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Abstract
Background/Aims: As a microvascular complication, diabetic kidney disease is 
the leading cause of chronic kidney disease and end-stage renal disease world-
wide. While the underlying pathophysiology driving transition of diabetic kidney 
disease to renal failure is yet to be fully understood, recent studies suggest that cel-
lular senescence is central in disease development and progression. Consequently, 
understanding the molecular mechanisms which initiate and drive senescence in 
response to the diabetic milieu is crucial in developing targeted therapies that halt 
progression of renal disease.
Methods: To understand the mechanistic pathways underpinning cellular senes-
cence in the context of diabetic kidney disease, we reviewed the literature using 
PubMed for English language articles that contained key words related to senes-
cence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), 
autophagy, and diabetes.
Results: Aberrant accumulation of metabolically active senescent cells is a no-
table event in the progression of diabetic kidney disease. Through autocrine- and 
paracrine-mediated mechanisms, resident senescent cells potentiate inflamma-
tion and fibrosis through increased expression and secretion of pro-inflammatory 
cytokines, chemoattractants, recruitment of immune cells, myofibroblast acti-
vation, and extracellular matrix remodelling. Compounds that eliminate senes-
cent cells and/or target the SASP – including senolytic and senomorphics drugs 
– demonstrate promising results in reducing the senescent cell burden and asso-
ciated pro-inflammatory effect.
Conclusions: Here we evidence the link between senescence and diabetic kid-
ney disease and highlight underlying molecular mechanisms and potential thera-
peutic targets that could be exploited to delay disease progression and improve 
outcomes for individuals with the disease. Trials are now required to translate 
their therapeutic potential to a clinical setting.
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1  |   INTRODUCTION
Initially characterised in human diploid fibroblasts, se-
nescent cells were described as having a limited replica-
tive potential with irreversible cell cycle arrest after serial 
cultivation.1 Cessation of cell turnover generally occurs 
in the G1 phase,2,3 with three broad forms of senescence 
recognised: (i) telomere attrition-induced senescence,4 
caused by telomere shortening as a result of cellular rep-
lication, (ii) oncogene-induced senescence, which refers 
to suppression of cellular proliferation in response to ac-
tivation of oncogenic signalling5 and (iii) stress-induced 
senescence, which is attributed to injury stimuli such as 
oxidative stress,6 DNA damage7 and high glucose,8,9 and 
occurs independently of telomere length.

Senescent cells often present with an enlarged, flat-
tened morphology and are accompanied by organellar 
abnormalities such as irregular nuclei and cytoplasmic 
granularities.10 These cells exhibit increased expression of 
cell cycle inhibitors (e.g., p16, p21 and p53); have elevated 
senescence-associated β-galactosidase activity (SA-β-gal) 
and are associated with chromatin alteration and reor-
ganisation (e.g., heterochromatin foci).11 Moreover, senes-
cent cells display increased expression of anti-apoptotic/
pro-survival proteins such as B-cell lymphoma 2 (Bcl-2) 
and B-cell lymphoma-extra-large (Bcl-xL), thereby resist-
ing apoptosis and accumulating at sites of injury10 (see: 
Figure 1).

Usually cleared by the immune system, senescent cells 
accumulate with age or at the site of tissue damage in re-
sponse to sustained injury. Although devoid of proliferative 
capacity, these cells remain metabolically viable and un-
dergo significant metabolic reprogramming, ensuring they 
retain their growth-arrested state and express the genes and 
proteins required to sustain the highly complex, dynamic 
and variable ‘senescence-associated secretory phenotype’ 
(SASP).12 Traditionally considered to exhibit increased gly-
colysis, repressed autophagy and abnormal lipid metabo-
lism, the picture is complex; with cellular senescence tightly 
orchestrated by a number of different metabolic inducers 
and alterations involved in cellular metabolism.13 Initiation 
of senescence is heterogeneous and occurs within multiple 
contexts throughout the normal lifespan and across differ-
ent tissue types. Acute senescence is a physiologically ap-
propriate and tightly orchestrated biological process that 
occurs in response to cell extrinsic stimuli (e.g., injury, 
cancer and DNA damage) to maintain organogenesis and 

