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Abstract
Aims: O- Linked β- N- acetylglucosamine (O- GlcNAc) modification, a unique 
post- translational modification of proteins, is elevated in diabetic nephropathy. 
This review aims to summarize the current knowledge on the mechanisms by 
which O- GlcNAcylation of proteins contributes to the pathogenesis and progres-
sion of diabetic nephropathy, as well as the therapeutic potential of targeting O- 
GlcNAc modification for its treatment.
Methods: Current evidence in the literature was reviewed and synthesized in a 
narrative review.
Results: Hyperglycemia increases glucose flux into the hexosamine biosynthe-
sis pathway, which activates glucosamino- fructose aminotransferase expression 
and activity, leading to the production of O- GlcNAcylation substrate UDP- 
GlcNAc and an increase in protein O- GlcNAcylation in kidney cells. Protein O- 
GlcNAcylation regulates the function of kidney cells including mesangial cells, 
podocytes, and proximal tubular cells, and promotes renal interstitial fibrosis, 
resulting in kidney damage. Current treatments for diabetic nephropathy, such 
as sodium- glucose cotransporter 2 (SGLT- 2) inhibitors and renin–angiotensin–
aldosterone system (RAAS) inhibitors, delay disease progression, and suppress 
protein O- GlcNAcylation.
Conclusions: Increased protein O- GlcNAcylation mediates renal cell damage 
and promotes renal interstitial fibrosis, leading to diabetic nephropathy. Although 
the full significance of inhibition of O- GlcNAcylation is not yet understood, it 
may represent a novel target for treating diabetic nephropathy.
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1  |  OVERVIEW OF O - LINKED Β -  N- 
ACETYLGLUCOSAMINE (O -  GlcNAc) 
MODIFICATION IN DIABETIC 
NEPHROPATHY

The prevalence of diabetes is increasing rapidly and has 
become a serious public health challenge worldwide. The 
latest global data show that 529 million people in the world 
population are living with diabetes in 2021, and more than 
1.31 billion people are projected to have diabetes by 2050.1 
Diabetic nephropathy is a microvascular complication of 
diabetes and has become the leading cause of chronic kid-
ney disease (CKD) and end- stage renal disease (ESRD) in 
most developed countries.2 In the United States, up to 44% 
of ESRD cases are linked to diabetes.3 Diabetic nephropa-
thy substantially elevates the risk of cardiovascular dis-
ease and related morbidity and mortality.4 Furthermore, 
patients with diabetic nephropathy may require mainte-
nance dialysis or renal transplantation, and these treat-
ments impose considerable financial and psychological 
burdens.5 According to statistics, one in three adults with 
diabetes has diabetic nephropathy, but most people are 
not aware. Therefore, increasing awareness of diabetic 
nephropathy is crucial for early intervention, alleviating 
the economic burden and reducing complications and 
mortality.

The first- line treatment of diabetic nephropathy is 
to treat and control diabetes (e.g. insulin, metformin, 
glucagon- like peptide 1 receptor agonists (GLP- 1RA), 
and glucose co- transporter 2 inhibitors (SGLT- 2i)) and 
high blood pressure (e.g., angiotensin- converting en-
zyme (ACE) inhibitors and angiotensin receptor blockers 
(ARBs)). Finerenone, a novel mineralocorticoid receptor 
antagonist (MRA) medication, is used to reduce tissue 
scarring in diabetic nephropathy and research shows that 
it decreases the risk of kidney failure and death related to 
cardiovascular events in adults with Type 2 diabetes, via 
its anti- inflammatory and anti- fibrotic action.6 The treat-
ment of more advanced diabetic nephropathy (ESRD or 
kidney failure) often involves invasive hemodialysis and 
kidney transplant. Despite the current treatment strategies 
for diabetic nephropathy, no treatment works directly in 
the kidney to repair, reverse or delay kidney damage. The 
development of future treatments of diabetic nephropathy 
will require better understanding of its pathogenesis.

Several mechanisms are involved in the pathogene-
sis of diabetic nephropathy, including the epithelial- to- 
mesenchymal transition (EMT) within the renal tubules,7 
extensive accumulation of the extracellular matrix,8 in-
creased production of reactive oxygen species (ROS) and 
oxidative stress,9 inflammation,10 decreased autophagy,11 
dysregulated cell proliferation,12 mitochondrial dys-
function,13 and accumulation of advanced glycation end 

products (AGEs).14 In recent years, abnormal activation of 
O- GlcNAc modification has been implicated in diabetic 
nephropathy.15–17

O- GlcNAc modification, discovered by G.W. Hart 
et  al in 1984, is different from the traditional glycosyla-
tion and has important biological functions.18 O- GlcNAc 
modification is a unique type of post- translational mod-
ification of proteins, defined by adding or removing a 
single monosaccharide β- O- d- N- acetylglucosamine (β- O- 
GlcNAc) to the serine or threonine residue of proteins by 
O- GlcNAc transferase (OGT) and O- GlcNAcase (OGA) 
without modifying the tyrosine residues. O- GlcNAc mod-
ification sites are often the same or adjacent to the phos-
phorylation sites, enabling direct or indirect interactions 
between O- GlcNAcylation and phosphorylation.19,20 O- 
GlcNAcylation can sense environmental changes, regu-
late protein–protein interactions, and participate in many 
important biological processes such as gene expression, 
signal transduction, nucleocytoplasmic dynamics,21 and 
cell cycle and DNA damage.22 O- GlcNAcylation promotes 
proliferation and activation of T and B cells, regulates in-
flammatory and antiviral responses of macrophages, pro-
motes activation of neutrophils, and inhibits the activity 
of nature killer cells.23

