offers a wide variety of real-world scenarios, including diverse traf-

fic conditions, weather variations, and a range of geographic landscapes, all generated using

CARLA’s 8 towns. This setup allows researchers to utilize different combinations of training,

testing, and validation datasets from these towns, which are provided separately. By selecting

various combinations, researchers can tailor their model training to meet specific require-

ments, resulting in more robust and well-trained models suited to different environments

and challenges. 

• This dataset has the potential to enhance the safe passage of EMS vehicles and improve over-

all road safety, which is a critical concern for the autonomous driving industry. By enabling

more accurate detection and response to emergency vehicles, the dataset contributes to the

development of AI models that can prioritize EMS vehicles, ensuring quicker and safer nav-

igation through traffic. This advancement is crucial for creating autonomous systems that

can effectively respond to emergency scenarios, ultimately strengthening road safety in real-

world applications. 

2. Background 

Object detection in point cloud data is a critical component of autonomous driving systems,

enabling accurate identification and localization of objects in 3D space. LiDAR, commonly used

for capturing point clouds, allows self-driving cars to perceive their surroundings and detect

vehicles, pedestrians, cyclists, and other obstacles in real time, ensuring safe navigation and col-

lision avoidance. 

Existing datasets, such as KITTI [ 2 ], Waymo [ 3 ], and nuScenes [ 4 ], primarily focus on a

few common object categories, such as vehicles, pedestrians, and bicycles [ 5 , 6–8 ]. However,

many less frequent but important objects, like emergency vehicles or strollers, are underrep-

resented [ 1 ]. Detecting these rare objects is essential for the overall safety and performance of

autonomous vehicles, as missing them can lead to delayed reactions and accidents. Addressing

this gap in object detection is crucial for enhancing the real-world applicability of autonomous

driving systems. This challenge motivated the creation of our dataset, which offers better repre-

sentation of EMS vehicles rare objects. By addressing the lack of these critical classes in existing

datasets, our dataset aims to improve object detection capabilities for autonomous driving sys-

tems, ensuring more accurate identification and response to emergency vehicles and enhancing

overall road safety. A smaller subset of a similar dataset from CARLA Town 12 was initially used

to demonstrate the performance of the deep learning model and address the research gaps high-

lighted in the paper published at the IEEE Southeast Conference [ 1 ]. Following the publication,

we expanded the work to include all publicly available CARLA towns, resulting in an extended

version of the dataset for public use. 

3. Data Description 

CARLA is an open-source simulator for autonomous driving research, offering realistic urban

environments, diverse scenarios, and sensor simulations. Developed by the CVC, it enables test-

ing and validation of self-driving algorithms, making it a key tool for advancing autonomous ve-

hicle technology [ 9 ] . CARLA provides a total of 12 towns, with Town08 and Town09 not available

for public use. Town11 and Town12 are very large maps designed for more complex scenarios.

Table 1 shows a description of the eight towns we used for recording our data. Each town has

its own folder. 

Each folder for these town contains two subfolders after navigating to “vehicle.tesla.model3.

master” → “kitti_object”

1. ImageSet: 

2. training: 
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Table 1 

The CARLA Towns. 

Town Specifications and characteristics of the town 

1 A small, simple town with a river and several bridges. 

2 A small simple town with a mixture of residential and commercial buildings. 

3 A larger, urban map with a roundabout and large junctions. 

4 A small town embedded in the mountains with a special “figure of 8” infinite highway. 

5 Squared-grid town with cross junctions and a bridge. It has multiple lanes per direction. 

Useful to perform lane changes. 

6 Long many lane highways with many highway entrances and exits. It also has a Michigan left. 

7 A rural environment with narrow roads, corn, barns and hardly any traffic lights. 

10 A downtown urban environment with skyscrapers, residential buildings and an ocean 

promenade. 

Fig. 1. Folder structure. 
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Folder Structure of the dataset is shown in Fig. 1 : 

1. ImageSets folder contains text files that define the splits of the dataset into training, vali-

ation, and testing sets. Each file lists the indices of the data samples (by file ID) to be used for

pecific tasks. The contents often include: 

1.1 train.txt: A list of sample IDs to be used for training. This has all the Sample IDs so you

an change them based on your need for training ( Fig. 2 ). 

1.2 val.txt: A list of sample IDs to be used for validation. This has all the Sample IDs so you

an change them based on your need for training ( Fig. 3 ). 

2. training folder contains the actual data required for training the model. Below are the

ubfolders and their content 

2.1 image_2: Contains RGB images from the front camera of the vehicle. The images are used

or 2D and 3D object detection tasks. Files are named by their ID (i.e., 0 0 0 0 01.png). Figs. 4 and

 shows samples of the captured RGB images along with bounding boxes of 3D objects. 

