
CANCER RESEARCH | CANCER BIOLOGY 

FOXR2 Targets LHX6+/DLX+ Neural Lineages to Drive Central 
Nervous System Neuroblastoma 
Selin Jessa1,2, Antonella De Cola3,4, Bhavyaa Chandarana1,5, Michael McNicholas3,4, 
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�
 ABSTRACT 

Central nervous system neuroblastoma with forkhead box R2 
(FOXR2) activation (NB-FOXR2) is a high-grade tumor of the 
brain hemispheres and a newly identified molecular entity. Tu-
mors express dual neuronal and glial markers, leading to frequent 
misdiagnoses, and limited information exists on the role of 
FOXR2 in their genesis. To identify their cellular origins, we 
profiled the transcriptomes of NB-FOXR2 tumors at the bulk and 
single-cell levels and integrated these profiles with large single- 
cell references of the normal brain. NB-FOXR2 tumors mapped 
to LHX6+/DLX+ lineages derived from the medial ganglionic 
eminence, a progenitor domain in the ventral telencephalon. 
In vivo prenatal Foxr2 targeting to the ganglionic eminences in 
mice induced postnatal cortical tumors recapitulating human NB- 
FOXR2–specific molecular signatures. Profiling of FOXR2 binding 
on chromatin in murine models revealed an association with ETS 
transcriptional networks, as well as direct binding of FOXR2 at key 
transcription factors that coordinate initiation of gliogenesis. These 

data indicate that NB-FOXR2 tumors originate from LHX6+/DLX+ 

interneuron lineages, a lineage of origin distinct from that of other 
FOXR2-driven brain tumors, highlight the susceptibility of ventral 
telencephalon–derived interneurons to FOXR2-driven oncogenesis, 
and suggest that FOXR2-induced activation of glial programs may 
explain the mixed neuronal and oligodendroglial features in these 
tumors. More broadly, this work underscores systematic profiling 
of brain development as an efficient approach to orient oncogenic 
targeting for in vivo modeling, critical for the study of rare tumors 
and development of therapeutics. 

Significance: Profiling the developing brain enabled rationally 
guided modeling of FOXR2-activated CNS neuroblastoma, pro-
viding a strategy to overcome the heterogeneous origins of pe-
diatric brain tumors that hamper tumor modeling and therapy 
development. 

See related commentary by Orr, p. 195 

Introduction 
Central nervous system (CNS) neuroblastoma forkhead box 

R2 (FOXR2)-activated (NB-FOXR2) is a pediatric brain tumor 

identified from DNA methylation profiling of a large series of CNS 
tumors in 2016 (1). Previously classified within primitive neuro-
ectodermal tumors, NB-FOXR2 emerged as a cohesive entity now 
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recognized by the World Health Organization (2), with distinct 
clinical and molecular features. NB-FOXR2 tumors are supra-
tentorial, occurring primarily in cerebral hemispheres (across cor-
tical lobes), with a mean age-at-diagnosis of 6 years (1) and a slight 
sex bias with greater prevalence in females (1, 3). Histologically, NB- 
FOXR2 tumors resemble other undifferentiated CNS tumors with 
both glial and neuronal compartments, leading to frequent misdi-
agnosis based on morphology alone (3). By IHC, however, NB- 
FOXR2 exhibits a unique profile with dual neuronal and oligo-
dendroglial features. They express the neuronal synaptic vesicle 
protein synaptophysin and the oligodendrocyte lineage transcrip-
tion factor (TF) OLIG2 (1). Thus, recent studies have used immu-
nopositivity for synaptophysin, ANKRD55, OLIG2, and SOX10; 
immunonegativity for vimentin; and FISH detection of chromo-
some 1q gain for their diagnosis (3, 4), along with, whenever pos-
sible, DNA methylation profiling (5). 

Molecularly, NB-FOXR2 tumors are driven by complex fusions 
and structural rearrangements that converge on overexpression of 
the TF FOXR2 on chromosome X and subsequent expression of 
MYC but not MYCN. They also harbor a chromosome 1q gain (1), 
which has recently been shown to converge on suppression of 
p53 signaling via MDM4 overexpression (6). No other recurrent 
somatic mutations have been identified. FOXR2 is a pan-cancer 
oncogene, aberrantly expressed in 70% of adult and pediatric cancer 
types (7), including diffuse intrinsic pontine gliomas (DIPG), as well 
as some extracranial neuroblastoma (EC-NB; 8). Whereas 
FOXR2 can be activated through structural variations, the pre-
dominant regulatory mechanism is through promoter hypo-
methylation (7). FOXR2 has been therefore suggested to function 
similarly to cancer–testis antigen genes, which are located on 
chromosome X, expressed in the testis, and escape silencing through 
hypomethylation, leading to aberrant activation in cancers (9). 

Although FOXR2 is a pan-cancer oncogene (7), the unifying 
molecular and IHC profiles of NB-FOXR2 tumors suggest a shared 
lineage of origin, as is the case for other brain tumor types, in-
cluding hemispheric histone 3 G34R/V gliomas (10), midline his-
tone 3 K27M gliomas (11), and subtypes of medulloblastomas 
(12–14). Indeed, we have shown that these pediatric brain tumors 
mirror specific, anatomically restricted developmental progenitors, 
accounting for the locations in which these tumors arise, as well as 
their associated patterns of genetic alterations (10–14). Importantly, 
although NB-FOXR2 tumors are designated neuroblastomas due to 
their dual neuronal–glial presentation, they are clinically and his-
tologically distinct from classic EC-NBs, which arise outside the 
CNS, are derived from neural crest, and express markers of sym-
pathoadrenal lineages (15). 

In this study, we sought to define the cellular context in which 
NB-FOXR2 occurs and design molecularly faithful tumor models 
for preclinical targeting. We profiled NB-FOXR2 patient tumor 
samples by bulk and single-cell transcriptomics and assembled a 
large single-cell resolution reference of the normal developing tel-
encephalon and postnatal cortex. Combinatorial analysis of pat-
terning TFs and systematic mapping of tumors to the normal brain 
by machine learning and gene set enrichment approaches show that 
NB-FOXR2 tumors resemble LHX6+/DLX+ interneurons derived 
from the medial ganglionic eminence (MGE), a ventral progenitor 
domain in the developing telencephalon. We show that targeting 
Foxr2 and p53 loss of function (p53LOF) to the ventral telencephalon 
in mice by in utero electroporation (IUE) is sufficient to induce 
brain tumors recapitulating human NB-FOXR2, with transcrip-
tional features of ganglionic eminences (GE)–derived lineages. 

Profiling of Foxr2 binding sites and chromatin accessibility in 
murine models revealed an association with ETS transcriptional 
networks, as well as direct Foxr2 binding at genes encoding key TFs 
that coordinate initiation of gliogenesis. This confirms that 
FOXR2 in the ventral telencephalon can produce neuroblastoma- 
like brain tumors with dual neuronal/glial phenotype and provides a 
potential explanation to reconcile their glial programs with a likely 
origin in interneuron lineages. 

Materials and Methods 
Murine models 
Vector construction 

The piggyBac donor and helper vector system was used to 
transduce neural stem cells (NSC) in utero, as previously described 
(16). CAG-PBase and PBCAG-GFP were a kind gift from F. Chen 
and J. LoTurco. CRISPR/Cas9 pX330 vectors containing negative 
control (50-GCGACCAATACGCGAACGTC-30) or Trp53-targeting 
(50ACAGCCATCACCTCACTGCA-30) guide RNA (gRNA) se-
quences were a kind gift from J. Gronych (17). The piggyBac vectors 
carrying FOXR2 and Akaluc were cloned into PBCAG-GFP, and 
their expression was driven by a cytomegalovirus early enhancer/ 
chicken β-actin (CAG) promoter. The piggyBac FOXR2 and Akaluc 
vectors expressed GFP downstream from a PQR 2A peptide, and 
FOXR2 was C-terminally tagged with a V5 label upstream from the 
PQR 2A peptide. The piggyBac and CRISPR vectors used in this 
study were CAG-PBase, PBCAG-Akaluc-PQR-GFP, PBCAG- 
FOXR2-V5-PQR-GFP, PX330-p53gRNA-CBh-Cas9, and PX330- 
controlgRNA-CBh-Cas9. 

IUE 
IUE was performed as previously described (18, 19), with minor 

modifications for targeting GEs. Timed-mated, pregnant C57BL/6J 
(RRID: IMSR_JAX:000664) mice were acquired from (Charles River 
Laboratories) and maintained under pathogen-free conditions in 
individually ventilated cages, with food and water provided ad 
libitum. All procedures were approved by the University of Cam-
bridge Animal Welfare and Ethical Review Body (AWERB) and 
carried out under a UK Home Office License (PPL PP2303899) in 
accordance with the Animals (Scientific Procedures) Act 1986. 
Pregnant females at E12.5 were anesthetized using 2.5% isoflurane 
and 1.5 L O2/minute, with analgesic support provided preopera-
tively via subcutaneous delivery of Buprevet at 0.1 mg/kg. Uterine 
horns were exposed through a 1-cm incision, and individual em-
bryos were digitally manipulated into the correct orientation for 
intraventricular injection. Pulled borosilicate capillaries were loaded 
with endotoxin-free DNA and Fast Green dye (0.05%, Sigma) for 
visualization, and a microinjector (Eppendorf) was used to inject the 
lateral ventricles with the DNA–dye mixture. Three to five plasmids 
were injected simultaneously, each up to a final concentration of 
2 μg/μL, and 1 to 2 μL of total solution was injected per embryo. 
DNA was electroporated into GE progenitors using 5-mm twee-
zertrodes (BTX), applying five square pulses at 35 V, 50 ms each, 
with 950 ms intervals. The embryos were returned into the ab-
dominal cavity, the muscle and skin were sutured, and the animal 
was monitored until fully recovered from the procedure. 

Bioluminescence imaging 
Tumor growth was monitored as previously described (19). 

Tumor-bearing mice received i.p. administration of 100 μL of 
15 mmol/L AkaLumine-HCl (HY-112641A, MedChemExpress). 
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Approximately 5 minutes after substrate administration, the mice 
were anesthetized with 2.5% isoflurane and 1.5 L O2/minute, and 
bioluminescence images were acquired using IVIS Spectrum (Per-
kinElmer; RRID: SCR_018621). The following conditions were 
used for image acquisition: open for total bioluminescence, expo-
sure time ¼ 60 seconds, binning ¼ medium: 8, field of view ¼
13.5 � 13.5 cm, and f/stop ¼ 1. Bioluminescent images were ana-
lyzed and exported using Living Image 4.7 software (PerkinElmer; 
RRID: SCR_014247). 