In the kidney, the involvement of O- GlcNAc modifi-
cation in the pathogenesis of diabetic nephropathy has 
only recently emerged. Increased O- GlcNAcylation dis-
rupts the function and metabolic balance of kidney cells, 
resulting in excessive extracellular matrix accumulation 
and thickening of the basement membrane. These fur-
ther cause pathological changes in the renal structure 
and impair renal filtration barrier, leading to proteinuria 
and renal dysfunction.24–27 In diabetic nephropathy, O- 
GlcNAcylation also contributes to renal fibrosis.28,29

What's New?

• Abnormal activation of O- linked β- N- 
acetylglucosamine (O- GlcNAc) modification is 
implicated in diabetic nephropathy.

• This review article summarizes the mecha-
nisms by which O- GlcNAcylation of proteins 
mediates renal cell damage and promotes renal 
interstitial fibrosis, leading to diabetic nephrop-
athy. Current treatments of diabetic nephropa-
thy have also been shown to regulate protein 
O- GlcNAcylation.

• O- GlcNAcylated proteins may become valuable 
markers of diabetic nephropathy and repre-
sent as new targets for future treatments of the 
disease.
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O- GlcNAc modification has also been implicated in 
the current treatments of diabetic nephropathy. The 
renin–angiotensin–aldosterone system (RAAS) inhib-
itors prevent elevation of protein O- GlcNAcylation in 
diabetic kidney.15 SGLT- 2i dapagliflozin decreases O- 
GlcNAcylation and tubular hypoxia, ameliorating renal 
fibrosis.30 Moreover, SGLT- 2i improves megalin endo-
cytic function through suppressing its O- GlcNAcylation 
and protects the diabetic kidney from protein over-
load.31 These evidences provide insights for targeting O- 
GlcNAcylation for novel therapies for the treatment of 
diabetic nephropathy.

2  |  MOLECULAR REGULATION 
OF O -  GlcNAc MODIFICATION

Protein O- GlcNAcylation occurs in the nucleus, cyto-
plasm, and mitochondrion.19,32,33 O- GlcNAcylation, 
as a nutrient sensor is involved in the regulation of a 
wide range of cellular events, including epigenetics, 

transcription, signalling, and rhythm.18,32–35 O- GlcNAc 
modification also cross talks with phosphorylation by 
modifying the same or proximal sites of target proteins. 
Unlike conventional glycosylation, O- GlcNAc modi-
fications do not usually elongate or produce complex 
branched glycan structures. Instead, they act through the 
two highly conserved enzymes in eukaryotes: OGT and 
OGA. OGT catalyzes the addition of β- O- GlcNAc utilizing 
the donor substrate UDP- GlcNAc, and OGA catalyzes the 
removal of O- GlcNAc and inhibits OGT activity.36,37 UDP- 
GlcNAc is synthesized from glucose via the hexosamine 
biosynthesis pathway (HBP) (Figure  1a). Because UDP- 
GlcNAc is involved in nucleotide, carbohydrate, fatty acid, 
and amino acid metabolism, it is considered as a central 
metabolic sensor.38,39

Human OGT encodes three isoforms, all of which 
contain a C- terminal catalytic domain but differ in 
the number and subcellular localisation of N- terminal 

