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�
 ABSTRACT 

Several therapeutic agents have been approved for treating 
multiple myeloma, a cancer of bone marrow–resident plasma 
cells. Predictive biomarkers for drug response could help guide 
clinical strategies to optimize outcomes. In this study, we present 
an integrated functional genomic analysis of tumor samples from 
patients multiple myeloma that were assessed for their ex vivo 
drug sensitivity to 37 drugs, clinical variables, cytogenetics, mu-
tational profiles, and transcriptomes. This analysis revealed a 
multiple myeloma transcriptomic topology that generates “foot-
prints” in association with ex vivo drug sensitivity that have both 
predictive and mechanistic applications. Validation of the tran-
scriptomic footprints for the anti-CD38 mAb daratumumab 
(DARA) and the nuclear export inhibitor selinexor (SELI) dem-
onstrated that these footprints can accurately classify clinical 
responses. The analysis further revealed that DARA and SELI 
have anticorrelated mechanisms of resistance, and treatment with 
a SELI-based regimen immediately after a DARA-containing 
regimen was associated with improved survival in three inde-
pendent clinical trials, supporting an evolutionary-based strategy 
involving sequential therapy. These findings suggest that this 

unique repository and computational framework can be lever-
aged to inform underlying biology and to identify therapeutic 
strategies to improve treatment of multiple myeloma. 

Significance: Functional genomic analysis of primary multiple 
myeloma samples elucidated predictive biomarkers for drugs and 
molecular pathways mediating therapeutic response, which revealed 
a rationale for sequential therapy to maximize patient outcomes. 
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Introduction 
Multiple myeloma remains an all but incurable cancer of bone 

marrow (BM)-resident plasma cells. Recent advances in multiple 
myeloma drug development have, however, led to significant im-
provements in patient outcomes (1), with the approval of 

immunomodulatory (IMID) agents, proteasome inhibitors (PI), 
mAbs, immunotherapies, and nuclear export inhibitors (2). Treat-
ment of newly diagnosed patients with multiple myeloma consists of 
induction with a combination of agents, followed by high-dose 
chemotherapy and BM transplant in eligible patients, and 
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maintenance therapy (3). Upon relapse, patients are treated with 
multiagent combinations, until the eventual emergence of refractory 
disease. Although diagnostic and prognostic biomarkers are fully 
integrated into characterization of multiple myeloma (4), there are 
no predictive biomarkers for clinical use, with choice of therapy 
upon relapse relying on clinical acumen (5). 

Despite recent advances in next-generation sequencing technol-
ogies (6) to identify genomic and transcriptomic features (7), clin-
ical molecular characterization of multiple myeloma disease still 
mostly relies on FISH cytogenetics and serum levels of soluble 
markers such as paraprotein, which do not account for the complex 
tumor heterogeneity (8). We propose that significant gains in 
clinical outcomes can be achieved by using next-generation 
sequencing–based predictive biomarkers that can simplify the 
complexity of the multiple choices of drug combinations a patient 
may receive and that can identify those that will lead to the best 
outcome (9, 10). In this study, we report the use of patient-specific 
ex vivo drug response from an established ex vivo drug 
screening tool [Ex Vivo Mathematical Myeloma Advisor 
(EMMA); refs. 9, 10] and paired molecular data to identify 
predictive biomarkers and inform critical multiple myeloma 
biology. Finally, we validate these biomarkers using paired 
molecular and clinical response data from an independent 
clinical trial and standard-of-care treatment. 

EMMA is a label-free, nondestructive, high-throughput platform 
to characterize ex vivo drug sensitivity of primary multiple myeloma 
cells in a reconstruction of the myeloma microenvironment. In this 
system, BM aspirate–derived CD138-selected multiple myeloma 
cells are seeded in 384-well plates (which can be extended to 1,536- 
well plates) in coculture with BM stroma, the extracellular matrix, 
and patient-derived plasma and are tested with up to 31 drugs or 
combinations (127 drugs/combinations can be tested in a 1,536-well 
plate) simultaneously at five serially (1:3) diluted concentrations 
(including but not limited to the physiologically relevant range of 
concentrations for each drug, as determined from pharmacokinetic 
data from phase I clinical trials). In this platform, viability is 
assessed at 30-minute intervals through digital image analysis of 
label-free brightfield images over 6 days. The results from this 
high-dimensional assay (i.e., 288 time point measurements per 
well) parameterize patient-specific drug sensitivity mathemati-
cal models, which, when combined with drug-specific pharma-
cokinetic data, generate predictions of clinical outcome of single 
agents and combinations (9, 10). This ex vivo drug response 
database represents a unique resource to examine the biology 
of cells of patients with multiple myeloma in response to standard- 
of-care and preclinical therapeutics, including immunotherapies 
(9, 10). 

To further examine the clinical utility of this platform, we have 
integrated ex vivo drug response with clinical cytogenetic abnor-
malities from FISH, bulk whole-exome sequencing (WES), and 
RNA sequencing (RNA-seq) data to derive genomic and tran-
scriptomic traits that are associated with drug sensitivity in multiple 
myeloma (11, 12). We submit that this approach can inform mul-
tiple myeloma biology and personalized patient care. First, the ex 
vivo setting allows one to assess the response of patient CD138+ 

malignant plasma cells to standard-of-care, trial experimental 
therapies, as well as preclinical drugs and combinations. Second, 
although clinically a patient with multiple myeloma can only receive 
one therapeutic regimen at a given point in time, primary samples 
can be simultaneously tested ex vivo with a large number of ther-
apies. Finally, molecular characterization of ex vivo drug sensitivity 

can be assessed for each drug or combination individually as op-
posed to clinical response, which can only be associated with the 
entire combination. 

Among the findings in this study, we confirmed previously 
identified predictive biomarkers in multiple myeloma, such as 
increased sensitivity of t(11;14)-harboring multiple myeloma cells 
to BCL2 inhibitor venetoclax (VEN; refs. 13, 14). Of special in-
terest, we evaluate the predictive potential of ex vivo–derived 
transcriptomic footprints in patients treated with the CD38- 
directed mAb daratumumab (DARA) at Moffitt Cancer Center 
and the nuclear export inhibitor selinexor (SELI) in the BOSTON 
trial (NCT03110562; ref. 15). Furthermore, this functional geno-
mic analysis identified drug pairs with anticorrelative tran-
scriptomic footprints, suggesting that adaption to resistance to one 
drug would lead to increased sensitive to the other. As a proof of 
principle, we show that treating patients with multiple myeloma 
with a SELI-based regimen immediately after a DARA-containing 
regimen is associated with improved progression-free survival 
(PFS) in three independent clinical trials involving SELI, specifi-
cally BOSTON (NCT03110562; ref. 15), STOMP (NCT02343042; 
refs. 16, 17), and XPORT-MM-028 (NCT04414475; ref. 18). Col-
lectively, these findings indicate that ex vivo–derived functional 
transcriptomic footprints can be used to inform multiple myeloma 
biology and to develop predictive biomarkers and novel thera-
peutic strategies for the treatment of patients with multiple 
myeloma. 

Materials and Methods 
Overview of the approach 

We present a computational framework that maps the functional 
genomic landscape in multiple myeloma for a given drug by relying 
on RNA-seq, WES, and cytogenetic data of patients with multiple 
myeloma that are matched with ex vivo drug sensitivity measures of 
CD138+ cells isolated from consented patients. An overview of the 
flow of information across various stages of this framework is 
depicted in Fig. 1A. The detailed methods for each step within the 
framework are provided in the subsequent sections. In brief, the 
workflow begins when a patient consents to the Total Cancer Care 
(TCC) protocol and donates BM specimen for research. The sorted 
CD138+ cells are divided and characterized by performing WES, 
RNA-seq, and ex vivo drug sensitivity screening of several multiple 
myeloma drugs. Furthermore, the same patient’s clinical data are 
abstracted to transcribe their treatment history and FISH data into a 
well-annotated database that can be used to programmatically query 
this information. 

The cytogenetic abnormalities and mutated genes of patients 
identified from FISH and WES, respectively, characterize a patient’s 
tumor genetically (presence or absence of a genetic event). RNA-seq 
data alone characterize the transcriptome of a patient’s tumor, 
leading to a multiple myeloma–specific transcriptomic landscape. 
Finally, the ex vivo drug sensitivity metric, the area under the dose– 
response curve), characterizes a patient’s ex vivo drug sensitivity to 
each drug tested. Using this approach, one can identify all func-
tional (associated with a phenotype) genetic events that lead to 
sensitivity or resistance to a given drug across the entire multiple 
myeloma cohort, resulting in genetic biomarkers that can putatively 
predict ex vivo drug sensitivity in multiple myeloma. We then rely 
on paired RNA-seq and ex vivo drug sensitivity data from patient 
samples to infer transcriptomic footprints or biomarkers for 
resistance or sensitivity to each drug. These inferred biomarkers 
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are examined to develop novel therapeutic strategies in multiple 
myeloma. 

Patient cohorts and primary cancer cells: Moffitt cohort 
Patients were consented to the TCC protocol, the Moffitt 

Cancer Center’s institutional biorepository (MCC#14690; Advarra 
Institutional Review Board Pro00014441). Patients agreed to do-
nate additional BM aspirate during a clinical BM biopsy proce-
dure, donated blood samples, and granted access to their medical 
records. Overall, a total of 1,136 BM specimens were collected 
from 892 patients with multiple myeloma, who signed informed 
consent to the TCC protocol (MCC#14690) at Moffitt Cancer 
Center (Moffitt TCC cohort). All primary multiple myeloma 
samples collected under the TCC protocol (MCC#14960) between 
October 19, 2011 and February 1, 2023 were considered for the 
study, which served as the only inclusion criterion, and no ex-
clusion criteria were used. Of the 1,136 TCC samples, a total of 
415 samples with more than 2 million CD138+ cells were used for 
ex vivo drug sensitivity characterization. A subset of TCC multiple 
myeloma samples that yielded at least 1 million CD138+ cells was 
considered for the Oncology Research Information Exchange 
Network (ORIEN) AVATAR program, which includes research 
use of only grade WES (900), RNA-seq (891), and germline se-
quencing data and a collection of deep longitudinal clinical data 
with lifetime follow-up. Apart from availability of sufficient 
CD138+ cells and barring technical issues, there were no criteria 
that led to attrition of samples. Demographic information for the 
cohort can be found in Supplementary Table S1. Briefly, of the 
892 patients with multiple myeloma, 490 patients had their bio-
logical sex identified as male and 402 as female, resulting in a 55/ 
45 male-to-female biological sex ratio. Patients’ weight was not 
collected as a variable in this study. Analysis of racial and ethnicity 
characteristics of the participants revealed that most of them were 
White (85%) and non-Hispanic (88%). The median age of the 
study participants at the time of sample collection was found to be 
65 (30–94) years. Investigators obtained signed informed consent 
from all patients who were enrolled in the clinical trials/protocols 
MCC17814, MCC14745, MCC14690, and MCC18608 conducted 
at the H. Lee Moffitt Cancer Center and Research Institute, as 
approved by the Institutional Review Board. To this end, patient 
samples were used in accordance with the Declaration of Helsinki, 
International Ethical Guidelines for Biomedical Research Involv-
ing Human Subjects (Council for International Organizations of 
Medical Science), the Belmont Report, and the U.S. Common 
Rule. The medical records were de-identified in accordance with 
the TCC protocol, and only the following clinically relevant in-
formation was reviewed: (i) the treatment administered (therapeutic 
agents, doses, and schedule) prior to biopsy, (ii) cytogenetics, (iii) 
disease statuses, (iv) demographics, and (v) treatment outcomes. All 
other patient and sample characteristics were blinded 

Data repository of patients with multiple myeloma: Moffitt 
cohort 

At Moffitt Cancer Center, we have collected more than 
1,136 samples of patients with multiple myeloma in total, and the 
tumor cells have been characterized for ex vivo drug sensitivity, 
molecular features, and clinical traits in partnership with the 
ORIEN/AVATAR consortium. Figure 1B presents a Circos plot 
featuring 415 samples screened for ex vivo drug sensitivity, 
260 samples with WES, 891 samples with RNA-seq, and 146 samples 
with cytogenetic data abstracted. A total of 716 samples have WES 

data, RNA-seq data, and cytogenetic data; 199 of them also have ex 
vivo drug sensitivity data. 