Ex vivo NSC and gliomasphere isolation and culture 
All cell lines used in this study were established from murine 

tumor models, which were generated as described above. Ex vivo 
cell lines were established as previously described (19). Tumor- 
bearing C57BL/6J mice were euthanized by CO2 exposure. Brains 
were rapidly dissected in ice-cold dissociation medium containing 
20 mmol/L glucose, 81.8 mmol/L Na2SO4, 30 mmol/L K2SO4, 
5.8 mmol/L MgCl2, 250 μmol/L CaCl2, 1 mmol/L HEPES, 160 μmol/L 
NaOH, 0.8 mmol/L kynurenic acid, 50 μmol/L D-APV (D-2-amino-5 
phosphonopentanoic acid), 100 U/mL penicillin, 100 μg/mL strepto-
mycin, 5 μg/mL Plasmocin, and 100 μg/mL Primocin. Coronal sections 
were cut using a brain matrix, and GFP+ (tumor) and GFP- regions 
(stroma) were microdissected under an epifluorescence stereomicro-
scope (Leica M205, Leica Biosystems). Microdissected tissue was then 
enzymatically digested into a single-cell suspension using the Papain 
Dissociation System according to the manufacturer’s instructions 
(Worthington Biochemical). The dissociated cell solution was separated 
on an OptiPrep density gradient to remove debris, following which, 
GFP+ cells were sorted using a FACSAria II instrument (BD Biosci-
ences). Sorted cells were plated into NeuroCult NSC proliferation 
media (STEMCELL Technologies) containing 20 ng/mL EGF (Miltenyi 
Biotec), 20 ng/mL basic FGF (Miltenyi Biotec), 10 ng/mL platelet- 
derived growth factor (PDGF)-AA (Shenandoah Biotechnology), 10 ng/ 
mL PDGF-BB (Shenandoah Biotechnology) and 2 μg/mL heparin 
(STEMCELL Technologies). Cells were grown as spheroids (neuro-
spheres) using ultralow-attachment plates (Corning). Cell lines were 
authenticated using short tandem repeat profiling, and contamination 
with Mycoplasma was tested using qPCR-based PhoenixDX Myco-
plasma Detection Kit (last test date February 14, 2023). The results were 
recorded with the cell line authentication service at the CRUK Cam-
bridge Institute. Cell lines at passage number 12 to 16 were used in 
experiments. 

RNA extraction and qPCR 
RNA was extracted using RNeasy Plus kit (Qiagen) according to 

the manufacturer’s instructions. RNA quality and quantification was 
carried out using a NanoDrop spectrophotometer (Thermo Fisher 
Scientific). A measure of 500 ng of total RNA was used for reverse 
transcription using TaqMan Reverse Transcription Reagents 
(Thermo Fisher Scientific), and RT-PCR was performed using 
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) on the 
CFX96 Touch RT-PCR Detection System (Bio-Rad; RRID: 
SCR_018064). Primers are described in Supplementary Table S1. 
The 2�ΔΔCT method was used to calculate relative gene expression 
levels, and gene expression was normalized to mouse β-2-micro-
globulin (B2m) levels. 

Immunofluorescence in vivo 
For immunofluorescence, free-floating sections were incubated in a 

blocking solution (10% goat or donkey serum, 3% bovine serum albumin 
(BSA), 0.3% Triton-X in PBS for 1 hour at room temperature and then 

incubated with primary antibodies at 4°C overnight (Supplementary 
Table S1). The sections were washed in PBS-Tween (0.05%) before ad-
dition of Hoechst 33342 and Alexa Fluor–conjugated secondary anti-
bodies in blocking solution for 1 hour at room temperature. Following 
washing, the sections were mounted in ProLong Diamond Antifade 
Mountant (Thermo Fisher Scientific) and imaged using a confocal mi-
croscope (Leica SP8, Leica Biosystems). 

Orthotopic allotransplantation 
Orthotopic allotransplantation was performed as previously de-

scribed (19). Eight-week-old male C57BL/6J mice (Charles River 
Laboratories) were maintained under pathogen-free conditions in 
individually ventilated cages, with food and water provided ad libi-
tum. All procedures were approved by the University of Cambridge 
AWERB and carried out under a UK Home Office License (PPL 
PP2303899) in accordance with the Animals (Scientific Procedures) 
Act 1986. Analgesia was provided preoperatively via a s.c. injection of 
Buprevet (0.1 mg/kg). The mice were anesthetized (2.5% isoflurane 
and 1.5 L O2/minute), and the heads of the mice were fixed in a 
stereotactic frame (#51730, Stoelting Europe). A midline incision was 
made along the scalp to expose the skull, and a small burr hole was 
made using a high-speed drill at defined stereotaxic coordinates, 
0.5 mm anterior and 1.8 mm lateral from the bregma, to target the 
striatum. A total of 1.5 � 105 Foxr2 p53 loss-of-function (p53LOF) 
cells resuspended in 5 μL of PBS were then delivered at a depth of 
3.2 mm using a 26-gauge (2 mm, AS point style) Hamilton syringe at 
a controlled rate of 2 μL/minute before the needle was then removed 
at a rate of 0.5 mm/minute. The scalp was then closed with sutures, 
and the mice were placed in a heat chamber until fully recovered 
before being returned to their home cage. 

Library preparation and sequencing 
Bulk RNA sequencing 

Human tumors: Total RNA was extracted from cell pellets using 
AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) according to in-
structions from the manufacturer. Library preparation was performed 
with ribosomal RNA (rRNA) depletion according to instructions 
from the manufacturer (Epicenter). Paired-end sequencing (100 bp) 
was performed on the Illumina HiSeq 4000 platform. 

Murine cell lines: Total RNA was extracted from cell pellets 
using Maxwell RSC simplyRNA Cells Kit (AS1390, Promega) 
according to instructions from the manufacturer. Library 
preparation was performed with rRNA depletion according to 
instructions from the manufacturer (New England Biolabs). 
Paired-end sequencing (100 bp) was performed on the Illumina 
NovaSeq6000 S4 v1.5 platform. 

Single-nuclei RNA sequencing 
Nuclei were prepared as previously described (20) from frozen 

tissue as follows. Frozen tissues (5–50 mg) were dounced on ice in 
3 mL of lysis buffer (10 mmol/L Tris-HCl, pH 7.4, 10 mmol/L NaCl, 
3 mmol/L MgCl2, and 0.05% NP-40; 5 times with a “tight” pestle 
and then 10 times with a “loose” pestle). Two mL of chilled lysis 
buffer were then added, and samples were incubated for 5 minutes 
on ice. Five mL of Nuclei Wash and Resuspension Buffer (NWRB: 
PBS, 5% BSA, 40 U/mL RNase inhibitor, and 0.25% glycerol) were 
then added, and nuclei suspensions were passed through a 30-μm 
cell strainer to remove clumps and centrifuged (500 g for 5 min-
utes). Nuclei pellets were washed with 5 mL of NWRB and 
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centrifuged again. Nuclei pellets were resuspended in a final volume 
of 1 mL of NWRB, 1 mL of OptiPrep 50% (OptiPrep + solution B 
:150 mmol/L KCl, 5 mmol/L MgCl2, and 20 mmol/L Tricine, 
pH 7.8, v/v) was added. This 25% OptiPrep solution was layered on 
29% OptiPrep cushion and centrifuged at 10,000 g for 30 minutes at 
+4°C. For 10X Genomics 30RNA protocol, the nuclei pellet was 
carefully resuspended in NWRB to reach a concentration of 
1,000 nuclei/μL. Nuclei concentration was assessed using the 
ReadyProbes Cell Viability fluorescence assay (Thermo Fisher Sci-
entific). A total of 10,000 to 20,000 nuclei per sample were loaded on 
the Chromium Controller. Cell capture and library preparation were 
performed according to the Chromium Single Cell 30 (v3) protocol 
for snRNA sequencing (snRNA-seq). The 10x libraries were then 
sequenced (multiplexed) on the Illumina HiSeq4000 or NovaSeq 
sequencing platform. 

Joint single-nuclei RNA and chromatin accessibility profiling 
(Multiome) 

Human tumors: Cell nuclei were prepared using automated nuclei 
preparation following the GentleMACS Octo dissociator protocol 
(Miltenyi Biotec). Frozen tissue was directly transferred to a pre-
cooled gentleMACS “C” tube containing 2 mL of cold Nuclei Ex-
traction Buffer (Miltenyi Biotech) and RNase inhibitor (Protector 
RNase Inhibitor, Roche). Protocol 4C_nuclei_1 was then run on the 
gentleMACS Octo dissociator (Miltenyi Biotech). After the run, the 
sample was incubated for 5 minutes on ice. Nuclei suspension was 
then applied on the top of a 70-μm SmartStrainer. After centrifu-
gation (5 minutes at 400 g for 5 minutes), the pellet was resuspended 
in NWRB (2% BSA and 0.25% glycerol in PBS) containing RNase 
inhibitor. Nuclei suspension was then applied on the top of a 30-μm 
SmartStrainer and centrifuged again. The pellet was resuspended in 
NWRB, and nuclei were counted using ReadyProbes Cell Viability 
Blue/Green Kit (Invitrogen). Nuclei were washed one time in 
diluted nuclei buffer (DNB; 10X Genomics) and resuspended in 
fresh DNB buffer before loading 20,000 nuclei per sample in the 10X 
Chromium Controller (10X Genomics). Library preparation (Next 
GEM Single Cell Multiome) was performed following the manu-
facturer’s instructions, and sequencing was done on the Illumina 
HiSeq4000 or NovaSeq sequencing platform. 

Mouse models: Cell nuclei were prepared using automated nuclei 
preparation following the Singulator S100 protocol (S2 Genomics). 
Nuclei were isolated using a nuclei isolation kit and the Singulator 
S100 instrument from S2 Genomics. Briefly, 5 to 20 mg of frozen 
tissue were put in a precooled nuclei isolation cartridge with RNAse 
inhibitors. Samples were then processed on the Singulator 
S100 instrument following the “extended nuclei” protocol. After 
nuclei preparation, nuclei were centrifuged and washed twice in 
Diluted Nuclei Buffer (10x Genomics) and counted with ReadyP-
robes Cell Viability Blue/Green Kit (Thermo Fisher Scientific). A 
total of 20,000 nuclei/sample were loaded on the Chromium Con-
troller (10x Genomics). Library preparation (Next GEM Single Cell 
Multiome) was performed following the manufacturer’s instruc-
tions, and sequencing was done on the Illumina HiSeq4000 or 
NovaSeq sequencing platform. 