tissue homeostasis.14 In this context, senescent cells play an 
important role in both wound healing and tissue repair and 
are cleared in a timely manner by macrophages and nat-
ural killer cells as part of the innate immune response.14 
Conversely, chronic senescence refers to the dysregulated 
accumulation of senescent cells which, although usually 
cleared by the immune system,14 accumulate with age and 
in response to disease, resisting apoptosis and presenting 
with increased SA-β-gal activity and enhanced expression 
of cell cycle inhibitors.15 These cells are implicated in the 
development of inflammation and fibrosis by limiting tis-
sue rejuvenation and secretion of pro-inflammatory and 
pro-fibrotic mediators designated as the SASP.12 Despite its 
fundamental role in defence against infection or insult, an 
exaggerated and/or prolonged inflammatory response can 
be detrimental to health. Consequently, disease prevalence 
in the elderly is greater than in the general population,16 
with age being one of the strongest risk factors associated 
with multiple chronic inflammatory conditions.17–19 These 
events help explain why, despite an increasing lifespan 
in the general population, the corresponding increase in 
health-span lags behind.20

Compounded by the ageing process, the preva-
lence of type 2 diabetes mellitus (T2DM) and associ-
ated co-morbidities continue to rise.21 Individuals with 
T2DM display an accelerated ageing phenotype which 
is characterised by chronic and sterile inflammation.22 
Accumulation of senescent cells and its SASP have been 

What's new?

•	 This brief review summarises the implications 
of renal senescence in the context of diabetic 
kidney disease (DKD), utilising recent arti-
cles that explore molecular mechanisms that 
underpin its induction and the role of the 
pro-inflammatory secretome in exacerbating 
disease progression.

•	 We specifically review the role of senescent 
cell clearance through various exogenous and 
endogenous protectors and discuss the clinical 
relevance of reducing the senescent cell bur-
den as a strategy to slow disease progression in 
DKD.
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implicated in the pathology of a wide variety of age-
related diseases,23–26 including diabetes and its secondary 
complications, for example, impaired wound healing,27–29 
retinopathy,30–32 neuropathy,33 cardiomyopathy34,35 and 
nephropathy.36 While hyperglycaemia accelerates cellular 
senescence, the number of pathways by which this accel-
eration occurs is extensive and appears to vary between 
different cell types. Consequently, with no unifying model 
accounting for hyperglycaemia-associated senescence, we 
need to better understand how common mechanisms that 
underpin multisystem damage triggered by hyperglycae-
mia, hyperlipidaemia and high blood pressure (i.e., hall-
marks of T2DM and cardiometabolic syndrome) are also 
compounded with advancing age.

2   |   SENESCENCE AND DIABETIC 
KIDNEY DISEASE

Diabetic kidney disease (DKD) affects around 30–40% 
of individuals with diabetes22 and is associated with 
an increased risk of cardiovascular disease (CVD)22 as 
well as being the leading cause of end-stage renal fail-
ure worldwide.37 In the absence of curative options, a 
four-pillared approach to the management of DKD is 
recommended, including the use of blockers of the renin–
angiotensin–aldosterone system (RAAS), sodium-glucose 
co-transporter-2 inhibitors (SGLT2i), non-steroidal min-
eralocorticoid receptor antagonists and glucagon-like pep-
tide (GLP)-1 receptor agonists.38 Despite this plethora of 

F I G U R E  1   General molecular hallmarks of cellular senescence. Evaluation of multiple markers of senescence is required in the 
classification of cell senescence. Those commonly used include up-regulation of cell cycle inhibitors (e.g., p16, p21 and p53), elevations in 
β-galactosidase activity (measurable at pH 6.0), and common morphological alterations (e.g., irregular nuclear formation as a consequence 
of the loss of lamin-B1 and cellular enlargement due to restricted proliferation but continued growth). Due to dysfunctional mitochondria, 
senescent cells generate elevated levels of reactive oxygen species. These reinforce irreversible cell cycle arrest through activation of the 
DNA damage response pathway, observations compounded in the presence of increased expression anti-apoptotic proteins (such as Bcl-2). 
Upstream of cell senescence, elevations in mTOR impair the autophagy axis, promoting cell survival in the absence of cellular proliferation. 
Accumulation of these metabolically active cells impacts on cell function and further senescence through the detrimental effects of the 
pro-inflammatory secretome, comprised of both pro-inflammatory and pro-fibrotic molecules such as IL-6, IL-8, IL-1α and TGF-β1. 
Transcription of these SASP-associated genes is regulated by NF-kB, which is referred to as the master regulator of the SASP and is a notable 
hallmark of senescence due to its notable increase. IFN-y, interferon gamma; IGFBP-7, insulin-like growth factor binding protein 7; IL-1α, 
interleukin-1 alpha; IL-6, interleukin 6; IL-8, interleukin 8; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor kappa B; PAI-1, 
plasminogen activator inhibitor-1; ROS, reactive oxygen species; SA-β-gal, senescence-associated beta galactosidase; SAHF, senescence-
associated heterochromatic foci; SASP, senescence-associated secretory phenotype; TGF-β1, transforming growth factor beta; VEGF, 
vascular endothelial growth factor.
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interventions, non-modifiable risk factors combined with 
social and environmental determinants of health mean 
that some individuals naturally progress faster into end-
stage renal disease.39 Therefore, adjunct therapeutic ap-
proaches to target residual risk—often inflammatory in 
nature—are required.