Supplementary Figure S1 presents an oncoplot for patients who 
have ex vivo drug sensitivity, RNA-seq, and WES data (239 pa-
tients), the top 10 most common mutations by frequency as rows 
and patients as columns, which are ordered by their disease states 
from smoldering multiple myeloma, newly diagnosed multiple 
myeloma, early relapsed/refractory multiple myeloma, to late 
relapsed/refractory multiple myeloma. The patients’ cytogenetic 
abnormalities are also highlighted. 

Ex vivo drug sensitivity characterization: Moffitt cohort 
An ex vivo assay was used to quantify the chemosensitivity of 

primary multiple myeloma cells. Fresh BM aspirate cells were 
enriched for CD138+ expression using Miltenyi 130-051- 
301 antibody-conjugated magnetic beads. Multiple myeloma cells 
(CD138+) were seeded in Corning CellBIND 384-well plates with 
collagen I and previously established human-derived stroma, con-
taining approximately 4,000 multiple myeloma cells and 1,000 stro-
mal cells. Each well was filled with 80 μL of RPMI-1640 media 
supplemented with heat-inactivated FBS, penicillin/streptomycin, 
and patient-derived plasma (10%, freshly obtained from patients’ 
own aspirate and filtered) and left overnight for adhesion of stroma. 
The next day, drugs were added using a robotic plate handler so that 
every drug/combination was tested at five (fixed concentration ratio, 
for combinations) concentrations (1:3 serial dilution) in two repli-
cates. Negative controls (supplemented growth media with and 
without the vehicle control DMSO) were included, as well as posi-
tive controls for each drug (cell line MM1.S at the highest drug 
concentration). Plates were placed in a motorized stage microscope 
(EVOS Auto FL, Life Technologies) equipped with an incubator and 
maintained at 5% CO2 and 37°C. Each well was imaged every 
30 minutes for a total duration of up to 6 days. Cell line–positive 
control MM1.S cells were obtained from the ATCC and authenti-
cated by short tandem repeat analysis once every year and Myco-
plasma testing twice every year. These cells are supplied fresh media 
and split into one fourths every 2 to 3 days with a doubling time of 
24 to 36 years. The number of passages of MM1.S cells used can vary 
between 5 and 20 passages, in which each passage lasts up to a week. 

Digital image analysis algorithm 
A digital image analysis algorithm (19) was implemented to de-

termine changes in viability of each well longitudinally across 
96 hours using ImageJ (RRID: SCR_003070). This algorithm com-
putes differences in sequential images and identifies live cells with 
continuous membrane deformations resulting from their interaction 
with the surrounding extracellular matrix. These interactions cease 
upon cell death. By applying this operation to all 288 images ac-
quired for each well, we quantified nondestructively, and without 
the need to separate stroma and myeloma, the effect of drugs as a 
function of concentration and exposure time. 

Estimating ex vivo drug sensitivity: AUC 
Digital image analysis computes the percent viability of multiple 

myeloma cells for each time point and experimental condition (drug 
and concentration). For each patient–drug, we have a dose–time– 
response surface, which is abstracted into the AUC, which is an 
area/integral measure of ex vivo response to therapy computed by 
taking an average of all ex vivo responses across all time points (first 
96 hours) and concentrations (20). 
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Figure 1. 
Overview of the approach, ex vivo drug sensitivity database, and biomarkers for drug sensitivity in multiple myeloma. A, An overview of the proposed 
computational approach and integrating disparate sources of patient data, cytogenetics, WES, RNA-seq, and ex vivo drug sensitivity measures to synergistically 
identify novel therapeutic strategies in multiple myeloma. B, A circle plot showing the number of patients from each data source and the number of matched 
samples used in each type of analysis. C, A stacked bar plot of the number of patients in each disease state for each drug tested using the ex vivo drug sensitivity 
assay. Each bar represents the total number of samples tested with a given drug, in which most standard-of-care drugs are tested in more than 300 samples 
each. Samples are also denoted by four disease statuses: smoldering multiple myeloma (SMOL), newly diagnosed multiple myeloma (ND), early relapsed/ 
refractory multiple myeloma (ER; 1–3 prior lines of therapy), and late relapsed/refractory multiple myeloma (LR; >3 lines of therapy). D, The ex vivo response 
measures by 96-hour AUCs of all patients tested with each drug as a box-and-whisker plot grouped by the class of the drug and arranged from most sensitive to 
least sensitive within each class. Disease states, cytogenetic abnormalities, and driver mutations in multiple myeloma that are associated with a statistically 
significant association with resistance or sensitivity to each drug are listed on the y-axis by the AUC. E, The volcano plot shows biomarkers identified for each 
drug by comparing ex vivo AUCs between patients with multiple myeloma who have the biomarker vs. those who do not. In this bubble plot, the size of the 
bubble represents �log10-adjusted P value, and the color signifies the extent of association with resistance (red) and sensitivity (blue) estimated by the median 
difference in AUCs. Multi-test correction and Benjamini–Hochberg correction were carried out across all comparisons across drugs and candidate biomarkers, 
which include disease states, cytogenetic abnormalities, and mutations. The y-axis of the volcano plot signifies statistical significance of the identified biomarker 
for each drug/biomarker pair, and the x-axis shows the median difference between the groups compared in each comparison. The drug/biomarker pairs on the 
left (blue) signify biomarkers for sensitivity, and the ones featured on the right (red) signify biomarkers for resistance. 
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WES and RNA-seq 
Sample preparation 

Fresh BM aspirate cells were enriched for CD138 expression 
using Miltenyi 130-051-301 antibody-conjugated magnetic beads. A 
total of 1.0 � 106 viably frozen CD138+ cells were shipped for 
molecular analysis in the context of the ORIEN AVATAR program. 

Nucleic acid extraction 
For frozen tissue DNA extraction, Qiagen QIASymphony DNA 

purification was performed, generating a 213 bp average insert size. 
For frozen tissue RNA extraction, Qiagen RNAeasy Plus Mini Kit 
was used, generating a 216 bp average insert size. 

DNA WES 
Preparation of WES libraries involved hybrid capture using en-

hanced IDT WES and NimbleGen SeqCap EZ kits (38.7 Mb) with 
additional custom-designed probes for double coverage of 440 can-
cer genes. Library hybridization was performed at either singleplex 
or 8-plex and sequenced on an Illumina NovaSeq 6000 instrument, 
generating 100 bp paired reads. WES was performed on tumor/ 
normal matched samples, with the normal samples covered at 100�
and the tumor samples covered at 300� (additional 440 cancer 
genes covered at 600�) depth. Both tumor/normal concordance and 
gender identity quality control checks were performed. The mini-
mum threshold for hybrid selection is >80% of bases with >20� fold 
coverage; ORIEN AVATAR WES libraries typically meet or exceed 
90% of bases with >50� fold coverage for tumor samples and 90% 
of bases with >30� fold coverage for normal samples. 

RNA-seq (Moffitt cohort) 
RNA-seq (Moffitt cohort) was performed using Illumina TruSeq 

RNA Exome with single library hybridization, cDNA synthesis, li-
brary preparation, and sequencing (at either 100 or 150 bp paired 
reads) to a coverage of 100 M total reads/50 M paired reads. 

RNA-seq (BOSTON) 
RNA-seq (BOSTON) was performed on CD138+ BM cells. 

RNA was extracted using Qiagen AllPrep RNA Mini Kit, and li-
brary preparation was performed with either TruSeq Stranded 
mRNA Kit (non-formalin-fixed, paraffin-embedded compatible) 
or SMART-Seq V4 Ultra Low Input Nextera XT Kit. Total RNA- 
seq was performed with 100 bp reads using an Illumina HiSeq 
2500 instrument to a coverage of at least 24 M total reads/ 
12 M paired reads. 

Mutation calling: Moffitt cohort 
Individual VCF files (one per sample) were converted to tab- 

separated format using the software vcf2tsv (https://github.com/ 
sigven/vcf2tsv version ¼ 0.3.4). Only gene mutation records with 
column value “PASS” for field “FILTER,” “exonic status” as “ex-
onic,” and type “protein coding” were considered. All files were 
merged and formatted according to minimum requirements and 
processed using the R package maftools (RRID: SCR_024519). 
Mutational summaries for nonsynonymous mutations were created 
using maftools functions oncoplot and plotmafSummary, whereas 
“lollipop” visualizations of individual gene mutation sites were 
generated with maftools function lollipopPlot. Over- and under- 
mutated genes were assessed by the ratio of the number of mutated 
samples by the length of the protein in terms of the number of 
amino acids. 

Association of ex vivo drug sensitivity with disease state, 
cytogenetic abnormalities, and driver mutations 

For correlation analyses, we split the ex vivo patient cohort into 
several groups, in which the ex vivo drug response measure (AUC) 
is compared between those patients who belong to that subgroup 
versus those who do not via an unpaired t test that yields a P value 
for the comparison and a difference in median for AUCs. The P 
values are adjusted for multiple testing using the Benjamini– 
Hochberg method and were controlled for a FDR less than 25% 
(FDR ≤0.25). Supplementary Figure S1 shows a volcano plot with 
-log10 FDR on the y-axis and difference in median AUCs between 
the cohorts that have the abnormality (or mutation) versus the 
remaining cohort. The volcano plot depicts the statistical strength of 
association between a disease state/cytogenetic abnormality/ 
mutation with ex vivo AUC response for each drug. We show two 
levels of FDR correction: a stricter FDR ≤0.05 and an acceptable 
threshold of FDR ≤0.25 [(similar to the threshold used by gene set 
enrichment analysis (GSEA)]. 