Chromatin immunocleavage sequencing (Cleavage Under Targets 
and Release Using Nuclease) 

The Foxr2 p53LOF murine cell line was used for Cleavage Under 
Targets and Release Using Nuclease (CUT&RUN) chromatin 
immunocleavage sequencing (n ¼ 2 replicates) with antibody 

against the V5 tag, which was included in the Foxr2 p53LOF IUE 
vector. As a control for the V5 tag, cell lines from a separate IUE 
mouse model lacking the V5 tag was also subjected to CUT&RUN 
with the same protocol (n ¼ 2 replicates). 

Reagents and protocol were based on the EpiCypher CUT&RUN 
commercial protocol. Prior to the protocol, cross-linking was per-
formed in suspension with 0.1% formaldehyde for 1 minute, fol-
lowed by reverse cross-linking with glycine, according to the 
EpiCypher CUTANA cross-linking protocol. Briefly, 5 � 105 cells 
per sample were dissociated, washed, and bound to CUTANA 
concanavalin A–coated paramagnetic beads (EpiCypher). The 
V5 tag antibody (D3H8Q, CST 13202, RRID: AB_2687461) was 
bound to cells overnight at a 1:50 dilution. Digestion of target 
chromatin used CUTANA pAG-MNase, followed by DNA collec-
tion. Libraries were generated using Kapa HTP Illumina library 
preparation reagents using 9 to 12 cycles of PCR, followed by dual 
0.6 to 0.8� size selection using AMPure XP magnetic beads. Li-
braries were sequenced on the Illumina NovaSeq6000 platform for 
approximately 30 million reads per library. 

Bulk RNA-seq 
Data processing and quality control 

External datasets of EC-NB [Gartlgruber and colleagues (21) and 
Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET)] were processed as follows. The Gartlgruber 2021 
(21) dataset was downloaded as count matrices as provided by the 
authors (https://nbseb087.dkfz.de/project_NB_SE_viz/, July 2022). 
Data from the TARGET neuroblastoma study (https://gdc.cancer. 
gov/content/target-nbl-publication-summary) were downloaded as 
count matrices from the public Genomic Data Commons cancer 
portal (https://portal.gdc.cancer.gov/) using Cohort Builder with the 
following options: project ¼ TARGET NBL, experimental 
strategy ¼ RNA-seq, and access ¼ open. Normalization (mean of 
ratios) was performed using DESeq2 (v1.14.1, RRID: SCR_015687; 
ref. 22), separately for each dataset. 

All other samples (Supplementary Table S2 RNAseq column) 
were processed as follows. Adapter sequences and the first four 
nucleotides of each read were removed from the read sets using 
Trimmomatic (v0.32 for human tumors and v0.39 for murine cell 
lines, RRID: SCR_011848; ref. 23). Reads were scanned from the 50
end and truncated when the average quality of a four-nucleotide 
sliding window fell below a threshold (phred33 < 30). Short reads 
after trimming (<30 base pairs) were discarded. High-quality reads 
were aligned to the reference genome (human: GRCh37; mouse: 
mm10) using STAR (RRID: SCR_004463; ref. 24) with default pa-
rameters (v2.3.0e for human and v2.7.9a for mouse samples), dis-
carding reads mapping to more than 10 locations [mapping quality 
(MAPQ) <1]. BigWig files for visualization were created by first 
generating a bedgraph file using the genomeCoverageBed function 
from bedtools (v2.30.0, RRID: SCR_006646; ref. 25), with the split 
and bg parameters, normalized by coverage (number of mapped 
reads in the sample divided by 100 million). Next, the bed-
GraphToBigWig function from UCSC tools (v387; ref. 26) was used 
to create final BigWig files. Quality control (QC) metrics per sample 
are reported in Supplementary Table S3. 

Gene expression estimation and differential expression analysis 
Gene expression levels were estimated by quantifying primary 

alignments mapping to at most two locations (MAPQ ≥3) to exonic 
regions defined by ensGene annotation set from Ensembl (GRCh37, 
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N ¼ 60,234 genes) using featureCounts (v1.4.4, RRID: SCR_012919; 
ref. 27). Normalization (mean of ratios), variance-stabilized 
transformation of the data, and differential gene expression analysis 
were performed using DESeq2 (v1.14.1, RRID: SCR_015687; ref. 22). 

Single-cell datasets 
Read alignment and demultiplexing, cell detection, and count 
estimation 

Single-cell RNA-seq (scRNA-seq)/snRNA-seq datasets (Supple-
mentary Table S2 sc/snRNA-seq column) were processed with Cell 
Ranger (10x Genomics, v2.0.0, RRID: SCR_017344, “count” option 
with default parameters) to filter and align sequencing reads to the 
genome, distinguish cells from background, and obtain gene counts 
per cell. The hg19 reference genome build, coupled with the 
Ensembl transcriptome (v75), was used for alignment, including 
reads mapping to intronic regions. 

Multiome datasets (Supplementary Table S2 scMultiome column) 
were processed with Cell Ranger ARC (10x Genomics, v2.0.0, RRID: 
SCR_023897, “count” option with default parameters) to filter and 
align reads, identify transposase cut sites, detect accessible chro-
matin peaks, call cells, and generate raw count matrices. Human 
samples were aligned to the hg19 genome, coupled with the 
Gencode v28 (Ensembl 92) gene annotation. Mouse samples were 
aligned to a custom mm10 reference integrating the different 
vectors added to the mouse genome. Five custom chromosomes 
were added to the mm10 genome, containing (i) the piggyBac 
transferase; (ii) Akaluc and the GFP sequences; (iii) the human 
H3F3A gene with the HA tag; (iv) the p53 guide RNA; and (v) the 
shATRX sequence. A custom GTF file was created to count the 
reads mapping to these added sequences. 

QC and normalization 
QC metrics were computed separately for the RNA and assay for 

transposase-accessible chromatin (ATAC) modalities. Cells were 
filtered first based on the QC metrics for the RNA modality: mi-
tochondrial content (indicative of cell damage), number of genes, 
and number of unique molecular identifiers. In the case of Multi-
ome samples, cells were subsequently filtered based on the following 
ATAC metrics: total number of fragments in peaks and total 
number of transposition sites across peaks calculated by Cell Ranger 
ARC, transcription start site enrichment score, and nucleosome 
signal calculated with Signac (v1.3.0, RRID: SCR_021158; ref. 28). 
Specific thresholds for each sample, based on the distribution of 
each metric in the sample, are specified in Supplementary Tables 
S4 and S5. 

RNA libraries were next scaled to 10,000 unique molecular 
identifiers per cell and log-normalized. QC and downstream data 
processing was performed using the Seurat and Signac packages 
[Seurat (29) v3.2.1, RRID: SCR_016341, for sc/snRNA-seq and 
Signac (28) v1.3.0, RRID: SCR_021158, with Seurat (29) v4.0.0 for 
Multiome]. Cell-cycle scores for G2/M and S phases were obtained 
as implemented in Seurat (v3.2.1; ref. 29), by calculating the average 
expression of G2/M and S phase–associated gene lists in each single 
cell and subtracting the average expression of control gene lists. 
Control gene lists were derived by binning genes in each input list 
into 24 bins according to expression levels and randomly selecting 
100 control genes from within each expression bin. 

Clustering and dimensionality reduction 
Counts were z-scored gene-wise, and dimensionality reduction 

was performed using principal component analysis applied to 

the top 2,000 most variant genes. The first 30 principal compo-
nents (PC) were then used as input for projection to two dimen-
sions, using uniform manifold approximation and projection 
(arXiv:1802.03426), and for clustering, using a shared nearest 
neighbor modularity optimization algorithm based on the Louvain 
algorithm on a k-nearest neighbors graph with k ¼ 20, random 
seed 100, and clustering resolution 0.5. 

Doublet cell detection 
Doublet removal was performed separately for each sample. Cells 

were clustered (30 PCs, resolution 0.2, and random seed 42), and 
scDblFinder (v1.8.0, RRID: SCR_022700; ref. 30) was used to detect 
doublet cells (parameter method ¼ “griffiths,” threshold: P 
value < 0.1). Doublet cells were removed, and clusters with fewer 
than 20 cells remaining were considered doublets and also removed 
from downstream analyses. 

Machine learning–based cell type annotation 
Labeling of cells was performed at the individual cell level using 

an automated, reference-based annotation workflow that combines 
four prediction methods, detailed below. Briefly, methods were 
trained on two murine forebrain single-cell references, covering 
developmental (11) and adult (31) stages (Supplementary Table S6). 
Cell types were aggregated into broad labels following an ontology 
provided in Supplementary Table S7, and a consensus annotation 
was assigned when at least two methods agreed. Cells with no 
majority or with ties between methods were labeled as “no 
consensus.” 

Prediction tools: Four prediction tools were used with default 
parameters unless specified: SciBet (32), SingleCellNet (33), a 
correlation-based approach, and support vector machines (SVM; 
ref. 34). SciBet (v1.0, RRID: SCR_024743) selects marker genes and 
assigns cells to their respective cell types using multimodal distri-
bution models and maximum likelihood estimation. SingleCellNet 
(v0.1.0, RRID: SCR_024742) is based on selection of most dis-
criminative pairs of genes for each cell type to train a multi-class 
Random Forest classifier. Training was run with 500 trees (nTrees,) 
and prediction was run with 0 randomized cell profiles (nrand). In 
the correlation-based approach, the Spearman correlation coeffi-
cient is calculated between the query cell expression matrix and 
mean expression matrix of each reference cell type, and the cell type 
label with the maximum coefficient is selected. Finally, a linear SVM 
(34) was implemented through sklearn LinearSVC (v1.3.0, RRID: 
SCR_024741) and trained on the reference dataset using cross- 
validation to estimate model parameters (regularization parameter 
and loss function). 

Training datasets and consensus calculations: All methods were 
trained on the intersection of genes detected in both the reference 
and query datasets, with intersections computed separately for 
mouse and human predictions. 