Our kidneys are vulnerable to the natural ageing pro-
cess,40 a susceptibility likely attributed to their high met-
abolic activity, which exposes them to elevated levels of 
oxidative stress41 and chronic low-grade inflammation.42 
In individuals over 50 years of age, the human kidney ex-
hibits decreased cortical volume, increased surface rough-
ness, a reduction in nephron number and an increased 
appearance of renal cysts.43 Together these changes im-
pact on health and the elderly often exhibit impaired 
kidney function with age-driven histological changes.43 
Although a reduction in renal function with age is nor-
mal, the decline in many older individuals is dispropor-
tionate. Of the many changes taking place, three factors 
are considered critically important: senescence (cellular 
and biological ageing), immune dysfunction and inflam-
mation.44,45 Despite differences in aetiology, senescence, 
inflammation and fibrosis are common to both ageing 
and kidney disease and recent evidence suggests that an 
accumulation of senescent cells correlates to the natural 
decline in kidney function observed with both age46 and in 
the presence of disease, for example, chronic kidney dis-
ease (CKD)47and DKD.36,48

DKD develops in response to structural and func-
tional disturbances in different regions of the kidney, 
that is, the renal corpuscle49 and the proximal tubules.50 
Increased cellular senescence has been observed in both 
podocytes and renal tubular cells in people with type 2 
diabetic nephropathy,48 with reports demonstrating ele-
vated cellular senescence-related pathways in people with 
DKD.36 Increased activity of these pathways and a conse-
quent ‘senescence-related signature’ is associated with a 
declining glomerular filtration rate (GFR) and increased 
expression of fibrotic genes when compared with people 
exhibiting a lower senescence signature.36 Similarly, in ro-
dent in  vivo models of type 1 diabetes mellitus (T1DM) 
and T2DM, transition of proximal tubule epithelial cells 
(PTECs) to a senescent phenotype was reported, confirmed 
by increased SA-β-gal activity and elevated expression of 
cell cycle inhibitors p16, p27 and p21.51,52 Furthermore, 
extensive tubular cell senescence occurred following 
acute kidney injury (AKI) in a murine model of diabetes 
and remained unresolved for up to 28 days post initial in-
jury.53 This damage correlated with increasing markers 
of inflammation and loss of renal function.53 Additional 
studies have reported the effect of hyperglycaemia on the 
induction of renal senescence,9,54–57 with gene expression 
knockdown of cell cycle inhibitor p21 attenuating cell 

senescence in high glucose-cultured proximal tubules.54 
Constituting approximately 90% of cortical mass, the renal 
proximal tubules are the active site of glucose reabsorp-
tion, solute secretion, hormone production and metabolic 
function.58

In DKD, renal tubules are highly susceptible to in-
jury and tubulointerstitial fibrosis (TIF), a predictor of 
kidney failure that develops in response to various mor-
phological and phenotypic changes, including epithelial-
to-mesenchymal transition (EMT), inflammatory cell 
infiltration, fibroblast activation and extracellular matrix 
(ECM) remodeling.59 Cells of a senescent phenotype may 
thereby contribute to kidney damage through activation 
and recruitment of resident and infiltrating stromal and 
immune cells, deleterious effects that may be attributable 
to their pro-inflammatory secretome.