RNA-seq analysis: Moffitt cohort 
RNA-seq tumor pipeline analysis was processed according to the 

workflow outlined below using GRCh38/hg38 human genome ref-
erence sequencing and GenCode (RRID: SCR_014966) build 
version 32. 

Adapter trimming 
Adapter sequences were trimmed from the raw tumor- 

sequencing FASTQ file. Adapter trimming via k-mer matching 
was performed along with quality trimming and filtering, contam-
inant filtering, sequence masking, GC filtering, length filtering, and 
entropy filtering. The trimmed FASTQ file was used as input to the 
read alignment process. 

Read alignment 
The tumor adapter–trimmed FASTQ file was aligned to the hu-

man genome reference (GRCh38/hg38) and the Gencode (RRID: 
SCR_014966) genome annotation v32 using the STAR (RRID: 
SCR_004463) aligner. The STAR (RRID: SCR_004463) aligner 
generates multiple output files used for gene fusion prediction and 
gene expression analysis. 

RNA expression 
RNA expression values were calculated and reported using esti-

mated mapped reads, fragments per kilobase of transcript per mil-
lion (FPKM) and transcripts per million mapped reads at both 
transcript and gene levels based on transcriptome alignment gen-
erated by STAR (RRID: SCR_004463). Gene expression data were 
obtained from DNAnexus files containing FPKM and transcripts 
per million values for 59,368 records. Among these, 19,933 were 
protein-coding genes, which were further analyzed; the remainder 
genes were discarded. For each gene/sample, we calculated log2 
(FPKM + 10�3) and removed any genes whose values for quartiles 
1 and 3 were the same (i.e., any gene must be expressed in at least 
25% of samples to be considered in this analysis). The remaining 
16,738 genes were z-normalized across all samples using MATLAB’s 
(RRID: SCR_001622) function normalize. 

RNA-seq analysis: BOSTON 
RNA-seq analysis for the BOSTON (NCT03110562; ref. 15) study 

was performed as follows. 
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Trimming 
Adapter trimming and quality trimming were performed on the 

FASTQ files using Trimmomatic (RRID: SCR_011848). 

Read alignment 
The adapter-trimmed FASTQ files were aligned to the human 

genome reference (GRCh38/hg38) using the STAR (RRID: 
SCR_004463) aligner. 

RNA expression 
FeatureCounts was used to obtain gene-level counts. After re-

moving immunoglobulin genes, ribosomal transcripts, genes with 
zero counts, and genes with zero variance across all samples, the 
log2 counts per million mapped reads values were normalized with 
Voom. Covariates were identified using variancePartition (RRID: 
SCR_019204) and then corrected for using functions from surrogate 
variable analysis (SVA; RRID: SCR_002155), including ComBat 
(RRID: SCR_010974), to remove batch effects and library prepara-
tion bias effects. 

Supervised gene sets (cancer hallmarks, Kyoto Encyclopedia 
of Genes and Genomes, and University of Arkansas for Medical 
Sciences) enriched for ex vivo drug resistance or sensitivity 

We infer associations between ex vivo drug resistance or sensi-
tivity and known biological mechanisms defined by cancer hall-
marks (cancer biology), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways (cell biology, RRID: SCR_012773), and Univer-
sity of Arkansas for Medical Sciences (UAMS) gene sets (multiple 
myeloma biology) to identify cellular states that confer ex vivo re-
sistance or sensitivity in multiple myeloma. We used GSEA (RRID: 
SCR_003199), which estimates an enrichment score (ES) for each 
gene set (hallmarks/KEGG/UAMS) using a running-sum statistic 
along the ranked list of all genes (16,738) based on the correlation 
between their expression and the continuous phenotypic variable 
(AUC). GSEA (RRID: SCR_003199) increases the running-sum 
statistic whenever it encounters a gene that belongs to the cluster 
and decreases it if it does not encounter a gene from that cluster. 
The maximum value of this running-sum statistic is the ES for that 
cluster associated with positive correlation to the continuous phe-
notypic variable. GSEA (RRID: SCR_003199) estimates the statis-
tical significance of such an ES by randomly scrambling the 
phenotypic variable several times, and for each case, it generates a 
ranked gene list and the corresponding ES for the cluster of in-
terest. All these ESs form a null distribution, which is compared 
with the ES for the cluster using the actual input data to estimate 
the nominal P value of enrichment. This approach is repeated for 
all gene sets within cancer hallmarks, KEGG (RRID: SCR_012773) 
pathways, or UAMS gene sets (Supplementary Fig. S2) indepen-
dently, and their nominal P values are corrected for multiple hy-
pothesis testing. The supervised gene sets that are enriched for 
resistance or sensitivity are then identified by a family-wise error 
rate (FWER) that is less than 5%. 

Identifying transcriptomic footprints associated with ex vivo 
drug resistance or sensitivity 

To unravel the transcriptomic topology of a complex disease like 
multiple myeloma, we used RNA-seq data from 844 patients to 
identify modules of coexpressing genes using a robust dimension-
ality reduction technique and an efficient clustering method. 
Z-normalized expression of 16,738 genes across 844 patients with 
multiple myeloma was used to identify groups of coexpressing genes 

that are likely to play disease-specific functional roles. Although it is 
typical to consider genes as variables (dimensions) and patients as 
observations (typically used with single-cell sequencing data to 
identify clones or cell types), we instead perceive patients as vari-
ables uniquely contributing to a high-dimensional multiple mye-
loma heterogeneity space and genes as observations that govern 
multiple myeloma transcriptomic topology. This leaves us with 
16,738 genes spread across a massively high-dimensional (844) 
multiple myeloma patient space. We projected this high-dimensional 
data onto a two-dimensional (2D) space using t-distributed stochastic 
neighbor embedding (t-SNE, RRID: SCR_024305), a well-known di-
mensionality reduction technique that specializes in extracting fea-
tures (coexpression of genes) that lie on various low-dimensional 
embedded manifolds (21), thereby serving as an excellent visualiza-
tion tool depicting a disease-specific 2D transcriptomic map. Locations 
of genes on this 2D map were used to identify functional modules 
by using an efficient clustering algorithm called fuzzy C-means 
(22), which results in 500 distinct gene clusters (gene sets) of 
varying sizes. 

We used the ex vivo drug sensitivity data for each drug to 
identify clusters that are enriched for resistance and sensitivity 
using GSEA (RRID: SCR_003199). GSEA (RRID: SCR_003199) 
estimates an ES for each cluster (gene set) using a running-sum 
statistic along the ranked list of all genes (16,738) based on the 
correlation between their expression and the continuous pheno-
typic variable (AUC). GSEA (RRID: SCR_003199) increases the 
running-sum statistic whenever it encounters a gene that belongs 
to the cluster and decreases it if it does not encounter a gene from 
that cluster. The maximum value of this running-sum statistic is 
the ES for that cluster associated with positive correlation to the 
continuous phenotypic variable. GSEA (RRID: SCR_003199) es-
timates the statistical significance of such an ES by randomly 
scrambling the phenotypic variable several times, and for each 
case, it generates a ranked gene list and the corresponding ES for 
the cluster of interest. All these ESs form a null distribution, which 
is compared with the ES for the cluster using the actual input data 
to estimate the nominal P value of enrichment. This approach is 
repeated for all 500 clusters, and their nominal P values are 
corrected for multiple hypothesis testing. The clusters that are 
enriched for resistance and sensitivity are then identified by a 
FWER that is less than 5%. These enriched clusters collectively 
form the transcriptomic footprint of the drug in multiple 
myeloma. 

The transcriptomic footprints obtained using this approach are 
derived for SELI ex vivo response, DARA ex vivo response, SELI 
clinical response from BOSTON, and DARA clinical response 
from the Moffitt DARA cohort. Furthermore, these transcriptomic 
footprints have been used to carry out overrepresentation analyses 
using Enrichr (RRID: SCR_001575; ref. 23) to identify transcrip-
tion factors (TF) and epigenetic alterations, respectively, that pu-
tatively regulate the enriched transcriptomic footprints for each 
drug. The transcriptomic footprints obtained using this method 
have also been used to inform predictor variables for the regres-
sion tree model shown to predict ex vivo AUC from RNA-seq data 
alone, in which the predicted ex vivo AUC was used to classify 
patients as “predicted sensitive” and “predicted resistant” clinically 
for DARA and SELI, respectively. Finally, the transcriptomic 
footprints derived using this approach for each of 37 drugs are 
used to identify pairs of drugs that have a similar enrichment 
pattern by correlating the ESs for each of the 500 gene clusters to 
identify anticorrelative drug pairs. These three downstream 
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analyses using the ex vivo derived transcriptomic footprints are 
detailed below in that order. 

TFs and epigenetic alterations enriched for a transcriptomic 
footprint 

The transcriptomic footprint identified from paired RNA-seq and 
ex vivo drug response data for a drug using a multiple myeloma– 
specific transcriptomic landscape is a collection of coexpressing gene 
clusters in multiple myeloma that are either enriched for sensitivity or 
resistance to a given drug. From this transcriptomic footprint, we 
derived two gene sets: genes that coexpress and are overexpressed in 
resistant patients and genes that coexpress among themselves and are 
overexpressed in sensitive patients. We subjected each of these two 
gene sets to overrepresentation analysis using Enrichr (RRID: 
SCR_001575; ref. 23) by estimating the adjusted P value for a one- 
sided Fisher exact test quantifying the significance of overlap between 
genes implicated in ex vivo resistance/sensitivity and each of ChEA 
2016 (RRID: SCR_005403; for TFs that bind to genes implicated in ex 
vivo resistance/sensitivity) and Roadmap Epigenomics (RRID: 
SCR_008924; for epigenetic alterations that impact the expression of 
genes implicated in ex vivo resistance/sensitivity) supervised gene set 
databases. If the adjusted P value was less than 10�10 (Moffitt cohort) 
for a given test, that TF or epigenetic alteration was considered sta-
tistically significantly enriched for either resistance or sensitivity to a 
given drug. This significance was denoted by the diameter of the 
bubble in the bubble plots, whereas the intensity of the color signified 
the combined Enrichr (RRID: SCR_001575) score. Bubbles shown in 
blue represent enrichment analyses performed on genes implicated as 
sensitive to a given drug, whereas red bubbles signify enrichment 
associated with genes implicated as resistant. 