For human tumor cell annotation, a forebrain single-cell devel-
opmental reference (11) was used for training, with gene symbols 
converted to human gene symbols using the R packages 
Orthology.eg.db (v3.16, RRID: SCR_024740, https://doi.org/doi:10. 
18129/B9.bioc.Orthology.eg.db), org.Mm.eg.db (v3.16, RRID: 
SCR_023488, https://doi.org/doi:10.18129/B9.bioc.org.Mm.eg.db), 
and org.Hs.eg.db (v3.16, RRID: SCR_024739, https://doi.org/doi:10. 
18129/B9.bioc.org.Hs.eg.db). For mouse tumor cells, in turn, in 
which no cross-species prediction is performed and thus higher 
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resolution is feasible, annotation was performed in two steps. First, 
cells were annotated with models trained on the developing mouse 
forebrain reference (11). Next, cells labeled as neurons were rean-
notated with models trained on a postnatal mouse brain reference 
with high neuronal diversity. This forebrain reference was con-
structed from a large (n ¼ 4 million cells) adult murine cell atlas 
(31) by (i) subsetting forebrain regions, i.e., cells annotated as iso-
cortex, olfactory areas, cortical subplate, or cerebral nuclei by the 
authors, (ii) removing any cell types (subclass level defined by the 
authors) containing fewer than 100 cells, and (iii) randomly sub-
sampling each cell type to contain a maximum of 500 cells; the final 
training dataset contained n ¼ 52,991 cells. Predicted labels from 
each method were aggregated into broad cell classes defined in the 
original study (also detailed in Supplementary Table S7) before 
computing a consensus. We then categorized each resulting label as 
neuron, glia, or other (Supplementary Table S7) and labeled any cell 
in nonneuronal categories (i.e., with labels discrepant between the 
two references) as “no consensus.” 

Training and consensus predictions were performed using the 
automated pipeline CoRAL (v3.0.0, https://github.com/fungenomics/ 
CoRAL). 

Copy number variation inference and malignant cell calling 
Human tumors: Copy-number variation (CNV) profiles were 

inferred for each sample using inferCNV (v1.7.2, RRID: 
SCR_021140, https://github.com/broadinstitute/infercnv), with 
the following parameters: window_length ¼ 101 genes, 
cutoff ¼ 0.1, analysis_mode ¼ “samples,” cluster_by_groups ¼
FALSE, and denoise ¼ TRUE). The hg19 Gencode v19 was used 
as gene annotation, excluding mitochondrial genes (defined as 
gene symbols starting with “MT-”), ribosomal genes (defined as 
gene symbols starting with “MRPS,” “MRPL,” “RPS,” and 
“RPL”), and HLA genes (defined as gene symbols starting with 
“HLA-”). Normal cells extracted from a published collection of 
high-grade gliomas (HGG; ref. 10) were used as a reference. 
Hierarchical clustering of cells based on their CNV profiles 
allowed identification of subtrees of cells with clear CNV signal, 
which were labeled as malignant, and subtrees with no defined 
CNVs, which were labeled as normal. All samples were next 
combined for a joint clustering analysis, and clusters containing 
multiple samples and more than 5% normal cells based on 
inferCNV were also labeled as normal. 

Mouse models: InferCNV analysis was performed using as ref-
erence a normal postnatal mouse brain cortex sample (35), aug-
mented with normal cells from the murine samples in this study, 
defined as immune cells (through machine learning–based anno-
tation) and clusters of cells with low Foxr2 expression. These clus-
ters were identified as follows. A neighbor graph was constructed for 
each sample using the first 20 PCs as input, and a first round of 
clustering was performed as for doublet cell detection. Next, cells 
within each cluster were reclustered (random seed 100, resolution 
0.2), excluding any cells labeled as immune cells; subclusters with 
fewer than 10 cells were discarded. For each subcluster, a differential 
expression test (Wilcoxon rank-sum) of Foxr2 expression was per-
formed between the subcluster and the immune population using 
the Seurat (v4.0.0; ref. 29) package function FindMarkers. Sub-
clusters in which Foxr2 expression was not significantly higher than 
in immune cells (P value ≥ 0.05) were considered to contain normal 
cells and added to the reference. Finally, to refine the normal ref-
erence, inferCNV (v1.7.2, RRID: SCR_021140) was run using the 

same cells as reference and query, and subtrees of cells containing 
CNVs were removed. 

Using this reference of normal cells, CNV profiles were infer-
red for each sample using inferCNV with the following parame-
ters: window_length ¼ 101 genes, cutoff ¼ 0.1, analysis_mode ¼
“samples,” cluster_by_groups ¼ FALSE, sd_amplifier ¼ 1.75, and 
denoise ¼ TRUE. The GRCm38 Ensembl genome v84 was used as 
gene annotation with the following modifications. The mito-
chondrial genes (defined as having gene symbols starting with 
“mt-”), ribosomal genes (defined as having gene symbols starting 
with “Mrps,” “Mrpl,” “Rps,” and “Rpl”), MHC genes (defined as 
having gene symbols starting with “H2-” and “H60”), and any 
chromosome other than 1 to 19, X, or Y were excluded from the 
annotation. 

Generation of pseudobulk ATAC genomic tracks by cell type 
To visualize genomic tracks for ATAC signal in Multiome sam-

ples, pseudobulk BigWig files were generated for cells in each an-
notated cell type by subsetting the BAM file containing all aligned 
reads from the ATAC modality of that sample. The subset_bam 
(v1.1, https://github.com/10XGenomics/subset-bam) tool was run 
with the following input: cell barcodes for each group of cells and 
the full-sample ATAC BAM file produced from Multiome pro-
cessing with CellRanger (described earlier). Subsetted BAM files 
were indexed using Samtools (v1.17, RRID: SCR_002105; ref. 36), 
and BigWig tracks were produced using deepTools (v3.5.0, RRID: 
SCR_016366; ref. 37) with counts per million (CPM) normalization, 
removing the mitochondrial chromosome. 

Cross-species integrative analysis 
TF fingerprint and SVM analysis 

scRNA-seq data were retrieved from five published datasets 
(Supplementary Table S6) that profiled human 9 to 12 postconcep-
tional week (PCW) GEs (denoted as fetal human 1; ref. 38), human 
9 to 18 PCW GEs (fetal human 2; ref. 39), mouse E10-P6 forebrain 
(fetal mouse; refs. 11, 12), adult mouse isocortex (adult mouse; ref. 
40), and adult human cortical medial temporal gyrus (adult human; 
ref. 41). For each dataset, we obtained the single-cell gene counts 
and the cluster cell type labels as reported in the original studies. 
Counts for each cell were scaled to a total of 10,000 per cell and log- 
normalized using Seurat (v4.0.0; ref. 29). Clusters with fewer than 
20 cells were excluded from the analysis. 

To harmonize cell type labels across the five datasets, the labels 
reported in the original studies were used to assign each cluster into 
one of seven classes representing telencephalon-derived populations: 
caudal GE/lateral GE (CGE/LGE)-derived, MGE-derived, excitatory 
neurons, other neurons, progenitors, glia, and nonneuroectodermal, 
as follows. For human developmental datasets, authors of the original 
studies had indicated in the labels the MGE, CGE, LGE, or dorsal/ 
excitatory origin of each cluster. For the mouse embryonal dataset, 
MGE and excitatory labels were used from the original dataset, and 
other interneurons, including “cortical inhibitory neurons” and 
“striatal spiny neurons” were considered CGE/LGE-derived (42). For 
mouse and adult human datasets, the classification schemes from the 
original studies were used (40, 41), in which inhibitory neuron 
clusters labeled as parvalbumin+ (PVALB) and somatostatin (SST) 
subtypes were considered MGE-derived, inhibitory neuron clusters 
labeled as VIP, LAMP5, or PAX6 subtypes were labeled as CGE/LGE- 
derived; and excitatory neurons were labeled as excitatory. Any 
neuron clusters that could not be confidently included in one of these 
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categories were considered “other neurons.” Only clusters in the 
CGE/LGE-derived, MGE-derived, and excitatory classes were retained 
for the remainder of the fingerprint analysis (Supplementary 
Table S8). 

For each dataset, TF expression was treated as follows. First, a 
common gene feature space across mouse and human datasets was 
defined by replacing mouse orthologs with their one-to-one human 
orthologs. Next, the mean of the log-normalized expression was 
calculated for each TF in each cluster and scaled to (0, 1) across 
clusters. This scaling was performed within each dataset because 
different datasets may not have directly comparable expression 
ranges. Second, the detection rate of each TF was calculated in each 
cluster, representing the proportion of cells in each cluster in which 
the gene was detected [a value that already falls in the range (0, 1)]. 
This process produced two features per TF in each cluster within 
each dataset (Supplementary Table S8). 

Next, a SVM classifier was built by training linear SVM models to 
classify clusters into their cell classes (CGE/LGE-derived, MGE- 
derived, and excitatory) using the scaled mean expression and de-
tection rate for each TF in each cluster as input. SVM models were 
used as implemented in the parsnip R package (v1.1.0, RRID: 
SCR_024744) using the LiblineaR engine. Performance of the clas-
sifier was estimated using four-fold cross-validation, stratifying by 
class such that each class was balanced across folds. 

Gene set enrichment analysis of cell type signatures in human 
tumors 

Previously published scRNA-seq data from relevant brain regions 
and the fetal adrenal glands (Supplementary Table S6) was obtained 
to derive cell type–specific gene signatures as follows. When avail-
able, gene signatures from each cell population were obtained from 
the original study. Otherwise, gene signatures were derived by 
computing differentially expressed genes in each cell population 
compared with all other populations in the same dataset (using the 
Wilcoxon rank-sum test), sorting by average log2 fold change (FC), 
and filtering out ribosomal genes (defined as having gene symbols 
containing “RPS,” “RPL,” “MRPS,” and “MRPL”) and mitochondrial 
genes (defined as having a gene symbol beginning with “MT-”). For 
signatures with more than 100 genes, the top 100 were used (based 
on log2 FC). Signatures with fewer than 75 genes were excluded 
from downstream analysis, leaving 390 signatures of similar length 
for analysis (Supplementary Table S9). To obtain harmonized cell 
type labels across the dataset, the labels from the original authors 
were used to manually assign each cluster into one of 21 classes 
representing broader cell types (Supplementary Table S9). 

To identify nondiscriminant signatures, we assembled a back-
ground dataset of 210 previously published brain tumors, matched 
normal tissue, and normal brain samples (nonoverlapping with the 
tumor samples in this study reported in Supplementary Table S2; 
ref. 12). The 390 cell type signatures were ranked based on the 
number of background samples in which they were among the top 
10 highest-scoring signatures. A total of 135 signatures appear in the 
top 10 of any sample, and among these, the top decile (i.e., top 10%, 
15 signatures, including 1 tie) were considered to be non-
discriminant and excluded from downstream analyses. Finally, an 
additional MGE signature (MGE-NR2F1+, MEIS2+ derived from 
ref. 38; Supplementary Table S9) was excluded as it appeared among 
the top 10 signatures in 16 of 25 DIPG tumors in this study, in-
compatible with their site of occurrence in the pons. To confirm the 
nonspecificity of this signature, we calculated the detection rate of 
each gene across cell populations of the developing mouse brain 

(11), which showed that this signature is enriched in all oligoden-
drocyte precursor (OPC) populations, both in the cortex and the 
pons, as well as in nonneural cells (endothelial and immune cells). 
After these filtering steps, the resulting cell type signature panel 
consisted of a total of 374 discriminant signatures (specified in 
Supplementary Table S9). 