F I G U R E  1  Overview of the hexosamine biosynthetic 
pathway (HBP) and O- GlcNAcylation. (a) HBP is a small branch 
of glycolysis where glucose (Glc) becomes fructose- 6- phosphate 
(F- 6P) through the first two steps shared by HBP and glycolysis 
pathways. Only 2%–3% of F- 6P enters HBP. After glucose enters 
the cell, glucose is rapidly phosphorylated to glucose- 6- phosphate 
(glucose- 6P) by hexokinase (HK). Glucose- 6p is isomerized by 
phosphoglucose isomerase (PGI) to produce F- 6P, a substrate 
for phosphofructokinase (PFK) or glucosamino- fructose 
aminotransferase (GFAT) of the glycolytic pathway, which is a 
rate- limiting reaction of the HBP. GFAT requires glutamine (Gln) 
as an amine donor to produce glucosamine 6- phosphate (GlcN- 
6P), which is then n- acetylated by glucosamine 6- phosphate 
n- acetyltransferase (GNA1) to produce n- acetyl- glucosamine 
6- phosphate (GLCN- 6P). This step requires acetyl- CoA as an acetyl 
donor. Glnac- 6p is converted to GLNAC- 1P by acetylglucosamine 
phosphate mutase (PGM- 3). Using UTP as a nucleotide donor, 
UDP- N- acetylglucosamine pyrophosphorylase (UAP1) generates 
UDP- GlcNAc.139 (b) O- GlcNAc transferase (OGT) and O- GlcNAcase 
(OGA) catalyze the addition and removal of O- GlcNAc, respectively. 
Free GlcNAc can be recovered by the GlcNAc rescue pathway. This 
pathway converts GlcNAc to GlcNAc- 6- phosphate (GlcNAc- 6P), 
which can be utilized by HBP. OGT and OGA isomers schematic. 
The nucleocytoplasmic (ncOGT), mitochondrial (mOGT), and 
short (sOGT) isoforms of OGT differ in length due to the number of 
amino- terminal (N- terminal) tetrapeptide repeat sequences (TPRs). 
However, they share common carboxy- terminal (C- terminal) 
catalytic (CDI and II) and phospholipid- binding (PPO) structural 
domains. The unique N- terminal mitochondrial targeting sequence 
(MTS) is present in mOGT. The ncOGA and sOGA isoforms of 
OGA share the same N- terminal O- GlcNAc hydrolase structural 
domain and the central OGT binding region; however, sOGA lacks 
the C- terminal histone acetyltransferase- like (HAT- like) structural 
domain found in ncOGA.
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tetrapeptide repeats (TPRs) due to selective splicing 
of the transcript in the N- terminal region, classifying 
them as nucleocytoplasmic OGT (ncOGT), mitochon-
drial OGT (mOGT), and short OGT (sOGT) (Figure 1b). 
ncOGT contains 13 TPRs with a molecular weight of 
116 kDa, whereas mOGT has a molecular weight of 
103 kDa, with only 9 TPRs and a selectively spliced N- 
terminal mitochondrial targeting sequence (Figure 1b). 
sOGT has a molecular weight of 78 kDa and contains 2 
TPRs.40 ncOGT and sOGT are located in the nucleus and 
cytoplasm; however, mOGT tends to accumulate in the 
inner mitochondrial membrane.41 Substrate selection of 
OGT is mainly regulated by ncOGT, thus a major par-
ticipant in intracellular O- GlcNAc modification. The 
N- terminal TPR region of OGT regulates a variety of cel-
lular processes, including cell cycle,42–44 transcriptional 
regulation,45–47 and protein transport.48 It regulates in-
teractions between target and regulatory proteins.49–51 
The N- terminal TPR region also facilitates the multim-
erization of OGT and acts as a docking site for protein 
substrate recognition and glycoside selection.

OGA is highly conserved across species and is essential 
for mammals and plants.52 It is widely expressed in tis-
sues including pancreas, brain, and skeletal muscle.53–55 
OGA isoforms, the nucleocytoplasmic OGA (ncOGA), 
and the short OGA (sOGA) are encoded by two major 
splice variants that differ in the presence or absence of a 
C- terminal region, respectively (Figure 1b). ncOGA con-
sists of a catalytic domain at the N- terminus, similar to 
that of the CAZy- glycosyl hydrolase family 84 (GH84), 
and a pseudohistone acetyltransferase (HAT) domain 
at the C- terminus, linked by an ordered stem structural 
domain. The molecular weight of full- length ncOGA is 
130 kDa. OGA mRNA undergoes selective splicing in the 
HAT structural domain,56,57 resulting in sOGA. sOGA is 
100 kDa. Like OGT, OGA can bind to multiple protein 
substrates.

3  |  MOLECULAR MECHANISMS 
OF ABNORMAL O -  GlcNAc 
MODIFICATION IN THE 
PATHOGENESIS OF DIABETIC 
NEPHROPATHY

3.1 | O- GlcNAc modification regulates 
mesangial cell function

Mesangial cells originate from the posterior renal inter-
stitium, which participates in the construction of glomer-
ular microvascular bed and the production of mesangial 
matrix for the maintenance of glomerular homeostasis. 
Clinical studies have shown that lipid accumulation and 

lipid metabolism abnormalities in glomeruli lead to lipo-
toxicity in the kidney, accelerating the progression of dia-
betic nephropathy.58,59

High glucose increases O- GlcNAc modification of car-
bohydrate response element binding protein (ChREBP) in 
mesangial cells (Figure 2a). ChREBP is a basic helix–loop–
helix leucine zipper transcription factor, a key determinant 
of lipid synthesis by regulating the expression of lipogenic 
genes containing carbohydrate response element (ChRE).60 
Modification of ChREBP by O- GlcNAc glycosylation can 
regulate its transcriptional activity, stability, and/or subcel-
lular localisation.61 O- GlcNAc modification is crucial for 
the glucose response of ChREBP as it is shown that high 
glucose- induced O- GlcNAcylation of ChREBP promotes 
lipid accumulation in mesangial cells.62 Notably, ChREBP 
O- GlcNAcylation also increases fibrosis- related gene ex-
pression in mesangial cells under high glucose.62