Clinical response classifier using RNA-seq data and ex vivo 
transcriptomic footprints: regression tree modeling 

We relied on a regression tree model that uses the median gene 
expression of enriched gene clusters in the transcriptomic footprint 
for a drug (DARA/SELI) as predictor variables (model inputs). The 
output of the regression tree is the ex vivo AUC predicted from only 
the RNA-seq data of a patient with multiple myeloma. The model 
was trained using the paired ex vivo AUC response (output) and the 
median gene expression (RNA-seq data, input) of gene clusters 
featured in the transcriptomic footprint. This model was used to 
predict ex vivo AUCs from gene expression alone for 22 patients 
with multiple myeloma treated in the clinic with a DARA- 
containing regimen in the Moffitt clinical cohort and 52 patients 
with multiple myeloma treated in the clinic with a SELI-containing 
regimen in the BOSTON clinical trial. The predicted ex vivo AUCs 
are used to classify patients with multiple myeloma in each cohort 
(DARA/SELI) as either “predicted sensitive,” if their predicted AUC 
is in the bottom half of the cohort, or “predicted resistant,” if their 
predicted AUC is in the top half of the cohort. These PFS of the 
patients from these two groups (predicted sensitive/predicted re-
sistant) were compared using Kaplan–Meier survival plots and log- 
rank tests for DARA and SELI, respectively. The regression tree 
model for DARA was trained with 133 predictor variables, in which 
each predictor variable is defined by the median expression of sta-
tistically significant gene programs identified by GSEA (54 resistant 
and 79 sensitive). Similarly, the regression tree model for SELI was 
trained with 93 predictor variables, in which each predictor variable 
is defined by the median expression of statistically significant gene 
programs identified by GSEA (66 resistant and 27 sensitive). The 
median expression of each gene program pertains to the expression 

of a specific gene in that cluster, which is used as an input to 
each model. The regression tree modeling was implemented in 
MATLAB (RRID: SCR_001622) computational environment using 
the regression tree class available in Statistics and Machine Learning 
Toolbox. 

Anticorrelative transcriptomic footprints to inform novel 
therapeutic strategies 

The transcriptomic footprints derived from paired ex vivo AUC 
and RNA-seq data using GSEA (RRID: SCR_003199) result in ESs 
for each of the 500 clusters with genes that have a similar coex-
pression pattern (putatively involved in a biological process/ 
mechanism or regulated by a common upstream TF). The GSEA 
(RRID: SCR_003199) enrichment for each gene cluster for every 
drug is given by a vector of 500 ESs and their corresponding multi- 
test–corrected statistical significance (FWER ≤0.05). We imputed an 
ES of zero for all nonsignificant enrichments to avoid spurious as-
sociations. We correlated the 500 ESs for each pair of drugs in a 
clustergram, which represents drug pairs with similar enrichment 
patterns in red and drug pairs with anticorrelative transcriptomic 
footprints in blue. These anticorrelative transcriptomic footprints 
are of biological significance as they can target complementary 
mechanisms intracellularly, putatively leading to synergy from 
combination therapy, or target distinct tumor populations, resulting 
in benefit from sequential therapy. 

Data availability 
The Multiple Myeloma Research Foundation CoMMpass cohort 

RNA-seq data analyzed in this study were obtained from dbGAP 
under accession phs000748. WES and RNA-seq data for the Moffitt 
cohort analyzed in this study were generated by Aster Insights (www. 
asterinsights.com) in collaboration with the ORIEN (www. 
oriencancer.org). The raw molecular data files (FASTQ/BAM) are 
available upon request at https://researchdatarequest.orienavatar.com/. 
The processed FPKM/mutation annotation format (MAF) data files 
used to conduct this study are available on Synapse (RRID: SCR_006307) 
under Datasets at https://doi.org/10.7303/syn53254572, and the 
formatted input/output files to easily reproduce the analyses in this 
study are available on Synapse under Analyses at https://doi.org/10. 
7303/syn53270590. Please see the following for a detailed structure 
of each of these folders: 

1. Datasets: https://doi.org/10.7303/syn53254572 
a. Data Key: We have compiled a comprehensive reference for 

all the 1,136 multiple myeloma samples used in this study, in 
which patient ID denotes a de-identified code for a given 
individual, whereas RNA, WES, and ex vivo IDs are sample- 
level identifiers. Each row denotes a biopsy/sample with the 
patient’s demographic information, in addition to the sample 
IDs linking various sources of data such as RNA-seq, WES, 
cytogenetics, etc. 

b. Ex Vivo Data: This folder contains two subfolders with 
single-agent and combination ex vivo responses used in this 
article. The sample identifiers used here can be linked back 
to the Data Key folder to match with other data sources and 
demographic information. 

c. RNA-seq: This folder contains processed gene expression 
data in the form of FPKM mapped reads for 891 unique 
samples. The log2-transformed version and a z-normalized 
version of these data are also shared for ease of access. 
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d. WES: This folder contains the processed MAF for 
900 unique samples with mutations annotated. 

2. Analyses: https://doi.org/10.7303/syn53270590 
a. t-SNE: The multiple myeloma topologic landscape used 

throughout this article was constructed using z-normalized 
RNA-seq data from an initial cohort of 844 samples shared 
in this subfolder along with the x and y coordinates from 
t-SNE used in the manuscript. 

b. Ex Vivo Response Paired with RNA-seq: Paired ex vivo re-
sponse and RNA-seq data are passed through GSEA and 
used in analyses throughout the article. The input files for 
GSEA (GCT and CLS files) in standard format accepted by 
the software directly are shared in the Inputs subfolder. The 
output directories from GSEA are zipped and uploaded 
under the folder named Outputs. 

c. Ex Vivo Response Paired with Genomic Data: This folder 
contains associations of cytogenetic abnormalities, muta-
tions, and disease status with ex vivo response to each drug 
reporting the nominal P values for an unpaired t test com-
paring the AUCs of patients with/without the event, median 
difference in AUCs between these two groups, and the FDR 
following multi-test correction. 

No custom software was developed for this study except for 
scripts used for data formatting, filtering, and sorting. All other 
software from third parties are cited with version details in Materials 
and Methods. Scripts used for data formatting, filtering, and pars-
ing, as well as calls to MATLAB and R libraries, are available upon 
request. 

Results 
Association of ex vivo drug sensitivity with clinical and 
genetic features of multiple myeloma 

We present a computational framework integrating molecular, 
clinical, and ex vivo characteristics of BM-derived primary CD138+ 

multiple myeloma cells, as shown in Fig. 1A, to discover novel 
therapeutic strategies in multiple myeloma. We collected a total of 
1,136 samples donated by 892 patients (see Supplementary Table 
S1 for a summary of patient demographics): 900 unique samples 
from 727 patients with WES data, 891 unique samples from 
725 patients with RNA-seq data, 727 unique samples from 603 pa-
tients with cytogenetic abnormalities characterized using FISH, and 
a total of 415 unique fresh BM aspirates from 346 patients with ex 
vivo drug sensitivity characterization. These four datasets are 
depicted in Fig. 1B, including their utilization for functional char-
acterization described in this article, such as ex vivo response paired 
with RNA-seq (n ¼ 248), WES (n ¼ 254), and FISH (n ¼ 146). Of 
the 415 samples (avatars of patients with multiple myeloma), 
399 samples (from 332 patients) were treated with a total of 37 drugs 
(13 standard-of-care agents; see Supplementary Table S2 for more 
details) spanning 10 different classes (Fig. 1C), whereas 260 samples 
(from 229 patients) were treated with 51 two-drug combinations 
(25 standard-of-care combinations; see Supplementary Table S3 for 
more details). 

To ensure representation of the entire disease spectrum, tested 
samples of patients with multiple myeloma included smoldering 
multiple myeloma (n ¼ 79), newly diagnosed multiple myeloma 
(n ¼ 277), early relapsed/refractory multiple myeloma (1–3 lines of 
therapy, n ¼ 339), and late relapsed/refractory multiple myeloma 
(>3 lines of therapy, n ¼ 242). For comparison purposes among 

different classes of drugs, the area under the dose–response surface 
(AUC; see Materials and Methods) was determined as the ex vivo 
drug response metric (Fig. 1D). Ex vivo drug sensitivity was cor-
related with disease state, cytogenetic abnormalities, and known 
multiple myeloma driver mutations (24). In Fig. 1E, the x-axis 
represents the difference in the medians of ex vivo AUCs (at 
96 hours) between the wild-type and mutated (harboring a cyto-
genetic abnormality or disease state) groups, whereas the y-axis 
represents the �log10 FDR for a two-tailed unpaired t test com-
paring the two groups and subjected to multi-test correction. 
Consistent with clinical experience (13, 14, 25), the BCL2 inhibitor 
VEN was more effective in t(11;14)-bearing multiple myeloma cells. 
Additionally, the t(11;14) and amplification (amp)/duplication of 
1q21 (three or more copies of chromosome region 1q21) were as-
sociated with resistance and sensitivity, respectively, to both the PI 
bortezomib (BTZ) and the pan-histone deacetylase inhibitor pan-
obinostat (PANO; ref. 26). Consistent with recent data in multiple 
myeloma cell lines, we found that IMID (e.g., pomalidomide, POM) 
sensitivity in patient specimens was associated with increased MAF 
expression and/or t(14;16) (27). Additional associations were also 
identified between the aforementioned variables and drug response 
(see Table 1; refs. 13, 14, 27–52; Research Square rs.3.rs-125536/v1) 

Although the analysis by AUCs was insightful in characterizing 
associations between single-agent sensitivity or resistance to mul-
tiple myeloma subgroups, it was limited by the relatively low fre-
quency of individual driver mutations (e.g., apart from KRAS, 
NRAS, and TP53; all mutation frequencies are below 10%; Supple-
mentary Fig. S1) or cytogenetic abnormalities in early-stage multiple 
myeloma, limiting the statistical power of such comparisons. To 
overcome these limitations, subsequent analyses focused on the 
transcriptome, which better informed the biology and cell-intrinsic 
mechanisms of multiple myeloma associated with ex vivo sensitivity 
and resistance. 