Enrichment of these signatures was then scored in bulk tumor 
transcriptomes using single-sample gene set enrichment analysis 
(ssGSEA; ref. 43) adapted from the gene set variation analysis 
(GSVA) R Bioconductor package (RRID: SCR_021058) with pa-
rameters α ¼ 0.75 and norm ¼ FALSE. To visualize the samples in 
2D space, the ssGSEA scores were used as input to the t-distributed 
stochastic neighbor embedding dimensionality reduction algorithm 
(44) implemented in the Rtsne R package (v0.15, RRID: 
SCR_016342) using perplexity ¼ 10 for intracranial tumors alone 
and perplexity ¼ 30 for intracranial and extracranial tumors. To test 
for significantly higher enrichment of signatures in NB-FOXR2 
compared with other tumors, t tests were performed on the ssGSEA 
scores in NB-FOXR2 samples versus neuronal tumors [SHH and 
WNT medulloblastoma and embryonal tumor with multilayered 
rosettes (ETMR)] or versus glial tumors (DIPGs, IDH-mutant 
HGGs, and posterior fossa group A ependymoma). P values were 
adjusted using the Benjamini–Hochberg procedure. 

GSEA of tumor signatures in mouse models 
Tumor-specific gene signatures were obtained by pairwise dif-

ferential expression analyses of bulk human pediatric brain tumors 
from the following groups: NB-FOXR2 (n ¼ 13), DIPG-H3K27M 
(n ¼ 15), MB-WNT (n ¼ 10), and ETMR (n ¼ 12). For NB-FOXR2 
tumors, external samples retrieved from Korshunov and colleagues 
(3) were excluded from the differential expression to avoid batch 
effects and to balance the number of samples between the four 
tumor types. For DIPG-H3K27M, three samples with reported low 
tumor purity were excluded from the analysis. Differential gene 
expression analysis was performed using DESeq2 (v1.14.1; ref. 22). 

Differentially expressed genes were defined as statistically sig-
nificant (adjusted P value < 0.05) with good expression levels (base 
mean >100) and large effect size (absolute value of log2 FC >1). 
Genes that were differentially expressed across all comparisons for 
each tumor type, defined as the top 100 differentially expressed 
genes by the mean Wald statistic value across comparisons, were 
used as a gene signature of the tumor type. The R package biomaRt 
(v2.50.2, RRID: SCR_019214; ref. 45) was used to get mouse gene 
orthologs for human tumor signatures. Human genes without 
ortholog, or that did not have a 1-to-1 match between human and 
mouse, were removed. Ensembl IDs were used to retrieve the mouse 
and human ortholog pairs and then assigned with the corre-
sponding mouse gene symbol. 

Single cells from mouse models were scored for each gene sig-
nature using ssGSEA (43) adapted from the GSVA R Bioconductor 
package (RRID: SCR_021058) with parameters α ¼ 0.75 and 
norm ¼ FALSE. 

CUT&RUN data analysis 
CUT&RUN data were processed using GenPipes (v4.3.2, RRID: 

SCR_016376; ref. 46) Chromatin Immunoprecipitation Sequencing 
Pipeline. This includes adapter removal and trimming with Trim-
momatic (v0.39; ref. 23), alignment to mm10 with Burrows-Wheeler 
Aligner (v0.7.17, RRID: SCR_010910; ref. 47), removal of duplicated 
reads with Picard (v2.26.6, RRID: SCR_006525, https://github.com/ 
broadinstitute/picard), generation of BigWig tracks using Homer 
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(v4.11, RRID: SCR_010881; ref. 48), and peak calling using MACS2 
(v2.2.7.1; ref. 49). Peaks called in the FOXR2-p53LOF condition 
(n ¼ 2 replicates) were then filtered to remove false positives, re-
moving peaks that overlapped by at least 10 bp with a peak in one or 
more of the V5 control replicates (n ¼ 2), as well as peaks 
with �log10 q value equal or lower than 6, with signalValue equal or 
lower than 6, or with length equal or longer than 10,000 bp. Next, 
CUT&RUN peaks were intersected with peaks from the Multiome 
snATAC-seq experiment in the same mouse model. ATAC peaks 
were called using MACS2 (v2.2.7.1, RRID: SCR_013291; ref. 49) 
using the CallPeaks function in the Signac (v1.3.0, RRID: 
SCR_021158; ref. 28) library. Peaks outside of the standard chro-
mosomes (chr 1–19, X, and Y) and peaks in blacklisted regions 
(retrieved via Signac function blacklist_mm10) were filtered out. 
Finally, peaks with qValue equal or lower than 4, signalValue equal 
or lower than 2, and length equal or longer than 10,000 bp were 
removed. Nucleotide regions that were present in the peaks of the 
two CUT&RUN replicates as well as in the snATAC-seq were kept 
as the final set of CUT&RUN peaks. 

findMotifsGenome from Homer (v4.11, RRID: SCR_010881; 
ref. 48) was used to find enriched motifs in filtered CUT&RUN 
peaks. Input regions were defined as the center of each filtered 
CUT&RUN peak ± 100 bp. To identify genomic coordinates of 
specific TF motifs within peaks (e.g., ETS, Sox10), mm10 genomic 
sequences of filtered CUT&RUN peaks were identified with bed-
tools (v2.30.0; ref. 25) and provided as input to function match-
Motifs from R package motifmatchr (v1.20.0, https://github.com/ 
GreenleafLab/motifmatchr). 

Ethics approval 
All work was performed in accordance with the Declaration of 

Helsinki. This study was approved by the Institutional Review Board 
of the respective institutions from which the samples were collected. 
Written informed consent was obtained from patients and/or 
guardians through protocols approved by the Institutional Review 
Board at each institution. Protocols for this study involving col-
lection of patient samples and information were approved by the 
Research Ethics and Review Board of McGill University and Affil-
iated Hospitals Research Institutes and the Research Ethics Board at 
the Hospital for Sick Children. Protocols involving IUE and en-
graftment for mouse models were approved by the University of 
Cambridge AWERB and carried out under a UK Home Office 
License (PPL PP2303899) in accordance with the Animals (Scientific 
Procedures) Act 1986. 

Data availability 
Raw data for human tumors (bulk RNA-seq, snRNA-seq, and 

scMultiome sequencing) have been deposited in the European Genome- 
phenome Archive under accession number EGAS00001007247. Raw 
and processed data for murine models (bulk RNA-seq, scMul-
tiome, and CUT&RUN) have been deposited to Gene Expression 
Omnibus under accession number GSE270666. Processed data, 
including bulk RNA-seq (counts and differential expression ana-
lyses), BigWig files, and labeled single-cell expression matrices 
have been deposited to Zenodo at https://doi.org/10.5281/zenodo. 
13750919. Data from the Gartlgruber 2021 (21) dataset of EC-NB 
(bulk RNA-seq) analyzed in this study were obtained as count 
matrices from a public web app provided by the authors (https:// 
nbseb087.dkfz.de/project_NB_SE_viz/). Data from the TARGET 
dataset of EC-NB (bulk RNA-seq) analyzed in this study were 
obtained as count matrices from the public Genomic Data 

Commons cancer portal (https://portal.gdc.cancer.gov/). Citations 
and sources for previously published datasets of tumors, normal 
brain, and adrenal gland used in this study are provided in Sup-
plementary Tables S2, S6, and S7. Informed consent did not ex-
tend to sharing of raw data for one of the patients included in this 
study, and therefore only processed data are available for this 
patient. All other raw data generated in this study are available 
upon request from the corresponding author. 

The code to reproduce the main results included in the pa-
per is available at https://github.com/fungenomics/NB-FOXR2 
and archived on Zenodo at https://www.doi.org/10.5281/zenodo. 
13755695. 

Results 
To define the transcriptional landscape of NB-FOXR2, we as-

sembled a cohort of 29 NB-FOXR2 patient tumor samples profiled 
at the bulk (N ¼ 25) and single-cell levels (N ¼ 6; Fig. 1; Supple-
mentary Fig. S1; Supplementary Table S2). Given the neuronal and 
oligodendroglial features of these tumors, we included other pedi-
atric brain tumor entities, consisting of both glial (ependymomas 
and HGGs) and neuronal (ETMR and medulloblastoma) tumor 
types (N ¼ 96; Supplementary Tables S2–S4). Finally, to determine 
whether transcriptional characteristics of NB-FOXR2 are a down-
stream effect of FOXR2 expression, we also included bulk RNA-seq 
for FOXR2+ gliomas and a large collection of childhood EC-NBs 
(N ¼ 707 from ref. 21 and TARGET). 

TF fingerprints define telencephalon progenitor domains 
As a first step to map NB-FOXR2 to specific neural lineages in the 

normal brain, we derived a panel of TFs that are sufficient to infer 
the progenitor domain of origin for cortical neurons with high 
sensitivity in the postnatal human brain. In other words, we sought 
combinations of TFs specified during fetal development, maintained 
during neuronal differentiation, and persistent during postnatal 
development to adulthood. 

For this, because most NB-FOXR2 tumors present in 
telencephalon-derived brain regions (in the cortical lobes and in the 
basal ganglia), we established a gene panel of discriminant pat-
terning genes for the telencephalon (Fig. 2A). This included 
FOXG1, a pan-telencephalon marker (50, 51); PAX6, EMX1, and 
EMX2, markers of the neocortex; and TBR1 and EOMES, marking 
intermediate precursors of excitatory neurons, which are dorsally 
derived (52). To account for ventral progenitor domains, we in-
cluded GSX2 (53) and NKX2-1 (54), which mark the LGE and MGE, 
respectively; LHX6, which is expressed downstream of NKX2-1 (55); 
and DLX1/2/5/6, which are critical for differentiation of all ventral 
telencephalon–derived GABAergic neurons (56). 