Mechanistically, increased O- GlcNAcylation in me-
sangial cells under high glucose promotes fibrotic sig-
nalling by the activation and phosphorylation of p38 
mitogen- activated protein kinase (MAPK) and Jun N- 
terminal kinase (JNK) (Figure  2b).24,25 While a reduc-
tion of O- GlcNAcylation by inhibiting OGT decreases 
phosphorylation of p38 MAPK and JNK, an increase 
in O- GlcNAcylation by inhibiting OGA increases p38 
MAPK phosphorylation.25 Activated p38 MAPK leads 
to increased expression of transforming growth factor 
β1 (TGF- β1), plasminogen activator inhibitor- l (PAI- 1), 
and fibronectin, contributing to excessive matrix ac-
cumulation seen in diabetic nephropathy.25 Therefore, 
O- GlcNAcylation in mesangial cells mediates kidney 
injury by promoting activation of profibrotic p38 MAPK 
in response to high glucose. Furthermore, increased O- 
GlcNAcylation causes mesangial microvascular damage 
through regulating specific protein 1 (Sp1) transactiva-
tion in mesangial cells.24

Mesangial cell hypertrophy and increased secretion of 
matrix proteins lead to glomerular enlargement, which 
is thought to be one of the earliest alterations in diabetic 
nephropathy. Mesangial cells in the diabetic state exhibit 
transient and limited proliferation in the early stages of 
growth, followed by growth arrest and hypertrophy.26 
Masson et al. treated mesangial cells with glucosamine 
(GlcN) to activate HBP and found that GlcN arrested 
cells in the G0/G1 phase by increasing the expression of 
cyclin- dependent kinase inhibitor p21Waf1/Cip1, thereby 
inducing mesangial cell hypertrophy.26 In addition, in 
an animal model of streptozotocin (STZ)- induced di-
abetes, a model of early stage of diabetic nephropathy, 
mesangial cells are arrested in the G1 phase and hy-
pertrophic, and extracellular matrix protein synthesis 
and deposition are increased.63 Mesangial cells of STZ- 
induced diabetic rats and mice also showed increased 
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expression of p21Waf1/Cip1 and cyclin- dependent kinase 
inhibitor p27KIP1.64,65 During the cell cycle, the levels 
of OGT, OGA, and O- GlcNAc fluctuate significantly, 
therefore O- GlcNAcylation and alterations of HBP flux 
are emerging as important regulators of cell cycle pro-
gression.66 High glucose increases HBP flux, enhances 
the production of ROS (Figure 2b), and causes cellular 
oxidative stress, extracellular matrix deposition, and me-
sangial cell hypertrophy.67–71

3.2 | O- GlcNAc modification regulates 
podocyte function

Podocyte loss is an early event of diabetic nephropathy.72 
Hyperglycemia triggers podocytes to undergo morpho-
logical changes, cell shedding, and cell apoptosis, among 
others.73 Podocytes cover the outside of the glomerular 
basement membrane (GBM) and form the ultimate bar-
rier against protein loss (Figures 2c and 3a). It has been 
demonstrated that podocyte injury leads to proteinu-
ria, followed by glomerular sclerosis contributing to im-
paired glomerular filtration, as the decrease in podocyte 
numbers in humans with diabetes is proportional to the 

severity of the injury and the degree of proteinuria.72,74–78 
Growing evidence from experimental models show that 
podocyte loss and dysfunction are strongly associated 
with glomerulosclerosis.

Podocytes consist of a cell body with numerous primary 
and secondary foot processes. Podocytes and their foot pro-
cesses line the outside of the capillaries and mesangial cells, 
preventing the leakage of proteins and other macromolecules 
from the blood into the urine.79,80 Studies have shown the 
presence of O- GlcNAcylated proteins in the cytoplasm and 
nucleus of podocytes.27 OGT- mediated O- GlcNAcylation is 
essential for complete maturations of mouse podocytes.27 
Podocyte- specific OGT knockout mice develop glomerulo-
sclerosis, tubulointerstitial lesions, impairment in podocyte 
foot processes, and decreased podocyte protein expression 
during growth (Figure 3b,c).27 Cytoskeletal proteins, such 
as β- actin, α- actin 4, and α- integrins, are important in main-
taining the structure and movement of podocyte foot pro-
cesses, allowing adaptive volumetric responses to changes 
in the environmental tone.16,81 Studies have found that O- 
GlcNAcylation of β- actin in podocytes of the glomeruli con-
tributes to the morphological changes in the glomeruli and 
tubules of non- obese diabetic rats as well as human diabetic 
kidneys.82

F I G U R E  2  O- GlcNAcylation is involved in mesangial cell fibrosis and extracellular matrix accumulation, damaging renal function. (a) 
In mesangial cells, high glucose induces O- GlcNAcylation of ChREBP, this process triggers lipogenic enzymes and fibrosis- related proteins, 
leading to lipid accumulation in mesangial cells and accelerated kidney damage. (b) O- GlcNAcylation promotes the activation of ASK1 and 
p38 MAPK pathways by inhibiting Akt phosphorylation in mesangial cells. Upregulated p38 induces the expression of PAl- 1, fibronectin, 
and TGF- β1, leading to diabetic glomerulosclerosis. In addition, O- GlcNAcylation may also stimulate ASK1 by increasing ROS. (c) Under 
high glucose conditions, O- GlcNAcylation increases, promotes the expression of Sp1, induces the production of PAI- 1 and TGF- β1, inhibits 
the degradation of extracellular matrix, and promotes the occurrence and development of CKD. ACC, Acetyl- CoA carboxylase; ASK1, 
Apoptosis signal- regulating kinase 1; FAS, Fatty acid synthase; Glc, Glucose; HIF- 1α, Hypoxia- inducible factor 1- α; MKK3/6, MAPK kinases; 
VEGF, Vascular endothelial growth factor.
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3.3 | O- GlcNAc modification regulates 
renal tubular function