Functional transcriptomic landscapes in multiple myeloma 
identify gene expression footprints of drug sensitivity 

GSEA (53) was conducted between z-normalized gene expression 
(RNA-seq) and ex vivo drug sensitivity (AUC, average response for 
the entire experiment duration across all concentrations) for drugs 
tested in 20 or more samples, which identified cancer hallmarks 
(54), KEGG pathways (55) and multiple myeloma genes sets (from 
UAMS; ref. 56) that were enriched for ex vivo sensitivity and re-
sistance (Fig. 2A and B; Supplementary Fig. S2). We have identified 
two groups of hallmarks/pathways associated with opposing pat-
terns of ex vivo drug sensitivity in multiple myeloma: group 1 gene 
sets were associated with cell cycle, DNA repair, energy metabolism, 
and protein processing, whereas group 2 included cytokine signal-
ing, cell adhesion, and hypoxia-related gene sets, in accordance with 
cell adhesion- and cytokine–mediated drug resistance mechanisms 
previously identified as mediators of environment-mediated drug 
resistance (EMDR) in multiple myeloma (57). Group 1 gene sets 
were associated with sensitivity to PIs, TOPO2α isomerase inhibitor 
doxorubicin (DOX), IMIDs, the alkylating agent melphalan (MEL), 
nuclear export inhibitor SELI, and PANO, as well as with resistance 
to DARA (an anti-CD38 mAb) and VEN. Gene sets from group 
2 were associated with sensitivity to DARA, as well as resistance to 
PIs, the corticosteroid dexamethasone (DEX) and DOX. These ob-
servations suggest that faster cycling multiple myeloma cells would 
be more sensitive to cytotoxic drugs such as MEL and DOX, 
whereas increased expression of EMDR genes would confer resis-
tance to PIs, yet increase sensitivity to DARA, possibly via increased 
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immunogenicity (58) due to increased production of inflammatory 
cytokines associated with multiple myeloma–stroma cross-talk. 
These findings have been independently identified and characterized 

in cell lines by our group (59), as a cell adhesion/paracrine cytokine 
loop–mediated transient resistance mechanism involving fibronectin/ 
IL6/STAT3 induced cell-cycle arrest. This mechanism may not be 

Table 1. Examples of cytogenetic abnormalities, mutations, and TFs implicated in resistance and sensitivity to various drugs. 

Drug Feature Phenotype Disease Description 

Cytogenetics VEN t(11;14) Sensitive Multiple myeloma (clinical) t(11;14) patients with multiple myeloma are sensitive to VEN (13, 14). 
VEN Amp1q21 Resistant Multiple myeloma The MCL1 locus is present in 1q21, and amp of 1q21 leads to 

overexpression of MCL1, which confers resistance to VEN (28). 
BTZ t(11;14) Resistant Multiple myeloma (clinical) t(11;14) results in significantly lower PFS when accompanied by the 

expression of CD20 in patients with multiple myeloma (29). 
PANO t(11;14) Resistant Multiple myeloma The t(11;14)-bearing U266 multiple myeloma cell line shows 

resistance to PANO compared with other multiple myeloma cell 
lines that do not possess this abnormality (30). 

POM t(14;16) Sensitive Multiple myeloma Overexpression of MAF and/or t(14;16) shows sensitivity to POM 
(and LEN) in multiple myeloma cell lines (27). 

Mutations BTZ PRDM1 Sensitive Mantle cell lymphoma PRDM1 plays a key role in mantle cell lymphoma response to BTZ 
(31). 

BTZ CYLD Resistant Multiple myeloma CYLD K63 deubiquitinase suppresses the NF-κB pathway, and its 
mutation can lead to activation of NF-κB, which can confer 
resistance to BTZ (32). 

POM CYLD Sensitive Multiple myeloma CYLD mutation can also lead to activation of the Wnt pathway, 
which is implicated in cell adhesion–mediated resistance in IMIDs 
like LEN and POM (32). 

TFs VOLA FOXM1 Sensitive Esophageal 
adenocarcinoma 

PLK1 is a cell-cycle kinase that promotes cell proliferation, which is 
regulated by FOXM1, and PLK1 phosphorylates FOXM1 as part of 
a positive feedback loop (33, 34). 

INK128 FOXM1 Sensitive Gastric and prostate 
cancers 

Silencing FOXM1 increased mTOR protein levels in gastric cancer 
cells (35), and overexpression of FOXM1 decreases mTOR 
signaling activity in castration-resistant prostate cancer cells 
(36). 

PANO FOXM1 Sensitive Gastric cancer and glioma PANO decreases FOXM1 expression and induces cell-cycle arrest in 
gastric cancer (37). 

PYR FOXM1 Sensitive Multiple myeloma and 
glioma 

Higher FOXM1 expression leads to activation of the Wnt/β-catenin 
pathway, which justifies the association with anthelmintic 
pyrvinium that blocks Wnt/β-catenin (38, 39). 

MK2206 FOXM1 Sensitive Colorectal cancer Activation of the PI3K-AKT signaling pathway regulates 
FOXM1 expression; thus, inhibiting AKT signaling reduces 
FOXM1 expression and leads to cell-cycle arrest (40; Research 
Square rs.3.rs-125536/v1). 

VEN FOXM1 Resistant Acute myeloid leukemia FOXM1 knockdown decreased BCL2 mRNA and protein levels and 
suppressed BCL2L1 expression, leading to increased cellular 
dependency on BCL2 and sensitivity to VEN (41, 42). 

THZ1 FOXM1 Resistant Breast cancer CDK7 inhibitor resistance is associated with TGF-b/activin 
signaling, and FOXM1 is found to be a critical driver of TGFβ– 
induced endothelial-to-mesenchymal transition (43, 44). 

BTZ, CFZ, 
IXA 

RELA Resistant Multiple myeloma RELA is an NF-κB subunit, and NF-κB activity is associated with PI 
resistance in ultiple myeloma. The mechanism is likely regulated 
through the cIAP2 gene (45, 46). 

SELI BACH1 Resistant Pan-cancer BACH1 is exported from the nucleus by XPO1, and it recruits 
PRC2 to promote H3K27me3 modification (47, 48). 

DOX, MEL FOXM1 Resistant Multiple myeloma Increased levels of FOXM1 diminish the sensitivity of multiple 
myeloma cells to MEL and DOX (49). 

LEN, POM FOXM1 Resistant Multiple myeloma High FOXM1 expression is associated with development of 
resistance to LEN and cross-resistance to POM in RRMM (50). 

BI2536 FLI1 Sensitive Ewing sarcoma Ewing sarcoma–specific oncogenic TF EWSR1-FLI1 hijacks PRC1. 
PLK1 is a major upstream interacting partner of PRC1. 
PLK1 inhibition that can repress even chemoresistant Ewing 
sarcoma cells by triggering mitotic catastrophe (51). 

PONA FOXM1 Sensitive Chronic myeloid leukemia Hyperactivation of the Aurora kinase A–FOXM1 axis contribute to 
resistance in imatinib-resistant BCR-ABL1+ cells. Imatinib- 
resistant patients displaying overexpression and hyperactivation 
of AKA may thus benefit from ponatinib treatment (52). 

Abbreviation: RRMM, relapsed and refractory multiple myeloma. 
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Figure 2. 
GSEA identifies cancer hallmarks and KEGG pathways enriched for sensitivity and resistance. A, A clustergram of the normalized enrichment score computed 
using cancer hallmarks as supervised gene sets, in which normalized enrichment score represents the enrichment of a cancer hallmark by overexpression of 
genes implicated in resistance (red) or underexpression of genes implicated in sensitivity (blue) using GSEA. B, A clustergram using KEGG pathways as the 
supervised gene sets to carry out GSEA. C–E, All pairwise correlations (R2) of z-normalized gene expression of any two genes within each cancer hallmark, KEGG 
pathway, and coexpressing Moffitt gene cluster are plotted with the ranked percentile of each gene set on x-axis and their respective R2 values on the y-axis. Red 
line, median correlation within each gene set; blue bars, interquartile range of R2. F, A plot showing median pairwise correlations within each gene set as a 
function of the ranked (by median correlation) percentile of gene sets for each of cancer hallmarks (red), KEGG pathways (blue), and Moffitt unsupervised 
clusters (green). G–J, These plots reproduce plots (C–F) using coexpressing gene clusters obtained from CoMMpass (36) RNA-seq data. 
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unique to multiple myeloma, as interdependence between cell-cycle 
and immunogenicity was observed and characterized in patients with 
breast cancer and cell lines, demonstrating that inhibition of 
CDK4 and CDK6 augments antigen presentation of tumor cells (60). 
From Supplementary Fig. S2, we note that drugs (MEL/DOX/PANO) 
enriched for sensitivity to group 1 gene sets for cancer hallmarks and 
KEGG pathways are predominantly enriched for the PR UP (prolif-
eration) gene set in UAMS as well. However, we do not observe a 
strong association between any of the UAMS gene sets and EMDR 
gene sets (Group 2). Conversely, MS UP, known to be associated with 
poor prognosis in multiple myeloma, is shown to be enriched for 
resistance to BTZ, CFZ, and SELI, but is enriched for sensitivity to 
novel multiple myeloma immunotherapy agents like DARA and 
elotuzumab. This reinforces the need to use immunotherapies that 
selectively target high-risk tumor features in multiple myeloma to 
prolong PFS and OS of patients with multiple myeloma. 

To identify putative drivers of transcriptomic dysregulation as-
sociated with drug sensitivity, we generated multiple myeloma– 
specific transcriptomic maps, in which genes are clustered according 
to their coexpression across multiple myeloma samples. Each gene 
cluster, after unsupervised segmentation, represented a gene set with 
a putative shared transcriptional regulatory mechanism (e.g., driven 
by a shared TF). Dimensionality reduction analysis of the 
z-normalized gene expression data of 844 patients with multiple 
myeloma was performed through t-SNE (21). This approach con-
structed an unbiased multiple myeloma–specific transcriptomic 
landscape of 16,738 multiple myeloma–expressed genes. Fuzzy 
c-means clustering (22) was then used to segment coexpressing gene 
clusters or gene programs in multiple myeloma (61). Importantly, 
these clusters have a higher degree of correlation of expression of 
their constituent genes than manually curated biological gene sets 
(Fig. 2C–F). 

To validate the gene-clustering process, the analysis (Fig. 2G–J) 
was repeated using RNA-seq data from the CoMMpass 
(NCT01454297; ref. 62) cohort (n ¼ 770 NDMM). Dimensionality 
reduction with t-SNE and unsupervised segmentation of the Mul-
tiple Myeloma Research Foundation dataset demonstrated higher 
agreement between unsupervised clusters independently identified 
from the two cohorts compared with the curated gene sets KEGG 
and cancer hallmarks. Thus, this approach identified clusters of 
coexpressing genes (Fig. 3A and B) with higher median pairwise 
Pearson correlation coefficient compared with supervised gene sets 
(cancer hallmarks and KEGG) in the two largest multiple myeloma 
RNA-seq cohorts available. 

GSEA was performed on these unsupervised multiple myeloma– 
specific gene clusters to identify expression patterns associated with 
ex vivo resistance and sensitivity to all 37 therapeutics (Supple-
mentary Table S2) tested. The pattern of gene clusters associated 
with resistance or sensitivity on the transcriptomic map was then 
defined as a transcriptomic “footprint” (e.g., SELI in Fig. 3C), in 
which footprints represent genes that correlate with the ex vivo 
response and that are coexpressed across samples of patients with 
multiple myeloma, as shown in Supplementary Fig. S3. 