Next, as NB-FOXR2 tumors are diagnosed in childhood, we 
assessed whether these TFs are sufficient to infer the progenitor 
domain of origin for cortical neurons with high sensitivity in the 
postnatal human brain. For this, we used five annotated scRNA- 
seq datasets for the developing and adult brain, comprising 
258,532 cells and 524 cell populations (Supplementary Table S6). 
These studies, focused on telencephalon prenatally and cortex 
postnatally, profiled the human 8 to 12 PCW fetal subpallium 
(38, 39) and the adult temporal cortex (41). In mouse, in turn, 
they cover the E10-P6 telencephalon (11, 12) and the adult 
isocortex (40). For each dataset, we used the cell populations as 
defined in the original studies and retained only neuronal lineage 
populations that were unambiguously MGE-derived, LGE/CGE- 
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derived, or excitatory (dorsally derived). Next, we trained linear 
SVMs to classify cell populations from these three classes into 
their progenitor domain of origin based on two features per gene 
in this panel: the proportion of cells in the population in which 
each TF is detected (detection rate) and the average expression 
of each TF (Supplementary Table S8). In a cross-validation ex-
periment, this classifier exhibited a median sensitivity (recall) 
across folds ranging from 96% to 100% for the postnatal brain 
(Fig. 2B). Thus, this small panel of telencephalon patterning TFs 
is highly predictive of anatomical origins of cortical neurons 
even in the adult brain. 

Finally, we identified the subset of TFs within this panel 
that persist during postnatal development to adulthood (Fig. 2C; 
Supplementary Fig. S2). The combination of FOXG1, LHX6, and 
DLX1/2/5/6 marked the MGE during fetal development, and in 
adulthood, was exclusively expressed in MGE-derived inhibitory 
neurons (Fig. 2C; Supplementary Fig. S2). The combination of 
FOXG1, EMX1, and TBR1 was exclusive to excitatory neurons. 
Thus, in mature or differentiated cortical neurons, specific 
combinations of TFs act as fingerprints of the progenitor domain 
in which they were born. The maintenance of these TFs in 
specific neuronal lineages from embryonic development to 
adulthood suggests that their combinatorial expression is tightly 

regulated and unlikely to be acquired by chance, for example, 
during oncogenic transformation. 

NB-FOXR2 express a MGE TF fingerprint 
We next assessed expression of the telencephalon TF finger-

prints in brain tumor samples. NB-FOXR2 tumors matched the 
MGE fingerprint (Fig. 2C), expressing FOXG1, NKX2-1, LHX6, 
and DLX5/6 and lacking the LGE marker GSX2, which was active 
instead in H3.3G34R/V gliomas, as expected (Supplementary 
Fig. S3A; ref. 10). They also lacked expression of all dorsal 
markers (PAX6, EMX1, EMX2, TBR1, and EOMES). No other 
brain tumor type in our study matched this fingerprint (Sup-
plementary Fig. S3A). This result, consistent at the bulk and 
single-cell levels, suggests that NB-FOXR2 tumors maintain a 
coherent regional identity of the ventral telencephalon and 
specifically the MGE. 

Expression of the MGE TF fingerprint in NB-FOXR2 tumors 
could be a downstream effect of FOXR2 activity. To decouple the 
oncogenic effect of FOXR2 from the lineage of origin, we ana-
lyzed patient samples expressing FOXR2 in different tumor 
contexts (EC-NBs and DIPGs) and FOXR2-transduced human 
neural stem cell lines (Fig. 3A; ref. 7). FOXR2+ DIPGs lacked 
expression of all telencephalon-patterning TFs except for PAX6. 
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A cohort of CNS neuroblastoma with FOXR2 activation (NB-FOXR2). A, Oncoprint of assembled cohort of NB-FOXR2 and other brain tumor entities, profiled by 
bulk and/or scRNA-seq. B, Expression of FOXR2 by bulk RNA-seq across brain tumor subtypes. DIPG-H3K27M-FOXR2, DIPG, H3K27M altered, and FOXR2 
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NB-FOXR2 expresses a TF fingerprint of the MGE. A, Expression of telencephalon-patterning TFs in the embryonal mouse brain. Top, stereo-seq in situ RNA expression of 
telencephalon-patterning TFs in E14 mouse (Chen and colleagues, ref. 75; https://db.cngb.org/stomics/mosta/spatial/). Middle, RNA in situ hybridization in E13 mouse (Allen 
Brain Atlas, https://developingmouse.brain-map.org/). Bottom, schematic of the mouse brain (sagittal section) at E13, and schematized expression of each TF in the 
telencephalon. B, Evaluation of SVM-based classification of neuron clusters from normal fetal and adult brain scRNA-seq datasets based on expression levels of 
telencephalon-patterning TFs in each cluster. Precision and recall metrics are calculated across clusters in each class in each dataset and are shown for each fold of a four- 
fold cross-validation experiment (one point per fold) for the adult datasets. Top, adult human dataset; bottom, adult mouse dataset. C, Expression of telencephalon TF 
fingerprint across normal brain and tumor datasets. Left, expression in clusters of single cells from reference datasets of the human and mouse fetal and adult brains 
aggregated by class (dorsal, CGE/LGE, and MGE). Scaling was performed within each dataset. Human 1, data from Yu and colleagues (38). Human 2, data from Shi and 
colleagues (39). Middle, expression in NB-FOXR2 tumors profiled by bulk RNA-seq and in malignant cells of NB-FOXR2 tumors profiled by scRNA-seq. For single-cell 
tumors, scaling was performed between malignant and normal cells of the same sample (normal cells not shown). For bulk RNA-seq, bubble size encodes log10-transformed 
median normalized expression across samples in each brain tumor subtype. Right, expression in other brain tumors profiled by bulk RNA-seq. DIPG-H3K27M-FOXR2, DIPG, 
H3K27M altered, and FOXR2 activated; DIPG-H3K27M, DIPG, H3K27M altered; EP-PFA, posterior fossa group A ependymoma; ETMR, embryonal tumors with multilayered 
rosettes; HGG-IDH, HGG, IDH-mutant; HGG-H3.3G34R/V, HGG, H3.3G34R/V altered; MB-SHH, SHH medulloblastoma; MB-WNT, WNT medulloblastoma. 
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Similarly, EC-NB also lacked overall expression of these TFs, a 
result replicated across datasets (Supplementary Fig. S3B) and 
consistent with their distinct origins in neural crest–derived 
lineages. A few EC-NB samples, however, showed expression of 
DLX5/6 or LHX6. We thus analyzed the coexpression of these 
genes with FOXR2 and found that they are completely uncoupled 
in both EC-NB cohorts (Fig. 3B; Supplementary Fig. S3C). 
Conversely, NB-FOXR2 lacked expression of the characteristic 
TFs and marker genes of EC-NB (Fig. 3C), except for ASCL1, 

known for its essential role in multiple CNS neural lineages (57) 
and expressed across brain tumor types (Fig. 3D), and, to a 
lower level, HAND2. Finally, in neural stem cells, although both 
FOXR2+ and control cells expressed PAX6, neither condition 
expressed any other telencephalon-patterning TFs. 

Altogether, our data indicate that NB-FOXR2 tumors express a 
TF fingerprint unique to MGE-derived neuron lineages, absent in 
other pediatric brain tumors or in EC-NBs. The absence of this 
fingerprint in FOXR2+ DIPGs, FOXR2+ EC-NB, and a cell line 
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FOXR2 does not induce expression of MGE or EC-NB TFs. A, Bulk RNA-seq expression of telencephalon patterning TFs. Top and third rows, tumor 
samples from this study cohort. Second row, EC-NB samples (Gartlgruber and colleagues, ref. 21) subset to high risk, stage 4 samples with FOXR2 
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transduced with FOXR2 suggests that this fingerprint is not likely to 
be a consequence of FOXR2 activation and instead may be main-
tained from the tumor lineage of origin. 

NB-FOXR2 tumors map to MGE-derived interneurons with 
OPC features 

To systematically map tumors to the developing brain, we next 
compiled a comprehensive single-cell resolution reference of the 
prenatal telencephalon and the postnatal ventricular/subventricular 
zone from eight scRNA-seq studies (Supplementary Table S6). We 
also included three references for the fetal adrenal gland, containing 
lineages relevant for EC-NB (Supplementary Table S6; refs. 58, 59). 
Using this reference and a background dataset of 210 independent 
brain tumors and normal brain samples (11, 12), we derived 
374 discriminant cell type gene signatures spanning all major cell 
classes (Supplementary Table S9). ssGSEA (43) scores for these 
signatures are sufficient to segregate bulk tumors by type (Fig. 4A). 
Strikingly, in all cases, GE-derived cell types were the top-scoring 
signature for NB-FOXR2 tumors (Fig. 4B; Supplementary Fig. S4A 
and S4B; Supplementary Table S10). In contrast, a human fetal 
adrenal gland sympathoblastic signature was the highest scoring in 
552/579 (95%) of EC-NBs, consistent with their hypothesized cell of 
origin (58, 59), and served as a positive control for this analysis. 
Similarly, in other pediatric tumor types, top-scoring signatures 
also reflected their postulated lineages of origin (Supplementary 
Fig. S4C). 

To map single-cell tumor profiles to the normal brain, in turn, we 
trained machine learning–based cell annotation tools on a telen-
cephalon reference dataset (11) to define a consensus label for each 
cell (Fig. 4C and D). Four of six tumors displayed minor pop-
ulations of OPC-like cells (Fig. 4D), consistent with the known 
expression of oligodendroglial markers in these tumors, including 
OLIG2 and SOX10 (Supplementary Fig. S5A). Importantly, in all but 
one tumor, a large proportion (39%–85%) of malignant cells with 
consensus labels was predicted to be MGE-derived inhibitory neu-
rons (Fig. 4D). Furthermore, analysis of canonical neuronal 
markers (Supplementary Fig. S5B) showed that malignant cells 
expressed, in addition to pan-neuronal markers (SNAP25 and 
STMN2), pan-GABAergic markers (GAD1 or GAD2) or other in-
terneuron markers (LHX6, SST, DLX5, DLX6, or NXPH1) with 
negligible expression of the pan-glutamatergic marker SLC17A7 
(Supplementary Fig. S5C), including in the tumor in which auto-
mated labeling had failed to identify inhibitory neuronal 
populations. 

Finally, we compared enrichment scores of cell type signatures 
among tumor groups. Compared with glial brain tumors, NB- 
FOXR2 were enriched for various neuronal and neuronal progenitor 
signatures, but the most significantly enriched signatures were, once 
again, for cortical interneurons (Fig. 4E). Compared with neuronal 
brain tumors, in turn, NB-FOXR2 tumors were significantly 
enriched for signatures of OPCs, cortical interneurons, and striatal 
neurons (Fig. 4F). Altogether, based on complementary approaches 
for mapping tumors to their normal brain counterpart, using GSEA 
and machine learning–based single-cell projections, we find that 
NB-FOXR2 tumors resemble MGE-derived cortical interneurons, 
with concurrent OPC-like features. 