Renal tissue scarring or renal interstitial fibrosis (RIF) is a 
pathological and dynamic process manifested in diabetic 
nephropathy. It includes increased matrix production, 
inhibition of matrix degradation, increased cell–matrix 
interactions, activation of mesangial cells and myofibro-
blasts, tubular EMT or partial EMT, and immune cell 
infiltration.83 Many studies have attempted to delay the 
progression of diabetic nephropathy by inhibiting RIF, 
among which EMT has been found to be one of the most 
critical mechanisms of RIF.84,85

O- GlcNAcylation is involved in the regulation of 
EMT during RIF. It was found that O- GlcNAcylation- 
induced EMT in human proximal tubular HK2 cells.28 
In addition, mass spectrometry studies have identified 
that RAF1 is a potential substrate of O- GlcNAcylation.28 
O- GlcNAcylation of RAF1 increases its stability by in-
hibiting ubiquitination. Importantly, the study showed 
that O- GlcNAcylation of RAF1 were upregulated in the 
kidney tissue of unilateral ureteral obstructioin rats, a 
model of renal fibrosis and tubular injury.28 Furthermore, 
Snail1 (zinc finger protein transcription factor l) is an 
important regulator of EMT. High glucose increases O- 
GlcNAcylation but decreases phosphorylation of Snail1 
in human embryonic kidney cells, suppressing the tran-
scription of E- cadherin and inducing EMT (Figure 4a).86

In proximal tubular epithelial cells (PTECs), high glu-
cose promotes an increase in HBP glucose flux, increases 
protein O- GlcNAcylation, activates RAAS and causes 
PTEC hypertrophy, ultimately leading to RIF (Figure 4b).87 
Furthermore, PTECs cultured under high glucose or iso-
lated from diabetic rats have increased O- GlcNAcylation 
and decreased phosphorylation of endothelial nitric oxide 
synthase (eNOS) and heat shock protein (HSP) 72, in-
ducing RIF (Figure  4c).15 Other studies showed that O- 
GlcNAcylation suppressed phosphorylation of eNOS and 
protein kinase B or Akt16, which increased expression of 
α- actinin and promoted structural changes in PTEC micro-
villi.88,89 Apart from these, high levels of O- GlcNAcylation 
can also increase blood pressure, resulting in downregu-
lation of megalin, a receptor that mediates endocytosis in 
PTECs.90 High glucose- induced O- GlcNAcylation leads to 
proteinuria by decreasing the activity of protein kinase B, 
and thereby decreasing expression of megalin and subse-
quently decreasing reabsorption of albumin in the proxi-
mal tubules.91

In addition, lipolysis is important in maintaining en-
ergy homeostasis in PTECs, and lipid metabolism is dys-
regulated in patients with diabetic nephropathy.92 Genetic 
deletion of OGT in mice causes Fanconi syndrome- like 
abnormalities, PTEC apoptosis, reduced PETC lipoly-
sis and ATP production, severe tubular cell damage, and 
enhanced lipotoxicity after fasting for 48 hours.92 This 
study suggest that O- GlcNAc modification is critical for 

F I G U R E  3  O- GlcNAcylation 
is involved in mediating the normal 
physiological structure and function of 
podocytes. (a) Glomerular podocytes, 
endothelial cells and the glomerular 
basement membrane (GBM) together 
form the glomerular filtration barrier 
(GFB).140 Among them, podocytes are 
the last barrier to GFB. (b) After birth, 
glomerular size increases with normal 
body growth, but the number of podocytes 
does not. Therefore, normal podocytes 
require hypertrophy and/or foot process 
elongation to maintain glomerular 
filtration. (c) Podocyte loss as well as 
proteinuria is observed in mice with 
congenital lack of O- GlcNAcylation in 
podocytes.
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normal renal energy homeostasis as well as PTEC func-
tion and survival. These results are consistent with the 
pro- survival role of O- GlcNAcylation,93 as increased O- 
GlcNAcylation levels promote the translocation of HSPs 
and the expression of HSP72, one of the important regula-
tors of cell protection in the kidney.94 Although increased 
protein O- GlcNAcylation are often considered pathogenic, 
the studies by Sugahara et al. and others suggest that O- 
GlcNAcylation defects could also cause renal tubular dam-
ages during fasting and diabetes.92

3.4 | O- GlcNAc modification regulates 
extracellular matrix proliferation

TGF- β1 promotes the production of extracellular matrix 
proteins, and its overexpression leads to extracellular ma-
trix proliferation.95 Under high glucose, HBP flux increases, 
thus increasing O- glycosylation activity, which increases 
the nuclear level of upstream stimulatory factor (USF) and 
its binding with ChRE in glomerular mesangial cells and 
proximal tubule cells.96–98 Nuclear expression of USF in-
duces TGF- β1 promoter activity, promoting extracellular 
matrix proliferation in diabetic nephropathy.96–98