3   |   THE ROLE OF THE 
SENESCENCE-ASSOCIATED 
SECRETORY PHENOTYPE IN 
INFLAMMATION AND KIDNEY 
DISEASE

The SASP is a pro-inflammatory, bioactive secretome 
comprising a variety of factors including cytokines, 
chemokines, proteases and growth factors.12,60 The 
composition of the SASP is dynamic and heterogene-
ous, dictated by the stimulus and cell type undergoing 
senescence.60 Notably, the SASP can mediate its effects 
on adjacent cells in a paracrine manner—referred to as 
the ‘bystander effect’—with the release of inflammatory 
stimuli inducing further senescence in neighbouring cells 
and tissues.61 Recent studies in multiple models of disease 
link the senescent bystander effect to paracrine-mediated 
cell-to-cell communication and induction of multiple 
pathophysiological pathways, for example, EMT62,63 and 
fibroblast-to-myofibroblast differentiation.64,65

Although comprised of an extensive catalogue of se-
cretory factors, individual compounds associated with the 
SASP can be produced by non-senescent cells, for exam-
ple, immune cells. While studies must assess multiple pa-
rameters when evaluating the degree of senescence and its 
widespread effects, there are several cytokines and chemo-
kines (including pro-inflammatory cytokines interleukin 
(IL)-6 and IL-8) which are recognised as some of the most 
robust and highly conserved features of the SASP linked to 
sustained and chronic sterile inflammation.66 Chemokine 
signalling reinforces senescence across multiple cell types 
and also recruits immune cells that contribute to systemic 
inflammation.67 Serum levels of IL-6 are significantly in-
creased in people with DKD as compared with individuals 
without disease,68 and elevated urinary levels of IL-8 are 
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associated with reduced GFR and proteinuria, key mark-
ers of declining renal function.69,70 Other SASP inflamma-
tory cytokines include IL-1α and IL-1β.71 Active levels of 
IL-1β are a consequence of caspase-1-mediated cleavage 
of pro-IL1β, events triggered in response to assembly of 
the NOD-like receptor protein-3 (NLRP3) inflammasome, 
a protein complex and principal mediator of sterile in-
flammation across multiple age-related pathologies.72,73 
People with diabetic nephropathy have elevated levels of 
both IL-1β and IL-1α in their serum,74,75 with a recom-
binant human IL-1 receptor antagonist (BLG-553902) 
demonstrating efficacy in abrogating accumulation and 
deposition of fibrotic markers in PTECs.71 Moreover, 
significant reductions in plasma IL-1α were observed in 
individuals with DKD prescribed a 3-day combined oral 
course of senolytics, with notable reductions in senescent 
cell markers reported in both adipose and skin biopsies.76

Components of the SASP can be reliably quantified in 
human plasma,77 with case–control studies reporting that 
circulating, elevated levels of SASP proteins (IL-6 alone and 
in combination with IL-1β), are independent predictors of 
diabetes incidence.78,79 These cytokines signal and influence 
their local environment and that of distant tissues through 
the widespread effects of the SASP. Dysregulated inter-organ 
communication is supported by observations suggesting 
that the kidney tubule cell-released SASP factor osteopon-
tin acts as a causal mediator of AKI-induced remote acute 
lung injury,80,81 while chronic plasma osteopontin levels 
are linked to adverse clinical outcomes in individuals with 
CVD.82,83 Elevated with creatinine in people with stable cor-
onary artery disease,82 osteopontin is associated with mul-
tivessel lesions and a decline in renal function83 and is also 
a recognised molecule mediating cardiorenal syndrome.84 
When cleaved, osteopontin stimulates macrophage migra-
tion and fibroblast activation, events initiated by the SASP 
protein metalloproteinase-9 (MMP9),81 increased levels of 
which are linked to the pathogenesis of CVD85 and CKD86 
in T2DM. Pro-fibrotic mediators (including transforming 
growth factor beta-1 [TGFβ-1]), are central components of 
the SASP and efficacious drivers of renal fibrosis. Serum 
TGFβ-1 levels increase with age,87,88 and correlate with 
declining renal function in humans.89 Sustained overex-
pression of TGFβ-1 is a hallmark of ageing and is linked to 
senescence, increased SASP, inflammation and fibrosis.90–93 
The role for TGFβ-1 in renal disease pathology is well estab-
lished,94 with increased activity linked to elevated synthe-
sis of ECM components (e.g., collagen and fibronectin) and 
impaired degradation; characteristic hallmarks of glomer-
ulosclerosis, TIF and inflammation.95 Studies also suggest 
that TGFβ-1 positively regulates p21 expression via a p53-
independent pathway,96 suggesting a direct role in inflam-
mation through exacerbating senescence and downstream 
SASP production.