Foxr2 is oncogenic in the ventral telencephalon in vivo 
To evaluate an oncogenic role for Foxr2 overexpression and the 

contribution of the GE niche in vivo, we developed mouse models 
using an IUE-based approach (Fig. 5A). As NB-FOXR2 patients 

carry chromosome 1q gain (1), recently shown to phenocopy p53 
loss-of-function (p53LOF) via MDM4 overexpression (Supplemen-
tary Fig. S1C–S1E; ref. 6), we developed models carrying Foxr2 
either alone or in combination with p53LOF. This IUE method de-
livers genetic alterations into discrete neural stem cell niches in the 
embryo at precise developmental timepoints, allowing spatiotem-
poral control of tumor development in specific brain locations. 
piggyBac transposon and CRISPR vectors were used to introduce 
Foxr2 overexpression alone or in combination with p53LOF in the 
GE at embryonic day 12.5 (E12.5). Transient expression of piggyBac 
transposase and Cas9 ensured permanent recombination in suc-
cessfully targeted progenitor cells. To enable bioluminescence im-
aging in vivo, a vector expressing Akaluc luciferase was codelivered. 
The vectors carrying Foxr2 and Akaluc expressed GFP downstream 
from a modified 2A peptide (PQR), allowing immunochemical 
detection of tumor cells with GFP (Fig. 5B). The Foxr2 vector was 
also C-terminally tagged with a V5 label. 

Models overexpressing Foxr2 alone developed neurologic symp-
toms with high penetrance (83%, Fig. 5C; Supplementary Table S1), 
including lethal seizures and epilepsy. They harbored non-
proliferative lesions in the cortex or the striatum, brain regions 
normally containing GE-derived cells. Neurons and glia expressing 
Foxr2 were found to be mislocalised, forming inappropriate het-
erotopic clusters (Fig. 5D). They displayed low levels of Ki67, Olig2, 
and DCX and higher levels of the mature neuronal marker NeuN, 
suggesting that overexpression of Foxr2 alone may lead to lesions 
that harbor differentiated cells and fewer proliferative or stem-like 
tumor cells (Fig. 5D). 

In contrast, Foxr2 p53LOF led to high-grade aggressive tumors 
with 50% penetrance (Fig. 5C; Supplementary Table S1), appearing 
as large GFP+ lesions in the striata of symptomatic mice, displaying 
infiltrative margins, and containing pleiomorphic and occasionally 
multinucleated tumor cells (Fig. 5E). Ki67 labeling indicated a high 
mitotic index, with 15% of cells actively proliferating (Fig. 5E). As 
compared with the Foxr2 alone model, Foxr2 p53LOF tumors 
expressed higher levels of the oligodendroglial marker Olig2 and the 
neuronal progenitor marker DCX, and retained intermittent ex-
pression of the mature neuronal marker NeuN (Fig. 5F), recapit-
ulating the mixed neuronal/oligodendroglial profile of human NB- 
FOXR2. 

To further characterize the Foxr2-induced models, we profiled 
RNA and chromatin accessibility at single-cell resolution using the 
10x Multiome technology (Foxr2 p53LOF, n ¼ 1; Foxr2, n ¼ 2). In 
total, we obtained 14,125 cells passing QC (Supplementary Table 
S5), which we annotated using a consensus of machine-learning 
classifiers trained on murine forebrain references (Supplementary 
Table S6). Inference of copy-number alterations revealed that all 
models displayed some degree of chromosomal abnormalities 
(Fig. 6A; Supplementary Fig. S6A and S6B), including the ones 
induced by Foxr2 alone, despite their lack of bona-fide proliferating 
tumor lesions. All models also recapitulated the dual neuronal/glial 
features of NB-FOXR2 tumors (Fig. 6B), with a large proportion 
(49%) of the neuron-like cells mapping to a mix of GE-derived 
neuronal types (Supplementary Fig. S6C) and with malignant cells 
expressing canonical neuronal and glial markers (Supplementary 
Fig. S6D). 

To assess the similarity of murine models to the human disease, 
we derived tumor-specific gene signatures from human RNA-seq 
samples. For this, we performed pairwise differential gene expres-
sion analysis (Fig. 6C) and identified the top 100 genes that were 
specific to each tumor type across all comparisons (Fig. 6D). 
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Figure 4. 
NB-FOXR2 tumors transcriptionally resemble interneurons and OPC cells. A, t-Distributed stochastic neighbor embedding (t-SNE) of bulk RNA-seq profiles of 
pediatric brain tumors (left) and pediatric brain tumors with stage 4 high-risk EC-NBs from Gartlgruber and colleagues (ref. 21; right) using ssGSEA scores for 
N ¼ 374 cell type–specific gene signatures from reference scRNA-seq datasets. t-Distributed stochastic neighbor embedding perplexity ¼ 10 for left and 
perplexity ¼ 30 for right. Color legend for pediatric brain tumors in the right panel matches labels in the left panel. FOXR2+ tumors, normalized expression >2. 
B, Tally of the top-scoring signatures across NB-FOXR2 bulk tumors (N ¼ 25). The X-axis indicates the number of samples in which each signature is the top 
match by ssGSEA (Supplementary Table S10). HF nIN4/HF nIN5, human fetal interneuron 4 and 5; F-e12 CINHN, forebrain E12 cortical inhibitory neurons; F-e12 
MGINH, forebrain E12 MGE inhibitory neurons; human fetal GE MGE/CGE, human fetal GE progenitors. C, Uniform Manifold Approximation and Projection joint 
representation of NB-FOXR2 tumors (N ¼ 6) profiled by snRNA-seq. Top, points colored by consensus cell type annotation based on a reference dataset of the 
developing mouse brain. Gray, nonmalignant cells. Bottom, points colored by sample. Samples are joined without integration or batch correction. D, Number of 
malignant cells per consensus projected cell type across NB-FOXR2 tumors profiled by snRNA-seq (N ¼ 6). Cell classes comprising >2% cells per sample are 
shown. E, Volcano plot for differential ssGSEA enrichment of cell type–specific signatures in bulk NB-FOXR2 compared with other tumor entities. Point size 
reflects �log10(adjusted P value). Differential testing was performed with t tests between NB-FOXR2 tumors and glial tumors (HGGs, DIPGs, posterior fossa 
group A ependymoma), followed by multiple testing correction using the Benjamini–Hochberg procedure. A positive FC represents enrichment in NB-FOXR2. 
Each point represents one signature, and signatures with positive log FCs and adjusted P value < 0.01 are colored. Color legend as in F. F, Differential ssGSEA 
enrichment as in E, comparing NB-FOXR2 tumors with neuronal tumors (ETMR, MB-SHH, and MB-WNT). Amp, amplified; EP-PFA, posterior fossa group A 
ependymoma; IPC, intermediate progenitor cell; NonAmp, nonamplified; RGC, radial glial cells. 
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Ki67. Individual tumor cells are also positive for Olig2, NeuN, DCX, and GFAP. Scale bar, 50 μm. 
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B, Top, Uniform Manifold Approximation and Projection (UMAP) joint representation of mouse model single-cell datasets (n ¼ 3) without integration or batch 
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Enrichment analysis of these signatures in each individual murine 
cell by ssGSEA showed that, in all models, neuron-like malignant 
cells scored higher for NB-FOXR2 signatures than for any other 
tumor type (Fig. 6E and F), indicating that these cells are tran-
scriptionally closer to human NB-FOXR2 than to other pediatric 
brain tumors. In turn, glial-like malignant cells showed more vari-
able patterns of enrichment, with higher scores for signatures from 
DIPG-H3K27M than from other tumors, as expected given the glial 
nature of DIPGs (Supplementary Fig. S6E). 

We next derived two cell lines from Foxr2 p53LOF tumors and 
grew them in serum-free media as neurospheres. We validated 
Foxr2 overexpression and p53 downregulation, demonstrating that 
these cell lines retain the alterations introduced in the embryos 
(Fig. 7A). These ex vivo cell lines recapitulated expression patterns 
present in human NB-FOXR2 tumors, displaying high levels of the 
GE-specific TFs Lhx6, Nkx2-1, Dlx5, and Dlx6, which suggest that 
they arose from a medial GE progenitor lineage (Fig. 7B). They are 
also positive for the oligodendroglial markers Sox10 and Olig2, 
mirroring the mixed neuronal and oligodendroglial transcriptomic 
profiles of patient tumors (Fig. 7B). We evaluated the engraftment 
potential of these neurosphere lines in syngeneic, immunocompe-
tent C57BL/6J mice. Foxr2 p53LOF cells were orthotopically 
engrafted into the striatum, in which they produced 100% penetrant 
tumors with a very short latency of just 24 days (Fig. 7C; Supple-
mentary Table S1). Engrafted tumors were positive for GFP and 
V5 and expressed high levels of Ki67, Olig2, and DCX, recapitu-
lating the de novo model in this aspect (Supplementary Fig. S7). 
Altogether, our data show that Foxr2 p53LOF delivered directly to 
the embryonic GE niche has oncogenic potential and that the 
resulting tumors recapitulate molecular features that are specific to 
human NB-FOXR2. 

Foxr2 co-opts ETS and glial pathways in GE-derived lineages 
To map FOXR2 transcriptional targets, uncoupling them from 

lineage-of-origin programs, and to dissect potential oncogenic 
mechanisms, we profiled gene expression by RNA-seq and Foxr2 
DNA-binding sites by CUT&RUN in a Foxr2 p53LOF line. We 
identified 11,284 binding sites reproducible across replicates 
(n ¼ 2). Of these sites, 96.5% overlapped regions of open chromatin 
in the mouse tumor single-cell data, indicating that the overall 
chromatin landscape of the in vivo model was well recapitulated in 
the neurosphere line (Fig. 7D). 

Motif enrichment analysis of Foxr2 binding sites showed a clear 
association with the ETS family of TFs, which comprised 11 of the 
top 15 most significantly enriched motifs (Fig. 7E), consistent with 
earlier findings that Foxr2 activates ETS transcriptional programs 
(7). We next inspected genomic regions surrounding patterning and 
lineage TFs, as well as NB-FOXR2–specific genes. Foxr2 binding 
was not detected at GE-patterning TFs or interneuron genes 
(Fig. 7F), suggesting once again that expression of these genes re-
flects their likely cellular origins. However, Foxr2 binding sites were 
present in promoters of ETS TF genes, such as Ets1 (Fig. 7G); at 
genes from the NB-FOXR2 signature, such as Gpd1, Dnm3, and 
Nxph1; and at Hand2, a gene also upregulated in EC-NB (Figs. 3C 
and 7G). 