To illustrate how this approach can unveil drug-specific biology, 
we represented well-known drug target genes, as well as gene 
clusters identified in footprints, atop bar plots of Pearson correlation 
coefficients between ex vivo AUCs and z-normalized gene expres-
sion for 16,738 genes. Genes featured in drug resistance clusters, 
highlighted in red, were enriched for positive correlation with ex 
vivo AUCs, whereas genes featured in drug sensitivity clusters, 
highlighted in blue, were enriched for negative correlation with ex 

vivo AUCs Supplementary Figs. S4–S6. The drugs are classified into 
three groups, in which ex vivo drug sensitivity correlates with (i) 
gene expression of the drug targets (Supplementary Fig. S4), (ii) 
gene expression of upstream regulators of the drug targets (Sup-
plementary Fig. S5), or (iii) the expression of genes involved in a 
biological mechanism targeted by the drug (as opposed to specific 
target genes, Supplementary Fig. S6). We highlight this analysis for 
VEN, in which BCL2, the target of the drug, and CCND1, the result 
of t(11;14), are shown to be highly correlated with VEN ex vivo 
sensitivity. Other genes involved in the BCL2 family, such as MCL1 
and BCL2L1 (BCL-XL), are shown to have a high correlation with 
VEN ex vivo resistance. Similarly, plots for DOX and VOLA show 
that the target genes TOP2A and PLK1, respectively, have high 
correlation with ex vivo sensitivity. Often the drug targets are reg-
ulated by upstream and/or pathway components. As an example, we 
noted that both IL6R and STAT3 genes are highly negatively cor-
related with ex vivo AUCs of RUX compared with the targets JAK1 
and JAK2 themselves. Similarly, in Supplementary Fig. S5H and S5I, 
bar plots for IMIDs [lenalidomide (LEN) and POM, respectively] 
showcasing ranked list of genes by correlation with ex vivo AUCs 
are shown, in which gene expression of COPS7B and COPS8 is 
highly negatively correlated with both LEN and POM ex vivo 
AUCs. Notably, COPS7B and COPS8 are members of the 
COP9 signalosome located in chromosome 2q37 and responsible 
for the stability of CRBN (target of LEN and POM), which have 
been shown to be associated with resistance to LEN and POM in 
the clinic (63). Several frequently used anticancer agents target 
specific biological mechanisms, with some agents having multiple 
modes of action. In this context, bar plots for PIs (BTZ, carfilzo-
mib, and ixazomib; Supplementary Fig. S6A, S6B, and S6E) il-
lustrated that expression of PSMB5, PSMC7, and PSMD10 (genes 
involved in regulating proteasome subunits) consistently corre-
lated with ex vivo sensitivity to each of the PIs. Interestingly, 
DARA has multiple modes of action in multiple myeloma in-
volving antibody-dependent cellular cytotoxicity, antibody- 
dependent cellular phagocytosis, programmed cell death, and 
complement-dependent cytotoxicity (CDC). We note that DARA 
ex vivo sensitivity highly correlates with C7 expression, which 
regulates C5b, a gene responsible for membrane attack complex, a 
key player in CDC. These findings suggest that the ex vivo AUCs 
capture DARA activity in CDC, which is also shown to correlate 
with increased phagocytosis (Supplementary Fig. S6C). 

We employed Enrichr (23) to query publicly available databases 
(ENCODE/ChEA) for putative regulatory factors associated with 
expression of gene clusters. In Fig. 3D, we identified the TFs 
enriched for binding to genes within each gene cluster that corre-
lated with either ex vivo resistance (red) or sensitivity (blue) to each 
drug. We carried out a similar analysis to identify epigenetic histone 
alterations (H3K27me3 and H3K27ac) using Roadmap Epigenomics 
(Fig. 3E) and identified coexpressing genes that are overrepresented 
in chromatin immunoprecipitation sequencing experiments for 
these epigenetic alterations in human cells (23). Among TFs, 
FOXM1 had the highest ES associated with sensitivity to a number 
of drugs of different classes, including DOX, the mTOR inhibitor 
INK128, PANO, POM, LEN, and the PLK1 inhibitor volasertib 
(VOLA). These results are consistent with FOXM1 being an im-
portant regulator of multidrug resistance in preclinical models and 
poor outcome in patients with multiple myeloma (64). Interestingly, 
ex vivo response to VOLA, but not BI2536, was associated with 
FOXM1 (Fig. 3D), despite both being inhibitors of PLK1, a kinase 
that phosphorylates and activates FOXM1, which in turn is a TF 
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that positively regulates PLK1’s transcription (33, 34). We believe 
this is due to VOLA’s higher specificity to PLK1 compared with 
BI2536, which also targets PLK2, PLK3, MYC, and BRD4 (65), 
hence diluting its effect among different targets. The TFs BACH1 and 
RELA (an NF-κB subunit) were enriched in PI resistance, 

consistent with RELA-mediated induction of cIAP2 as a mech-
anism of PI resistance in multiple myeloma (45, 46). Notably, the 
histone methyltransferase EZH2 was inversely correlated with 
SELI ex vivo resistance. This agrees with the role of EZH2, which 
recruits PRC2 (polycomb repressive complex-2), promoting 

Multiple myeloma transcriptional topology

Transcription factors enriched in genes with differential expression associated with ex vivo resistance or sensitivity

Epigenetic alterations enriched in genes with differential expression associated with ex vivo resistance or sensitivity

FOXM1

A

D

E

B

Multiple myeloma–specific gene programs
SELI: transcriptomic footprint

for ex vivo drug sensitivity

Resistance

Sensitivity

KDM6A
GABP

HOXC9
FOXP3

VDR
ETS1
XRN2
TTF2
E2F4

200

160

120

80

40

0
200

C
o

m
b

in
e

d
 e

n
ric

h
r s

c
o

re

160

120

80

40

0

RELA
BACH1

ELK1
DCP1A

FLI1
ZNF217

WT1
E2F1
CIITA

PADI4
SMAD4

PAX3-FKHR
P300
LXR

KDM2B
10–53

q-value

q-value

10–201

10–11

10–22

10–11

EST1
FOXP1

SPI1

SCL
DACH1

DROSHA
NR1H3

ESR2

H3K27me3

H3K27ac

C
P

D
2
2

D
A

B
R

A
E

L
O

IN
K

1
2
8

R
4
0
6

J
N

K
-I

N
-8

D
E

F
A

S
IL

M
I

D
E

X
R

IC
O

D
IN

A
P

O
M

L
E

N
N

U
-7

4
4
1

P
A

N
O

3
9
6
2
1

E
L
E

A
L
I

B
T

Z
C

F
Z

T
A

I-
1

S
E

L
I

P
Y

R
D

O
X

IX
A

V
O

L
A

M
K

2
2
0
6

P
A

L
B

R
U

X
O

M
O

T
E

B
I2

5
3
6

P
O

N
A

C
R

IZ
M

E
L

D
A

R
A

D
E

F
A

E
L
E

R
4
0
6

D
IN

A

P
A

L
B

C
F

Z

IX
A

T
A

I-
1

B
T

Z

P
Y

R

V
E

N

T
H

Z
1

A
L
I

M
O

T
E

D
O

X

IN
K

1
2
8

P
A

N
O

P
O

M

L
E

N

V
O

L
A

B
I2

5
3
6

M
E

L

P
O

N
A

M
K

2
2
0
6

C
R

IZ

S
E

L
I

R
U

X
O

G
e
n
e
s
 a

s
s
o
c
ia

te
d
 w

it
h
 r

e
s
is

ta
n
c
e

G
e
n
e
s
 a

s
s
o
c
ia

te
d
 w

it
h
 s

e
n
s
it
iv

it
y

D
A

R
A

C

Figure 3. 
The transcriptomic landscape in multiple 
myeloma identifies gene expression foot-
prints of drug resistance and sensitivity. 
A, The multiple myeloma transcriptomic 
landscape identified by carrying out di-
mensionality reduction using t-SNE on nor-
malized gene expression data from RNA-seq. 
B, Clusters of coexpressing genes identified by 
fuzzy c-means clustering, which serve as multi-
ple myeloma–specific gene programs. C, Gene 
programs that are enriched for resistance (red) 
and sensitivity (blue) to SELI using GSEA. D and 
E, Bubble plots showing combined Enrichr score 
for sensitivity in blue and resistance in red, with 
the size of the bubble signifying the P value of 
the enrichment as identified by a one-sided 
Fisher exact test. 
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H3K27me3 modification and repression of gene transcription 
(47, 48), and a target of XPO1, which is inhibited by SELI. In 
accordance with the role of EZH2 activity in SELI resistance, 
there was a strong association between H3K27me3 genes and 
SELI resistance (Fig. 3E). Finally, six TFs/DNA-binding proteins 
(GABP, HOXC9, FOXP3, VDR, ETS1, and XRN2) are implicated in 
sensitivity to SELI, MEL, and DOX, among others, and in resistance 
to DARA (see Table 1 for a detailed list of TFs implicated in ex vivo 
drug resistance and sensitivity featuring studies from the literature 
that corroborate our findings; refs. 33–52; Research Square rs.3.rs- 
125536/v1). Collectively, these data indicated that the tran-
scriptomic footprints derived from the ex vivo avatars can recapit-
ulate the biology associated with the tested therapeutics. 

Development and validation of predictive biomarkers 
informed by transcriptomic footprints 

To determine if transcriptomic footprints could serve as bio-
markers that predict clinical efficacy, we examined the correlation of 
ex vivo transcriptomic footprints for DARA and SELI to footprints 
derived from clinical responses. DARA clinical footprints were 
identified using GSEA (similar to the ex vivo footprints) by corre-
lating gene expression from pretreatment RNA-seq data of speci-
mens of patients with multiple myeloma with their subsequent PFS 
following DARA-containing regimens (DARA/LEN/DEX, DARA/ 
POM/DEX, or DARA/DEX) in a cohort of 22 Moffitt Cancer Center 
patients. SELI clinical footprints were similarly determined using a 
SELI-containing regimen, specifically SELI/BTZ/DEX, in a cohort of 
52 patients enrolled in the BOSTON (NCT03110562; ref. 15) clinical 
trial–NCT0218634. For both the Moffitt (DARA) and BOSTON 
(SELI; ref. 15) cohorts, all samples that had pretreatment RNA-seq 
data available and clinical response (PFS) were considered. Statis-
tically significant (FWER ≤0.05) footprints for ex vivo resistance 
(red) and sensitivity (blue) were determined by correlating gene 
expression with the ex vivo AUC for DARA (Fig. 4A; the same 
approach used in Fig. 3C), and statistically significant (FDR ≤0.25) 
correlations of gene expression with PFS of 22 Moffitt patients 
treated in the clinic were determined (Fig. 4B; the same approach 
used in Fig. 3C, with clinical PFS instead of ex vivo AUC). Similarly, 
gene programs were independently enriched for ex vivo resistance 
(red) and sensitivity (blue) from 81 samples of patients with mul-
tiple myeloma treated ex vivo with SELI (Fig. 4C; same as Fig. 3C), 
as well as those correlated with shorter (red) and longer PFS (blue) 
of 52 patients with multiple myeloma from the BOSTON 
(NCT03110562; ref. 15) clinical trial (Fig. 4D; the same approach 
used in Fig. 3C, with clinical PFS instead of ex vivo AUC). In 
addition to visual agreement between ex vivo and clinical footprints 
for both DARA (Fig. 4A vs. Fig. 4B) and SELI (Fig. 4C vs. Fig. 4D), 
the ESs of gene sets in both ex vivo (Fig. 4A) and clinical footprints 
(Fig. 4B) for DARA showed a high correlation (Pearson correlation 
coefficient, r ¼ 0.748; Fig. 4E). Although the same correlation for 
SELI was less striking, it was still significant (Fig. 4F; Pearson 
correlation coefficient, r ¼ 0.4089). 