2.2 label_2: Contains ground truth labels for 2D and 3D object detection. Each label file cor-

esponds to an image and includes information like object type (car, pedestrian, etc.), bounding

ox coordinates, object dimensions, and location in 3D space. Files are named using the same

D as the corresponding image (i.e., 0 0 0 0 01.txt). Fig. 6 shows the ground truth label attributes

f each frame. 

Below is a breakdown of each of these attributes: 

2.2.1 type: 

The type of object (e.g., Car, Pedestrian, Cyclist, etc.). This field tells the model what class the

bject belongs to. 
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Fig. 2. Training frame list. 

Fig. 3. Validation frame list. 

 

2.2.2 truncated: 

A float value between 0 and 1, indicating how much of the object is truncated (i.e., cut off

by the image boundaries). A value of 0 means the object is fully visible, and 1 means the object

is completely truncated. 

2.2.3 occluded: 

An integer (0, 1, 2, 3) representing the level of occlusion, as detailed below: 

• 0: Fully visible 

• 1: Partly occluded 

• 2: Largely occluded 

• 3: Unknown 

The criterion for the occlusion is defined below 
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Fig. 4. Sample Image with bounding boxes – Police car and pedestrian. 

Fig. 5. Sample Image with bounding – EMS vehicle, car, and pedestrian. 

Fig. 6. Label for the frame. 
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Fig. 7. Calibration matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let P represent the number of points within the bounding box, and centerx is the x-

coordinate of the bounding box center. 

Occlusion ( P , center x ) =

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , P > 20 

1 , 125 < P + center x < 250 

2 , P + center x < 125 

3 , othe rwise 

2.2.4 alpha: 

The observation angle of the object in the image plane, ranging from [-pi, pi]. This angle

helps determine the object’s orientation relative to the camera. 

2.2.5 bbox (xmin, ymin, xmax, ymax): 

The 2D bounding box of the object in the image, represented by four values: xmin, ymin:

Coordinates of the top-left corner of the bounding box. xmax, ymax: Coordinates of the bottom-

right corner of the bounding box. This is used for 2D object detection. 

2.2.6 dimensions ( h , w, l): 

The 3D dimensions of the object in meters: 

h : Height 

w : Width 

l: Length 

2.2.7 location ( x , y, z): 

The 3D location of the object in the camera coordinate system (in meters). These values rep-

resent the object’s center (typically the bottom-center of the object’s bounding box) in 3D space.

2.2.8 rotation_y: 

The rotation of the object around the Y-axis (yaw) in radians, representing its orientation in

3D space relative to the camera. 

2.3 calib: Contains calibration files that map 3D points from LiDAR or 3D space to 2D im-

ages. These files are necessary for converting the raw point cloud data into the camera image

space. Each file corresponds to an image and provides intrinsic and extrinsic camera parameters.

Files are named by their ID (i.e., 0 0 0 0 01.txt). Fig. 7 shows the calibration matrix of LiDAR and

camera. 

2.4 velodyne: Contains the LiDAR point cloud data in binary format (.bin files). Each file

contains 3D point cloud data captured by the LiDAR sensor for the corresponding image frame,

named by the image ID, such as 0 0 0 0 01.bin. Fig. 8 illustrate a visulaization of 3D point cloud

using Open3D. 

A bird eye view (BEV) visualization is shown in Figs. 9 and 10 for the LiDAR and camera

using the same frame. 

Point cloud data is stored in Binary format of a NumPy version. Below is the format of the

Bin NumPy values. 

2.4.1 x , y, z: 

The 3D coordinates of the point in the LiDAR coordinate system. 
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Fig. 8. Point cloud visualization using Open3D. 

Fig. 9. BEV LiDAR and camera using same frame. 
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2.4.2 intensity: 

The reflectance or intensity value of the laser pulse that hit the object at this point. It indi-

ates how strongly the point reflects the laser beam. 

. Experimental Design, Materials and Methods 

CARLA was used for running the simulation scenario. Fig. 11 shows the methodologies for

reating the synthetic dataset. 

1. Design Rationale 

• Objective of Dataset Creation : As highlighted in the background section, EMS vehicles are

rarely represented in publicly available datasets, making it challenging to obtain real-world

data with sufficient instances of these vehicles due to their infrequent appearance in typical

scenarios. To address this gap, we developed a dataset that provides an increased presence

of EMS vehicles, specifically designed to support the training of deep learning models in

recognizing and understanding EMS-related objects and scenarios effectively. 

• Considerations for Fair Representation : To achieve a balanced presence of EMS vehicles in

the dataset, we implemented a strategy within CARLA that increased the frequency of EMS
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Fig. 10. BEV LiDAR and camera using same frame. 

Fig. 11. Methodology for data creation. 
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Table 2 

Distribution of categories. 

Group Cat Total Obj Class Initial Pos Class % Group % 

Vehicle 27 Vehicle random 33.75 50% 

13 Vehicle specific 16.25 

EMS Related Object 10 Ambulance Random 12.5 25% 

10 Police Random 12.5 

Pedestrian 20 Walker Random 25 25% 

Table 3 

Average object/frame. 