Among the top enriched motifs were also Sox9, which coordi-
nates the initiation of gliogenesis (60–62), and Sox10, essential for 
terminal oligodendrocyte differentiation (60, 63). In contrast to the 
lack of binding around GE and interneuron genes, we observed 
strong signal for Foxr2 binding on promoters and regulatory ele-
ments of Sox9 and Sox10 in regions of open chromatin specific to 

glial-like tumor cells, correlating with expression of those genes in 
the RNA-seq data (Fig. 7H). Previous work has shown that ex-
pressions of Sox9 with Nfia and Nfib (61, 62) and Sox10 with 
Olig2 and Zfp536 (63) are sufficient for direct lineage conversion to 
glia. We found the same pattern of Foxr2 binding and RNA ex-
pression in all these genes, as well as in downstream canonical 
oligodendrocyte markers (Fig. 7I), suggesting that oligodendroglial 
reprogramming could be a downstream effect of Foxr2 expression in 
a GE-derived cellular background and potentially explaining the 
mixed neuronal/oligodendroglial features of these tumors. 

Discussion 
NB-FOXR2 is a newly identified and often misdiagnosed entity, 

which has contributed to the paucity of available data on this tumor 
subgroup and the lack of faithful preclinical models. In this study, 
we report that NB-FOXR2 patient tumors transcriptionally mirror 
LHX6+/DLX+ MGE-derived interneurons. They retain a TF finger-
print of their developmental anatomical niche, which is specific to 
the MGE and its neuronal derivatives. Confirming the potential of 
this niche as a candidate origin, in utero targeting of Foxr2 and p53 
loss of function to the GE produced tumors with high penetrance 
and transcriptional characteristics of MGE-derived neurons and 
glia. 

Cortical interneurons have many developmental features that 
could be relevant for the study of these tumors, some of which are 
specific to humans. A recent study of human GEs (64) identified 
nests of proliferating NKX2-1+ neuroblasts in the MGE persisting 
until 39 PCW (term birth). This configuration of dividing cells was 
not observed in the LGE nor in the rodent brain. Interneurons can 
also be classified into several subtypes based on their morphologies, 
activity, and neuropeptides; and interneuron progenitors acquire 
specific interneuron subtype identity during fetal development (38). 
Furthermore, interneurons are subject to programmed cell death 
and undergo activity-dependent maturation during postnatal de-
velopment (65, 66). We noted that many NB-FOXR2 patient tumors 
express SST, a neuropeptide that characterizes the MGE-derived 
somatostatin interneuron subtype. Also, in contrast to the typical 
progenitor-like phenotype observed in many pediatric brain tumors, 
NB-FOXR2 have a somewhat more differentiated state, as evidenced 
by the finding of high expression of the later induced DLX5/6 and 
low expression of the earlier induced DLX1/2 (67, 68). Finally, NB- 
FOXR2 tumors also express OPC lineage TFs OLIG2 and SOX10 
but lack expression of PDGFRA, a receptor tyrosine kinase im-
portant for OPC specification. Taken together with our findings of 
Foxr2 binding upstream of key glial genes sufficient for initiating 
gliogenesis, we propose that aberrant expression of FOXR2 in an 
MGE progenitor leads to reprogramming toward a glial cell fate, 
promoting this indeterminate dual state. Future lineage tracing 
studies in NB-FOXR2 murine models, potentially in parallel with 
other oncogenes targeted to the GE in utero, could help to deter-
mine whether Foxr2 is causal for the glial phenotype or whether 
these cell states reflect the competence of the cell of origin to give 
rise to different lineages. 

This study adds to a growing body of evidence for the involve-
ment of interneurons in brain pathologies. NB-FOXR2 tumors are 
not the only tumor type to be associated to a cortical interneuron 
lineage; H3.3G34R/V HGGs originate in GSX2+ interneuron pro-
genitors, and the chromatin state at the GSX2 locus in this cell 
context underlies the vulnerability to PDGFRA alterations (10, 69, 
70). However, unlike NB-FOXR2 tumors, H3.3G34R/V tumors 
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Figure 7. 
Foxr2 chromatin binding sites in Foxr2 p53LOF neurosphere show enrichment in ETS and glial pathways. A, Validation of FOXR2 overexpression and 
p53 downregulation in ex vivo Foxr2 p53LOF neurospheres by qRT-PCR. B, Validation of Nkx2-1, Lhx6, Dlx5, Dlx6, Emx2, Sox10, Olig1, Olig2, and Pdgfra expression 
in Foxr2 p53LOF neurospheres by qRT-PCR. Foxr2 p53LOF cell lines are positive for MGE markers and mirror the transcriptomic profile observed in patients. 
C, Kaplan–Meier curves depicting survival following orthotopic (striatal) injection of 150,000 Foxr2 p53LOF cells (n ¼ 5). D, Intersection of Foxr2 CUT&RUN peaks 
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and Dlx5 genomic regions showing Foxr2 CUT&RUN and bulk RNA-seq in Foxr2 p53LOF murine cell lines and pseudobulk ATAC tracks of malignant cells by cell 
type from single-cell multiome profiling of Foxr2 p53LOF mouse model tissue. G, Tracks as in F at genomic regions for Hand2 and Ets1. H, Tracks as in F at 
genomic regions for Sox family glial TFs. I, Tracks as in F at genomic regions for key oligodendrocyte lineage genes. Adj, adjusted; Astro, astrocytes; INH, 
inhibitory neurons; LRL, lower rhombic lip; OL, oligodendrocytes. 
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exhibit astrocytic instead of oligodendroglial components, express 
primarily DLX1/2, and lack expression of genes associated with 
differentiated neurons. Also, the expression of GSX2, which is 
predominantly expressed in the LGE, suggests that H3.3G34R/V 
HGG may originate in derivatives of the LGE (10). Meanwhile, 
human midgestation CGE interneuron progenitors are the putative 
cell of origin for tuberous sclerosis complex caused by germline 
TSC1/2 mutations, which inhibit mTOR signaling, and are associ-
ated with subependymal nodules and subependymal giant cell as-
trocytoma (71). Thus, it is conceivable that each GE is intrinsically 
vulnerable to different oncogenic insults or disruptions in normal 
cell signaling, resulting in different types of brain malignancies 
characterized by unique driver alterations. Furthermore, these vul-
nerabilities might be consequences of human-specific develop-
mental features that allow for the enlarged cortex in the human 
brain, which has implications for future modeling of these diseases. 

Resolving a candidate lineage of origin for NB-FOXR2 tumors 
enabled us to efficiently design novel in vivo models for this tumor 
by targeting the GEs. Previous studies in modeling FOXR2-driven 
oncogenesis have targeted neural populations more broadly, a 
likely explanation for many of the challenges to recapitulate pa-
tient pathologies in these models. A Sleeping Beauty transposon 
system used in Nestin-cre mice to induce Pten and Tp53 loss 
resulted in PNET-like tumors expressing synaptophysin and 
Olig2/Sox10 (72). A genetically engineered mouse model was 
designed using a Rosa26-Foxr2 knock-in crossed with Nestin-cre 
mice and Trp53-floxed mice, resulting in tumors arising outside 
the characteristic NB-FOXR2 brain regions, mainly in the olfac-
tory bulb and brainstem (73) but also outside the brain, e.g., in the 
hind leg. Although these models captured the dual neuronal and 
oligodendroglial features of NB-FOXR2 tumors, the lack of neu-
ronal subtype specificity and locations of tumor formation likely 
reflects the broad targeting of Nestin+ progenitors. Another model 
of NRAS activation in embryonic OPCs generated malignant brain 
tumors in zebrafish, which captured the oligodendroglial profile 
similar to NB-FOXR2 but lacked a neuronal component (74). 
Finally, in another IUE model, Foxr2 (together with Trp53 loss and 
either wild-type Pdgfra or PdgfraD842V) targeted to the dorsal 
cortex induced gliomas (7). Altogether, these studies indicate the 
extent to which cell context determines the oncogenic conse-
quences of FOXR2 activation. Targeting Foxr2 directly to the 
ventral embryonic brain, as we did in this study, in turn, produced 
tumors that recapitulated the location, histology, and the cell 
lineage context (the GE) of human tumors, with large compart-
ments resembling GE-derived neurons, and some glial represen-
tation. Thus, leveraging comprehensive references of the normal 
brain is a cost-effective strategy to define the tumor cellular con-
text and rationally minimize modeling efforts, which are time- and 
labor-intensive. 

Our model also mimics the driver pathway alterations of NB- 
FOXR2. Consistent with chr 1q gains leading to MDM4 over-
expression and subsequent p53 suppression in human tumors, we 
found that Foxr2 overexpression was tumorigenic in mice only in the 
context of p53LOF. Indeed, mice with Foxr2 alone led to alterations in 
neuronal development and low-grade, nonproliferative lesions con-
taining chromosomal abnormalities. Meanwhile, Foxr2 together with 
p53 loss produced aggressive tumors and increased proliferation. 
Hypoactive p53 may therefore be a dependency of FOXR2-driven 
oncogenesis in this cellular context. An additional advantage of the 
murine tumor model we present in this study is the ability to derive 
cell lines that can rapidly engraft in syngeneic, immunocompetent 

mice, enabling the screening of new therapeutics as well as the study 
of tumor–microenvironment interactions. 

Our study has certain limitations. NB-FOXR2 tumors are rare 
cancers, limiting our sample size. Given the observational nature of 
patient tumor data sampled at the time of biopsy or autopsy, our 
data preclude distinguishing between the cell of origin, which ac-
quired the initiating oncogenic event, and the cell of transformation. 
However, experimental models such as the IUE model can confirm 
that progenitor cells in the GEs have the capacity to give rise to 
cortical brain tumors, although we cannot conclude that the GE is 
the only progenitor niche that can give rise to NB-FOXR2. At 
present, this model targets the ventral telencephalon nonspecifically, 
such that any cells in the GE niche could take up the oncogenes, and 
future work would be needed to target individual progenitor 
domains. 

In conclusion, we show that NB-FOXR2 adds to the growing 
number of childhood tumor entities that associate with transcrip-
tionally distinct and anatomically and temporally restricted pro-
genitor niches. The heterogeneous origins and molecular profiles 
across pediatric brain tumors have limited tumor modeling and 
therapeutic development so far. Whereas systematically targeting 
progenitors across brain regions and temporal windows in vivo 
could be prohibitive in terms of cost and labor, we show in this 
study that, as for HGGs (11, 19), leveraging large-scale reference 
datasets of the developing brain is an efficient approach to direct 
modeling strategies in specific progenitor niches. Importantly, the 
engraftable tumor model established in this study enables further 
investigation of tumor cell–intrinsic properties and tumor– 
microenvironment interactions. These models can now be used as 
a platform for high-throughput CRISPR and drug screens to reveal 
novel selective pharmacologic vulnerabilities in these aggressive 
tumors. 
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