Upon O- GlcNAcylation, Sp1 binds to the promoter 
region of PAI- 1, inducing gene expression of PAI- 1 and 
TGF- β1 (Figure  2c).24,99 PAI- 1 inhibits the degradation 
of extracellular matrix, leading to progressive stacking of 

matrix proteins in diabetic nephropathy. In parallel, O- 
GlcNAc depletion prevents high- glucose- induced phos-
phorylation of p38 MAPK and JNK in rat mesangial cells 
and thus decreases the expression of PAI- 1 and TGF- β1, 
reducing extracellular matrix deposition.25

Inflammatory cell infiltration contributes to the develop-
ment and progression of diabetic nephropathy through pro-
moting extracellular matrix proliferation..100 Chemokines 
and adhesion molecules are key mediators of renal injury 
by attracting circulating white blood cells and facilitat-
ing transmigration of these cells into renal tissues. Biopsy 
specimens of diabetic kidneys have increased expression 
of adhesion molecules such as vascular cell adhesion mol-
ecule- 1 (VCAM- 1) and intercellular adhesion molecule- 1 
(ICAM- 1).101 In glomerular mesangial cells, high glucose 
increases glucosamino- fructose aminotransferase (GFAT) 
expression and O- glycosylation of p65/Rel, a nuclear factor 
kappa B (NF- κB) subunit, which promote VCAM- 1 expres-
sion by activating NF- κB. Inactivation of the two NF- κB 
binding sites in the VCAM- 1 promoter abolishes VCAM- 1 
transcription in response to high glucose, glucosamine, and 
GFAT overexpression.100 In addition, O- GlcNAcylation in-
hibits the activity of inducible nitric oxide synthase (iNOS), 
reduces nitric oxide production, and enhances the expres-
sion of pro- inflammatory cytokines such as IL- 6, IL- 1β, and 
IL- 12.102 O- GlcNAcylation can also directly activate NF- κB 
and its downstream effectors, enhancing pro- inflammatory 
cytokine signaling and activating other innate immune cell 

F I G U R E  4  O- GlcNAcylation is involved in regulating the structure and function of renal tubular cells, promoting renal interstitial 
fibrosis, and accelerating the progression of renal diseases. (a) Under high glucose (Glc) conditions, the modification of O- GlcNAc in renal 
cells increases, improving the stability of Snail1, and its inhibitory effect is enhanced, thereby weakening the expression of E- cadherin 
mRNA, promoting EMT, and accelerates the occurrence and development of CKD. (b) In renal tubular epithelial cells under a high glucose 
environment, O- GlcNAcylation increases, inducing the expression of p38 and PKC, promoting the production of TGF- β1 and Ang II, causing 
renal tubular cell apoptosis and EMT, leading to renal tubular atrophy. (c) O- GlcNAcylation increases in renal tubular epithelial cells under 
high glucose conditions, peNOS and pAkt levels decreased, while HSP72 levels increased and promotes the progression of CKD.
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function to promote inflammation, which is positively cor-
related with the expression of OGT.103–107

3.5 | O- GlcNAc modification regulates 
insulin sensitivity and insulin secretion 
outside the kidney

Outside the kidney, O- GlcNAc modification can indirectly 
contribute to the progression of diabetic nephropathy 
through regulating insulin sensitivity and insulin secretion. 
Increased O- GlcNAcylation level is associated with insulin 
resistance in multiple tissues, such as adipose tissue and 
skeletal muscle.108,109 When 3T3- L1 preadipocytes were 
treated with glucosamine and OGA inhibitor PUGNAc 
(1,5- hydroximolactone) to stimulate O- GlcNAcylation of 
total proteins, O- GlcNAcylation level positively correlated 
with insulin resistance and endoplasmic reticulum stress 
of the cells.110 Moreover, suppression of O- GlcNAcylation 
of total proteins by the shRNA- mediated silencing of OGT, 
improved insulin sensitivity and alleviated endoplasmic 
reticulum stress in insulin- resistant preadipocytes.110 O- 
GlcNAc modification has the potential to impair insulin 
receptor signaling as insulin receptor substate- 1 (IRS- 1) 
(Ser1101) and IRS- 2 (Ser1149) become glycosylated follow-
ing an increase in UDP- GlcNAc pools, contributing to in-
sulin resistance.111

Increased protein O- GlcNAcylation is also associ-
ated with hyperglycemia- induced glucose toxicity, β 
cell apoptosis, and impaired insulin secretion.112 STZ or 
glucosamine- induced elevation of nucleocytoplasmic 
protein O- GlcNAcylation was accompanied by impaired 
insulin secretion and enhanced apoptosis of pancreatic 
β cells.112 Moreover, β cell- specific OGT- deficient mice 
displayed hyperglycemia with insulin depletion accompa-
nied by β cell apoptosis.113