To assess the application of the ex vivo transcriptomic footprint 
as a predictive biomarker of clinical response (PFS) to either DARA- 
or SELI-based regimens, an unsupervised machine learning ap-
proach was applied to classify patients into resistant and sensitive 
categories (see Materials and Methods) and compare their proba-
bility of progression using Kaplan–Meier plots, Fig. 4G and H. 
Briefly, a regression tree model consisting of median values of 
enriched gene programs from the DARA and SELI ex vivo tran-
scriptomic footprints were independently trained using the matched 

ex vivo AUCs and gene expression of multiple myeloma samples. 
We then used this model to calculate an in silico “ex vivo drug 
sensitivity (AUC)” for each patient in the Moffitt (DARA-treated) 
and BOSTON (NCT03110562, SELI-treated; ref. 15) cohorts using 
their RNA-seq data alone. These biomarker scores (in silico–calcu-
lated “ex vivo AUC”) were then used to divide the patients into 
those with a high predicted AUC (predicted resistant in red) and a 
low predicted AUC (predicted sensitive in blue). The probability of 
survival computed from PFS in the Moffitt and BOSTON (15) co-
horts (Fig. 4G and H) revealed a considerable (yet statistically 
nonsignificant) separation between the two groups despite the small 
sample size in each cohort and confounding effects from treatment 
with DEX, LEN/DEX, or POM/DEX in addition to DARA in the 
Moffitt cohort (transcriptomic footprint from pretreatment biopsy 
separates sensitive and resistant patients by PFS, log-rank test P 
value ¼ 0.156), as well as BTZ/DEX in addition to SELI in the 
BOSTON (15) cohort (transcriptomic footprint from pretreatment 
biopsy separates sensitive and resistant patients by PFS, log-rank test 
P value ¼ 0.187). Thus, transcriptomic footprints informed by ex 
vivo drug sensitivity data are reproduced sufficiently in clinical 
settings, and such transcriptomic footprints can be used as a sur-
rogate to predict clinical outcomes. 

Novel therapeutic strategies in multiple myeloma informed by 
transcriptomic footprints 

We next tested if transcriptomic patterns associated with ex vivo 
response to anti–multiple myeloma agents enabled the identification 
of therapeutics that can either be sequenced or combined to opti-
mize clinical success (longer PFS). GSEA ESs were computed for 
each of the 500 gene clusters (Fig. 3B) on the multiple myeloma 
transcriptomic map (Fig. 3A) for each agent tested ex vivo, in which 
a positive ES corresponds to resistance to a drug and a negative ES is 
associated with sensitivity. The similarity of transcriptomic foot-
prints between drugs was then determined by calculating the cor-
relation of ESs of drug pairs. The resulting Pearson correlation 
coefficients for every drug pair were then presented as a clustergram 
(Fig. 5A). Six clusters of correlated drugs were identified, as indi-
cated by dashed boxes. Importantly, drug clusters 1, 2, and 3 nega-
tively correlated with cluster 6, and cluster 4 negatively correlated 
with cluster 5. There are a total of 666 two-drug pairs featured in 
Fig. 5A, of which, 51 combinations (Supplementary Table S3) were 
tested ex vivo in a total of 260 samples of patients with multiple 
myeloma (within the 415 patient cohort), with each combination 
tested in at least 10 patient samples. It is important to note that the 
transcriptomic footprints were identified using the ex vivo single- 
agent response, whereas the combination effect was computed using 
the ex vivo combination response, which is an independent condi-
tion in each of those experiments. Supplementary Figure S7 presents 
a volcano plot of the 51 two-drug combinations, in which the x-axis 
represents the ex vivo combination effect (difference in the median 
AUC of the combination response and the additive response), the 
y-axis represents the �log10 FDR comparing the combination AUC 
with the additive AUC (computed from the constituent single-agent 
responses; ref. 10), and the size of the disc represents the number of 
samples tested with each combination. We use two criteria—an FDR 
lower than 0.05 and an ex vivo combination effect with a magnitude 
greater than 2.5%—to identify synergistic (red, combination effect 
greater than 2.5%) and antagonistic (blue, combination effect less 
than �2.5%) combinations. In Fig. 5B, a scatter plot is shown 
comparing the correlation of ex vivo transcriptomic footprints of 
drug pairs (from Fig. 5A) on the y-axis and their ex vivo 
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Figure 4. 
Validation of transcriptomic footprints identified for ex vivo drug sensitivity and resistance. A and B, Enriched gene programs for ex vivo resistance (red) and 
sensitivity (blue) for DARA (A) and the gene sets enriched for clinical response (PFS; B). C and D, Comparison of enriched gene programs from ex vivo (C) and 
clinical response (PFS; D) for SELI. E and F, Correlation of GSEA ESs for gene programs that are featured in both ex vivo and clinical gene sets for DARA (E) and 
SELI (F), respectively. Gray represents nonsignificant gene sets, and yellow represents gene sets that GSEA suggested opposing enrichments for that gene 
cluster in ex vivo and clinical contexts. FWER, family-wise error rate. G, Median gene expressions of enriched gene programs identified from ex vivo response (A 
and C) are used to predict the AUC using a regression tree model. This predicted AUC from gene expression is used to classify patients as sensitive and resistant, 
whereas the PFS for these patients (who received DARA in the clinic immediately after the biopsy used for RNA-seq) is used to compare probability of 
progression using a Kaplan–Meier plot. H, Kaplan–Meier plot showing the ability of ex vivo–identified gene programs to classify patients clinically for SELI. 
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Figure 5. 
Correlations of GSEA ESs suggest novel therapeutic strategies. A, Clustergram of correlations of GSEA ESs for each cluster for every pair of drugs tested ex vivo 
identifies pairs of drugs that have positively correlated and negatively correlated transcriptomic footprints. B, A scatter plot showing the relationship between 
correlation of GSEA transcriptomic footprints and differences in the median of combination and additive responses (AUC combination effect). Each bubble (or 
circle) represents a two-drug combination that has a corresponding pairwise correlation between the constituent single agents in A. The blue and red bubbles 
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or additivity. C, A scatter plot showing only statistically significant two-drug combinations from B or Supplementary Fig. S2, in which the correlation of GSEA 
transcriptomic footprints and the AUC combination effect are subjected to Pearson linear correlation. D, A box-and-whisker plot showing the difference in 
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combination effect (from Supplementary Fig. S7) on the x-axis, with 
the size of the disc representing the statistical significance of the 
combination effect (�log10 FDR; shown on the y-axis from Sup-
plementary Fig. S7). 

Notably, a negative correlation of transcriptomic footprints fa-
vors synergistic combinations, whereas a positive correlation could 
correspond to either synergism or antagonism. Linearly correlating 
the statistically significant ex vivo combination effects with their 
corresponding correlations of transcriptomic footprints (Fig. 5C) 
resulted in a Pearson correlation coefficient (r) of �0.4656, indi-
cating that anticorrelative transcriptomic footprints are more likely 
associated with synergism. This notion was supported by comparing 
the correlation of transcriptomic footprints for statistically signifi-
cant antagonistic/synergistic combinations featured in Fig. 5D using 
an unpaired two-tailed t test, which yielded a P value of 0.023597, 
underscoring the fact that statistically significant antagonistic 
combinations have a higher and always a positive correlation of 
transcriptomic footprints. 

Given these properties, we focused on anticorrelative combina-
tions in Fig. 5B, in which a threshold of �0.3 denotes significantly 
anticorrelative transcriptomic footprints. This analysis identified 
three drug pairs having such features: DARA/BTZ, PANO/VEN 
(PA), and DARA/SELI. The most anticorrelative drug pair, DARA/ 
BTZ, along with DEX, is an approved combination for multiple 
myeloma that has shown great efficacy in patients with newly di-
agnosed multiple myeloma in a phase III clinical trial when com-
pared with patients treated with BTZ and DEX alone (66). The drug 
pair PA has the highest statistical significance in ex vivo synergy 
(Supplementary Fig. S7), and although there are currently no on-
going clinical studies involving this combination, preclinical studies 
have shown synergism between these two agents (67, 68). The 
synergism of PA is also exemplified in the association of ex vivo 
drug sensitivity and cytogenetic abnormalities (Fig. 1E), which 
shows that PANO is associated with ex vivo sensitivity in patients 
with amp of 1q21 and to resistance in t(11;14)-positive patients with 
multiple myeloma. VEN, on the other hand, is associated with 
ex vivo (and clinical) sensitivity in t(11;14)-positive patients and to 
resistance (relatively lower significance, FDR ∼40%) in patients with 
amp of 1q21. Such an inverse association with t(11;14) and amp of 
1q21 is also supported by the biological rationale for simultaneously 
targeting two key antiapoptotic proteins, BCL2 and MCL1 (69), in 
which t(11;14) patients are associated with high BCL2 expression 
(70) and amp of 1q21 leads to overexpression of MCL1 as its locus is 
present in chr1q21 (28). Supplementary Figure S8A shows that 
BCL2 and CCND1 expressions correlate with ex vivo VEN sensi-
tivity, whereas MCL1 and BCL2L1 expressions correlate with ex vivo 
resistance. Conversely, Supplementary Fig. S8B shows the opposite 
relationship for PANO. These opposing roles of BCL2 and 
MCL1 expressions agree with opposite associations between t(11;14) 
(sensitivity for VEN and resistance for PANO) and amp/gain 1q21 
(resistance for VEN and sensitivity for PANO) cytogenetic abnor-
malities in Fig. 1E and anticorrelative transcriptomic footprints in 
Fig. 5A and are shown to be synergistic in Supplementary Fig. S7. 
Supplementary Figure S8C–S8F present networks of upstream TFs 
that bind to the promoter regions of the genes implicated in 
resistance/sensitivity for VEN/PANO. We note that the TF network 
for VEN resistance in Supplementary Fig. S8C and PANO sensi-
tivity network in Supplementary Fig. S8F features similar TFs like 
E2F4, FOXM1, SIN3A, and IRF3. Despite a missing overlap between 
PANO resistance network (EZH2 and SUZ12) and VEN (BCL3, 
RELA, and REST) sensitivity network. Supplementary Fig. S8A and 

S8B demonstrates that BCL2 and CCND1 expressions can be used 
as effective biomarkers for VEN sensitivity and PANO resistance. 
The third drug pair with inversely correlated transcriptomic foot-
print, DARA/SELI, trends toward synergism, although this is not 
statistically significant, possibly due to a small sample size of this 
cohort (n ¼ 13). 