4   |   SENESCENT CELL TYPES 
CONTRIBUTING TO DKD

4.1  |  Glomerular cell senescence and 
podocyte loss

Early stages of DKD are characterised by a combination 
of haemodynamic and metabolic perturbations, namely 
glomerular changes that underpin hyperfiltration, pro-
teinuria, basement membrane thickening, podocyte loss 
and mesangial hypertrophy.97 Deleterious changes to 
glomerular filtration capacity (including the limited pro-
liferation of cells as a consequence of senescence) are 
likely a contributing factor in podocyte effacement98,99 
and impaired autophagy,100 with podocyte senescence 
linked to impaired autophagic flux and early albuminuria 
in an in  vitro model of T1DM.98 Notably, podocytes are 
one of the primary cell types exhibiting an accelerated 
senescent phenotype in DKD, with increased expression 
of senescence and SASP markers observed in both people 
with DKD48,101–103 and in murine models of T1DM104,105 
and T2DM.106 Elevations of senescent markers after high-
glucose treatment are also observed in in  vitro models 
utilising podocytes105 and mesangial cells,107 with p53101 
and p21102 each exhibiting increased expression. Elevated 
p21 expression in these cells appears to be a consequence 
of increased mammalian target of rapamycin (mTOR) 
kinase activity and loss of adenosine monophosphate-
activated protein kinase (AMPK) activation and connexin-
43 expression.107 Mechanistically, Chen et al. determined 
that podocytes with glycogen synthase kinase (GSK)-3β 
knockdown (a redox sensitive protein hyperreactive in 
type 2 glomerular podocytes) exhibit diminished SA-β-gal 
staining and decreased levels of p16, p21 and p53 when 
cultured in high glucose as compared with control.108 
Similarly, expression of SASP factors including TGFβ-1, 
plasminogen activator inhibition-1 (PAI-1) and insulin-
like growth factor binding protein-3 (IGFBP3) were also 
decreased when GSK3β was silenced.108 These benefits 
are supported by conditioned media transfer studies in 
which conditioned media from high glucose and TGFβ-1-
treated podocytes elicit a synergistic, pro-senescent effect 
on healthy, neighbouring podocytes.105 Such observations 
establish a role for SASP-mediated paracrine signalling, 
suggesting senescent podocytes can initiate senescence 
within the kidney in both a paracrine- and autocrine-
mediated manner in response to the diabetic milieu. As 
glomerular injury is one of the earliest events to occur in 
progression of DKD,109 studies exploring the paracrine na-
ture of senescence and the SASP within the glomerular 
corpuscle are key to our understanding of mechanisms 
where early intervention may ameliorate initial injury and 
prevent disease progression.
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4.2  |  Proximal tubular cell senescence

Critical to selective tubular reabsorption, high metabolic 
activity renders the proximal tubules susceptible to glycae-
mic injury,55 with epithelial cells identified as the primary 
location for renal senescence.110–112 Proximal tubules in the 
kidneys of people with diabetic nephropathy display an ac-
celerated senescent phenotype.48,113 Similarly, in vivo mod-
els of T1DM demonstrate that exposure to hyperglycaemia 
triggers senescent cell accumulation within the proximal 
tubules,53,54,114 observations further supported by stud-
ies utilising in vitro models of diabetic nephropathy.113,115 
Increased tubule cell senescence in a streptozotocin (STZ)-
induced mouse model of AKI has been linked to elevated 
levels of TIF markers (e.g., collagen-1α1, collagen-14α3, 
TGFβ-1 and α-smooth muscle actin [α-SMA]),53 with admin-
istration of the anti-tumorigenic heat shock protein (HSP)-
90 inhibitor alvespimycin—either alone or in combination 
with senostatic GS-444217—reducing senescent cell bur-
den, markers of inflammation (cluster of differentiation 68 
[CD68], tumour necrosis factor alpha [TNF-α], chemokine 
ligand 2 [CCL2]) and blood urea nitrogen.53 Furthermore, 
in a similar study using STZ mice, elevated levels of senes-
cent tubular cells were associated with increased levels of 
SASP (e.g., IL-6 and TNF-α), and markers of senescence 
(e.g., p21), events attenuated when the complement compo-
nent 5a receptor 1 (C5AR1) was deleted either genetically 
or pharmacologically.114 While these studies outline a link 
between the diabetic microenvironment, senescence and tu-
bular function, beneficial effects of pharmacological agents 
that intercept across a range of different pathways further 
highlight the complexity and heterogeneity of these events.