4  |  O -  GlcNAcylation AS A 
THERAPEUTIC TARGET FOR 
DIABETIC NEPHROPATHY

4.1 | GFAT inhibitors

GFAT is the rate- limiting enzyme for glucose entry into 
the HBP pathway to produce the O- GlcNAcylation sub-
strate UDP- GlcNAc.114 Upregulation of GFAT allows 
more glucose to enter the HBP pathway, thereby increas-
ing O- GlcNAcylation. Kidney sections from patients 
with Type 1 diabetes show increased GFAT expres-
sion115 and GFAT activity is elevated in skeletal muscle 
of patients with Type 2 diabetes.116 Moreover, RNAseq 
analysis of kidney biopsies from patients with diabetic 

nephropathy reveals an increase in the expression of 
GFAT.117 Incubation of LLC- PK1 cells, a model of PTECs, 
with 6- diazo- 5- oxo- L- norleucine (DON), an inhibitor 
of GFAT, decreases O- GlcNAcylation (Figure  5a).117 In 
rat primary mesangial cells, overexpression of GFAT ac-
tivates PAI- 1 promoter and increases mRNA levels of 
TGF- β1 and TGF- β type I and type II receptors, which are 
abrogated by GFAT inhibitors o- diazoacetyly- l- serine and 
6- diazo- 5- oxonorleucine (Figure  5a).118 Furthermore, in 
human mesangial cells, overexpression of GFAT promotes 
TGF- β1 expression via a protein kinase C and p38 MAPK- 
dependent mechanism, whereas the treatment with GFAT 
inhibitor azaserine prevents the induction of TGF- β1 in 
GFAT- overexpressing cells (Figure  5a).119 Interestingly, 
some herbs and foods exert effects of reducing GFAT 
activity, therefore representing therapeutic potential. 
In MCGT1 cells (a GLUT1 transgenic rat mesangial cell 
line), rhein (an anthraquinone compound isolated from 
rhubarb) reduces cellular hypertrophy and extracellular 
matrix proliferation by inhibiting GFAT activity, decreas-
ing the level of UDP- GlcNAc, and thereby inhibiting O- 
GlcNAc modification.120

4.2 | SGLT- 2i

SGLT- 2 is expressed in the early proximal tubule of the 
kidney. SGLT- 2i are novel hypoglycemic agents that block 
SGLT- 2, leading to an increase in urinary glucose excretion 
and a decrease in circulating glucose concentrations.121,122 
Several studies have shown that SGLT- 2i have beneficial 
effects on delaying the progression of diabetic nephropa-
thy.123 The use of SGLT- 2i is associated with a lower risk for 
dialysis and acute kidney injury in patients with Type 2 dia-
betes.124 Mechanistically, SGLT- 2i dapagliflozin treatment 
attenuates renal injury by reducing renal hypertrophy, 
tubulointerstitial fibrosis, and glomerulosclerosis by miti-
gating oxidative stress and inflammation in STZ- induced 
diabetic mice.125 Dapagliflozin has also been shown to de-
crease OGT expression and prevent high glucose- induced 
O- GlcNAcylation, inhibiting RIF and tubular injury in 
STZ- treated diabetic mice (Figure 5b).126 Moreover, ipragli-
flozin, another SGLT- 2i inhibits O- GlcNAcylation of meg-
alin and restores its endocytic function, and ameliorates 
proximal tubule protein overload, abnormal mitochondrial 
morphology, renal oxidative stress, and tubulointerstitial 
fibrosis in a non- obese diabetic model of hypoinsulinemia 
(Figure 5b).31 These studies support that SGLT- 2i may at-
tenuate HBP flux and inhibit O- GlcNAcylation by block-
ing glucose entry into proximal tubule cells. However, the 
beneficial effects of SGLT- 2i attributed to inhibition of 
HBP flux and O- GlcNAcylation in the kidney needs further 
investigations.
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4.3 | RAAS inhibitors

Angiotensin II contributes to the progression of diabetic kid-
ney injury.127–130 Hyperglycemia increases angiotensinogen 
gene expression in mesangial cells, glomerular endothelial 
cells, and PTECs.131–133 In PTECs, high glucose induces an-
giotensin gene expression, proximal tubular cell hypertro-
phy, and interstitial fibrosis through activation of HBP.87 
RAAS inhibitors prevent hyperglycemia- induced OGT 
expression and O- GlcNAcylation, which is accompanied 
by an increase in OGA in PTECs (Figure 5c).15 Moreover, 
RAAS inhibitors prevent the elevation of O- GlcNAcylation 
and ameliorate diabetes- induced kidney damage via inhibi-
tion of Akt/eNOS phosphorylation and HSP72 expression 
in STZ- induced diabetic rats (Figure 5c).15 Taken together, 
RAAS inhibitors may represent as new therapeutic targets 
for the treatment of diabetic nephropathy through their ef-
fects on O- GlcNAcylation.