Category Total Object Avg. Object/Frame 

CAR 21,747 2.718375 

EMS (Ambulance + Police) 14552 1.819 

Bikers 5,151 0.643875 

Pedestrians 204 0.0255 

No Class 188 0.0235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vehicles in each scenario. Specifically, we configured 25% of the vehicles in each simulated

scenario as EMS vehicles. These EMS vehicles were randomly assigned spawn points across

the town to ensure they appeared at various locations, providing diverse contexts. This ran-

domized distribution ensured that the EMS vehicles were spread uniformly throughout the

environment, enabling the ego vehicle to encounter them frequently and from different an-

gles. Consequently, the data gathered from camera and LiDAR sensors captured EMS vehicles

in various scenarios, enhancing the dataset’s utility for model training. Below in Table 2 , we

present the object distribution in the scenes, illustrating that 25% of the objects are from

the EMS vehicle category. A total of 80 Objects were spawned in all available eight maps for

CARLA. These objects that were in forward position from the ego vehicle were considered for

the label generation. 

• Scenario Creation Strategy: We utilized CARLA’s pre-designed towns, each crafted to reflect

unique real-world contexts. For instance, Town01 represents a simple town layout featuring

a river and several bridges, while Town10 provides a high-definition map of an urban down-

town environment with skyscrapers, residential buildings, and an ocean promenade. These

diverse town environments simulate various traffic scenarios, including intersections, round-

abouts, and large junctions, enabling the dataset to encompass a wide range of real-life sit-

uations. This approach enhances the dataset’s contextual variety, making it more robust for

modeling complex, realistic traffic conditions. 

2. EMS-Related Object Characteristics 

• Object Density and Frequency: To ensure diverse object representations and minimize re-

dundant data, we captured every third frame, selecting only distinct frames while reducing

unnecessary captures. For each frame, we recorded the camera and LiDAR positions, captur-

ing all scene objects and their bounding boxes. In total, 8,0 0 0 frames were collected, with

the average object count per frame detailed in Table 3 and Fig. 12 . EMS vehicle presence was

also measured, averaging close to 2 EMS vehicles per frame. 

• View Angles and Perspectives: We used the yaw angle from the labels to determine the

orientation of the bounding boxes relative to the camera’s viewpoint. Fig. 13 illustrates the

definition of the yaw angle. 

• The dashed lines represent the camera’s coordinate system: the Z-axis (forward) and the

X-axis (right). 

• The red dot marks the center of the detected object. 

• The blue arrow shows the object’s orientation based on its yaw angle, indicating the direc-

tion the front of the object is facing relative to the camera. 
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Fig. 12. Average distribution per frame for each category. 

Fig. 13. yaw angle visualization. 

 

 

 

• The blue rectangle represents the bounding box of the object, rotated by the yaw angle to

align with the object’s actual orientation in 3D space. 

In this example, the yaw angle is set to 45 degrees ( π /4 radians), causing the object to face

slightly to the left of the camera’s Z-axis. 

Using the above definition, we divided the angle for different views of the bounding boxes.

Viewing angle direction ( θ ) can be defined as below 

Direction ( θ ) =

⎧ ⎪ ⎨ 

⎪ ⎩ 

Front ( F) , −π
4 ≤ θ ≤ π

4 

Left Side ( LS ) , π
4 < θ ≤ 3 π

4 

Right Side ( RS ) , 3 π
4 ≤ θ < −π

4 

Back ( B) , othe rwise 
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Fig. 14. View Angle Statistics for EMS vehicle. 

Fig. 15. Object density for each CARLA Towns. 

 

l

 

 

The chart below shows the distribution of the viewing angle for the EMS Vehicle (Ambu-

ance + police). 

Fig. 14 shows the distribution of the EMS vehicles view angle 

3. Dataset Composition and Statistics 

• Summary Statistics : We have collected 41,842 objects, and their distribution is shown in

Table 4 . 

• Distribution of the objects categories across various Towns: Fig. 15 shows the spread of

the different objects in various Carla Towns. 

Fig. 16 shows Town03 in aerial view during the data recording mode as an example. 
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Table 4 

Object distribution. 

Category Total Object 

CAR 21,747 

Ambulance 10103 

Police 4 4 49 

Bikers 5,151 

Pedestrians 204 

No Class 188 

Fig. 16. Aerial view for Town03. 

 

 

 

 

 

 

 

 

 

Limitations 

This dataset is generated using CARLA simulation and synthetic data and may not fully re-

flect real-world conditions with 100% accuracy. Additionally, most publicly available datasets do

not contain these specific EMS vehicle classes, which further emphasizes the need for careful

attention and thorough validation when building models. Various validation techniques will be

required to bridge the gap between the synthetic data and real-world scenarios, ensuring the

models are robust and reliable for practical applications. This process is essential to ensure the

effective use of this dataset in real-world autonomous driving systems. 
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