Anticorrelative transcriptomic footprints support sequential 
DARA–SELI therapy 

As genes associated with sensitivity to a specific drug are impli-
cated in resistance to another, we reasoned that anticorrelative 
transcriptomic footprints could also inform the benefit of sequential 
therapies by creating an evolutionary double bind (71). We con-
sidered SELI (cluster 3; from Fig. 5A) and DARA (cluster 6; from 
Fig. 5A) as candidates due to the anticorrelative transcriptomic 
footprints for ex vivo sensitivity and resistance of DARA (Fig. 6A; 
same as Fig. 4A) and SELI (Fig. 6B; same as Figs. 3C and 4C), in 
which the enriched gene sets of cancer hallmarks for ex vivo drug 
response for each of the two drugs are also anticorrelative (Fig. 6C). 
The choice for studying this drug pair was also motivated by a 
subgroup analysis from the phase 3 BOSTON trial (NCT03110562; 
ref. 15), in which patients with multiple myeloma treated with 
DARA in a prior line of therapy showed further improved PFS in 
the SELI/BTZ/DEX (XVd) arm versus the BTZ/DEX (Vd) arm with 
a HR of 0.49 (95% CI, 0.13–1.84; ref. 28). Furthermore, this im-
provement in PFS was higher in patients treated with DARA in a 
prior line of therapy when compared with the improvement in PFS 
between XVd and Vd arms for the entire cohort (HR, 0.7; 95% CI, 
0.53–0.93; refs. 15–18). Based on the anticorrelative transcriptomic 
profiles and this subgroup analysis, we hypothesized that patients 
who received DARA in an immediate prior line would benefit more 
from a SELI-based regimen than those who received it in an earlier 
prior line. To investigate this clinically, we analyzed two indepen-
dent SELI-based trials. Notably, PFS in triple-class refractory pa-
tients (i.e., all patients had received an anti-CD38 mAb) from two 
arms of the STOMP (NCT02343042; refs. 16, 17) clinical trial [SELI/ 
POM/DEX (XPd) and SELI/CFZ/DEX (XKd)] and the XPORT- 
MM-028 (NCT04414475, XVd) clinical trials (Supplementary Table 
S4; ref. 18) revealed that the PFS of patients exposed to an anti- 
CD38 mAb in their immediate prior line was higher in both the 
STOMP (NCT02343042; 15 vs. 8.9 months; log-rank test P 
value ¼ 0.096; refs. 16, 17) and XPORT-MM-028 (NCT04414475; 
NE vs. 3.5 months; log-rank test P value ¼ 0.057; ref. 18) trials 
(Fig. 6D and E). Collectively, these clinical data provide a strong 
rationale for sequencing SELI after DARA based on ex vivo func-
tional transcriptomics and correlative science. 

Discussion 
Despite significant increases in the number of approved therapies 

leading to a steady improvement in the 5-year survival rate, multiple 
myeloma remains all but incurable. We and others have reasoned 
that improving multiple myeloma clinical outcomes with currently 
available therapeutics might be achieved through optimal thera-
peutic interventions using predictive biomarkers (9, 10, 18). 
Whereas diagnostic and prognostic biomarkers are integrated into 
clinical utilization in multiple myeloma (4), predictive biomarkers 
are lacking. In this study, using functional transcriptomics as de-
fined by ex vivo drug screening as patient avatars (surrogates for 
clinical response) and paired molecular data, we identify critical 
multiple myeloma biology and predictive molecular biomarkers. 
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Importantly, these findings were validated by molecular and clinical 
data from independent clinical trials. 

The findings reported herein are based on robust analyses of 
patient-derived multiple myeloma cells from 415 patients who were 
screened ex vivo with 37 standard-of-care, experimental, and 

preclinical drugs, which were tested in a minimum of 20 samples. 
Within this larger cohort, 265 samples were characterized according 
to FISH cytogenetics, RNA-seq, and WES. Integrating these data 
confirmed previously identified predictive biomarkers [e.g., t(11;14) 
predicts VEN response and t(14;16) and/or MAF expression is 
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Figure 6. 
SELI and DARA: a novel sequential therapy informed by multiple myeloma functional transcriptomics. A and B, A clustergram of enriched cancer hallmarks for ex 
vivo drug sensitivity or resistance to SELI and DARA. C, The anticorrelative ex vivo transcriptomic footprints of SELI and DARA. D and E, The probability of PFS 
compared between the two groups shows improved survival in patients treated with a SELI-based regimen combined with a DARA-based regimen as an 
immediate prior line in STOMP and XPORT-MM-028. 
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associated with IMID sensitivity, as demonstrated in a recent study 
in a panel of cell lines, refs. 25, 27] as well as new potential bio-
markers for further investigation (Table 1). However, identification 
of molecular biomarkers such as the t(11;14) or t(14;16) for the 
majority of multiple myeloma agents is limited by multiple mye-
loma’s inherently low mutational/cytogenetic frequency (72). Thus, 
we focused our efforts on the multiple myeloma transcriptome, in 
which GSEA revealed two general groups that are differentially 
expressed according to ex vivo resistance and sensitivity (cell cycle/ 
DNA repair/energy metabolism/protein- and EMDR-related, re-
spectively) that have opposing patterns of correlation between gene 
expression and ex vivo response to three groups of in-clinic multiple 
myeloma drugs (IMIDs/SELI/MEL, PIs/DOX/DEX, and DARA). 

Importantly, the transcriptomic landscape of multiple myeloma 
revealed clusters of coexpressing genes across this multiple myeloma 
patient cohort, and GSEA analysis of 37 drugs relative to these gene 
clusters generated transcriptomic footprints that informed tran-
scriptomic drivers of ex vivo drug response and predictive bio-
markers. As a proof of principle, the SELI transcriptomic footprint 
derived from ex vivo response was compared with transcriptomic 
footprints obtained from clinical response to a SELI-based regimen 
in a cohort of 52 patients enrolled in the BOSTON trial 
(NCT03110562; ref. 15) and a DARA-based regimen in a cohort of 
22 patients from Moffitt Cancer Center. This comparison demon-
strated positive correlation of ESs between ex vivo and clinical 
transcriptomic footprints for both SELI and DARA. Furthermore, 
the gene clusters obtained from the transcriptomic footprint can be 
used to train a regression tree model that predicts ex vivo drug 
sensitivity from gene expression data alone, and this RNA-seq based 
model sufficiently identifies patients with longer PFS (predicted as 
sensitive; blue in Fig. 4G and H) and shorter PFS (predicted as 
resistant, red in Fig. 4G and H). 

We have defined the term transcriptomic footprint as the col-
lective of gene sets whose ESs correlate with resistance or sensitivity 
(ex vivo/AUC or clinical/PFS) to a single drug. Thus, we defined 
similarity between pairs of drugs as a metric of agreement between 
their footprints, generating a list of positively, weakly, and nega-
tively correlated drug pairs, and investigated whether these would be 
a predictor of ex vivo synergy. Positively correlated drug pairs were 
identified as most likely antagonistic with some notable exceptions, 
whereas negatively correlated drug pairs were found to be syner-
gistic or additive. Finally, supporting the clinical accuracy of these 
models, a correlation matrix of the transcriptomic footprints for 
each of the 37 drugs was created to identify pairs of drugs with 
anticorrelative transcriptomic profiles, in which we hypothesized 
that therapeutics with anticorrelative profiles could also be candi-
dates for sequential therapy (i.e., they inform the choice of follow- 
up regimen upon relapse), as the biology associated with resistance 
to one drug is associated with sensitivity to the other. SELI and 
DARA were tested as candidates for this approach using data from 
two clinical trials, STOMP (NCT02343042; refs. 16, 17) and 
XPORT-MM-028 (NCT04414475; ref. 18), in which patients treated 
with a SELI-based regimen who received DARA-therapy in an 
immediate prior line had deeper responses and longer PFS. Col-
lectively, these data support the rationale for the use of predictive 
biomarkers defined by this functional transcriptomics platform to 
inform novel therapeutic strategies with current and future multiple 
myeloma therapies. 

Analyses of the transcriptomic footprints that drive clinical 
benefit seen with DARA–SELI sequential therapy (Fig. 5C and D) 
revealed that gene clusters that positively correlated with ex vivo 

SELI resistance, and conversely ex vivo DARA sensitivity, are 
enriched for immune/microenvironment-mediated pathways (e.g., 
IL2/STAT5, IL6/JAK/STAT3) and are complement, and thus 
they are expected to be involved in multiple myeloma immune 
surveillance. Additionally, enrichment analysis of human-derived 
chromatin immunoprecipitation sequencing databases suggest 
H3K27me3 histone modifications control transcription of these 
gene sets (Fig. 4C), an observation we have confirmed by single-cell 
Assay for Transposase-Accessible Chromatin using sequencing in 
primary multiple myeloma samples (61). Finally, SELI inhibits 
XPO1 activity, which directs nuclear export of multiple TFs, in-
cluding EZH2, which recruits PRC2 and promotes H3K27me3 
modifications (47, 48). Collectively, these findings support a model 
whereby DARA-refractory multiple myeloma cells epigenetically 
suppress immunogenic genes through H3K27me3, which in turn 
makes them more vulnerable to disruption of nuclear export ma-
chinery that is needed to maintain gene suppression. Ongoing 
studies will further test these predictions. 

Using a robust multiple myeloma patient database and a new 
unsupervised approach to infer mechanisms driving drug response, 
in the form of drug-specific transcriptomic footprints, the findings 
presented herein establish how such footprints can generate patient- 
specific predictive biomarkers and inform the design and optimize 
the outcomes of evolution-inspired clinical trials. We anticipate that 
this approach could accelerate the development of experimental 
preclinical drugs and clinical therapies (including immunother-
apies) by increasing the probability of success, which is estimated to 
be 35.5% in phase III clinical trials and much lower in earlier stages 
(73). Accordingly, we predict that by identifying novel therapeutic 
strategies informed by data-driven approaches as those described 
herein, the success of oncology drug development and the use of 
standard-of-care therapies can be markedly improved. 
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