4.4 | Lipoic acid

There is substantial evidence that increased oxidative 
stress may be involved in the pathogenesis of diabetic 
nephropathy.134,135 Lipoic acid (LA), with its dual anti-
oxidant and glucose- lowering properties, may play an 
important role in the prevention of kidney injury and 
other complications of diabetes. Recently, LA has been 
shown to reduce oxidative stress markers in the renal 
cortex of STZ- induced diabetic rats.136 In addition, it was 
found that renal tissues of diabetic rats treated with LA 
showed an increased expression of CuZn- superoxide 
dismutase (SOD) and catalase with a decrease in the 
level of O- GlcNAcylation of HSP70 and HSP90, and a 
decrease in cellular O- GlcNAcylation of extracellular 
regulated kinases and p38 (Figure 5d).137 Moreover, LA 
decreases O- GlcNAcylation of CuZn- SOD and increases 
CuZn- SOD gene expression and its enzymatic activity 

F I G U R E  5  Multiple drugs inhibit O- GlcNAcylation through different pathways, thereby reducing kidney damage. (a) GFAT inhibitors 
inhibit GFAT enzyme activity, block glucose from entering the HBP pathway, reduce O- GlcNAc glycosylation and TGF- β1 levels, inhibit cell 
hypertrophy and extracellular matrix proliferation, and protect the kidneys. (b) SGLT- 2i inhibits SGLT2 and blocks glucose from entering 
the proximal tubule cells, thereby reducing HBP flux, attenuating OGT and O- GlcNAcylation levels. SGLT- 2i also inhibits O- GlcNAcylation 
of megalin, reduces the endocytosis of megalin, and improves renal function. (c) RAAS inhibitors successfully improve diabetes- induced 
renal O- GlcNAcylation mainly by increasing OGA, eNOS phosphorylation. In addition, RASS inhibitors block ANG II from activating GFAT 
and reduced O- GlcNAcylation in cells. (d) LA reduces the level of O- GlcNAcylation, upregulates the expression of SOD, and enhances the 
expression of HSPs. Ang II, angiotensin II; HSP, heat shock protein; GFAT, Glucosamino- fructose aminotransferase; Glc, Glucose; LA, 
lipoic acid; peNOS, phosphorylated endothelial nitric oxide synthase; RAAS, Rctivates the renin- angiotensin- aldosterone system; SGLT- 2i, 
sodium- glucose cotransporter- 2 inhibitors; SOD, CuZn- superoxide dismutase.
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in STZ- induced diabetic rats.138 These observations sug-
gest that LA administration actions a renal protective 
response against diabetes- induced oxidative injury in 
kidney tissue through an O- GlcNAcylation- dependent 
mechanism.

5  |  CONCLUSIONS AND FUTURE 
DIRECTIONS

Aberrant activation of O- GlcNAc modification contrib-
utes to the onset and progression of diabetic nephropathy 
(Figure  6). O- GlcNAcylation of proteins occur in renal 
mesangial cells, mediating lipid deposition, inhibiting cell 
growth, inducing hypertrophy, increasing production of 
extracellular matrix proteins, and causing mesangial cell 
apoptosis. Moreover, O- GlcNAc modification is essential 

for maintaining podocyte health and regulates glomerular 
filtration. In addition, O- GlcNAc modification destroys 
PTEC structure and function and contributes to EMT dur-
ing RIF. O- GlcNAc modification activates proinflamma-
tory responses, inhibits the degradation of extracellular 
matrix, and promotes RIF, leading to proteinuria and kid-
ney damage and promoting the development of diabetic 
nephropathy. Drugs with nephroprotective properties 
(e.g. SGLT- 2i and RAAS inhibitors) have been shown to 
inhibit O- GlcNAcylation. Although the significance of in-
hibition of O- GlcNAcylation is still not fully understood, 
it may provide a novel target for the treatment of diabetic 
nephropathy.
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F I G U R E  6  The relationship between abnormal activation of O- GlcNAcylation and diabetic nephropathy. (a) In renal tubular epithelial 
cells (PTEC), O- GlcNAc levels increase and the expressions of eNOS and HSP72 decrease, promoting renal fibrosis and accelerating the 
progression of CKD. (b) O- GlcNAcNA acylation increases, inducing the expression of TGF- β1 and Ang II, causing renal interstitial fibrosis 
(RIF), and destroying the structure and function of renal tubules. (c) O- GlcNAc levels increase and megalin is downregulated in PTEC, 
resulting in proteinuria. (d) High glucose leads to an increase in the expression of O- GlcNAcylation and an increase in the stability of Snail1, 
leading to EMT. (e) TGF β1, PAI- 1, VCAM- 1, and NF- κB promote the development of CKD by inhibiting the degradation of extracellular 
matrix, increasing matrix protein accumulation, promoting the infiltration of inflammatory cells into the glomerulus. (f) Increased O- 
GlcNAcylation levels induce the expression of p21Waf1/Cip1 and p27KIP1 in mesangial cells, arrest the cell cycle, inhibit cell growth and induce 
hypertrophy. ChREBP is involved in lipid accumulation in mesangial cells and renal fibrosis, leading to further deterioration of the kidney. 
(g) A certain level of O- GlcNAcylation is essential for podocyte maturation and maintenance of normal structure and function. (h) Highly 
expressed O- GlcNAcylation will activate Knot, reduce the expression of downstream Nephrin/Sns, destroy the integrity of the podocyte 
filtration barrier, and affect glomerular filtration function.
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