The onset and progression of TIF necessitates the in-
volvement of multiple cell types, namely tubule cells, 
fibroblasts and infiltrating macrophages. As it is well 
established that senescent cells exhibit the bystander ef-
fect,61 their accelerated accumulation in the proximal 
tubule provides a potential route by which they could 
orchestrate paracrine-mediated cell-to-cell crosstalk. 
Chronic accumulation of renal tubular senescent cells in 
in vivo models of kidney disease leads to persistent and 
sustained release of SASP factors that can trigger fibro-
blast activation leading to maladaptive kidney repair and 
TIF.91,116 Selective clearance of these cells is associated 
with a reduction of renal fibrosis and improved tubule cell 
regeneration and function, evidenced by restoration of 
GFR.91 In support of these observations, pro-fibrotic and 
inflammatory proteins secreted by senescent PTECs drive 
activation and proliferation of fibroblasts in a high glucose 
in vitro environment.116 Reinforced by Fu et al.55 this sug-
gests that in the face of glycaemic injury, stress-induced 
senescence of PTECs may represent a notable biological 
event in the progression of DKD.55

5   |   MECHANISMS OF CELLULAR 
SENESCENCE IN THE KIDNEY

As summarised in Figure  2, several pathways come to-
gether to initiate senescence within the diabetic kidney. 
Understanding how these pathways interact and orches-
trate senescence and its SASP enables future identifica-
tion of therapeutic targets.

5.1  |  The p16/RB and p53/p21 axes

Involved in irreversible cell cycle arrest, the p16/ret-
inoblastoma (RB) and/or p53/p21 pathway targets p16/
RB-induced cell cycle arrest and the release of E2F, a tran-
scription factor that facilitates progression through the 
cell cycle.11 Control of cell cycle inhibition fluctuates, with 
the involvement of the p53/p21 pathway predominating 
during initiation of senescence, and the p16/RB arm more 
prevalent in maintenance of the senescent state.11

In the p16/RB axis, p16 inhibits the cyclin-dependant 
kinase 4/6-cyclin D complex, which dephosphorylates 
RB-E2F and initiates cell cycle arrest.117 Expression and 
activation of p16 can be attributed to injury caused by ox-
idative stress118 and advanced glycation end products,119 
both of which correlate with DKD as a consequence of 
hyperglycaemia. In the p53/p21 axes, p53 becomes phos-
phorylated and up-regulates expression of p21 which can 
inhibit the cyclin-dependant kinase 2-cyclin E complex.11 
This mechanism culminates in subsequent dephosphor-
ylation of RB-E2F, leading to cell cycle arrest in multiple 
cell types, including the kidney.11 Activation of p53 can 
occur directly in response to elevated glucose and is mark-
edly increased in renal tubular cells in both in vitro and 
in vivo models of diabetes.120 Similarly, p21 expression is 
induced in response to hyperglycaemia where tubular lev-
els of p21 are associated with the severity of DKD.120

5.2  |  AMPK/mTOR signalling

An adenosine triphosphate (ATP)-dependant protein ki-
nase, AMPK is an essential protein which supplies energy 
for use in normal/healthy cellular activities.121 Activated 
in response to various stimuli, for example, hypoxia and 
nutritional deficiency,121 AMPK has several roles in age-
ing, including inhibition of mTOR, a potent inhibitor of 
autophagy and consequent promotor of senescence.122 
Inhibition of mTOR delays senescence in several cell 
types,121,123 suggesting negative crosstalk between these 
two proteins. This interrelationship can be observed in 
renal PTECs, where inhibition of mTOR and activation 
of AMPK reduces hyperglycaemia-induced senescence.124 
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Conversely, elevated glucose significantly increases 
mTOR expression, activity, and associated senescence in 
mesangial cells.125 These data suggest a functional role for 
AMPK and mTOR in the induction of renal senescence, 
where compounds targeting their activity may delay 
age-related diseases, for example, rapamycin has shown 
promising results in suppressing cellular senescence125 
and improving renal tubular injury in vitro.125

5.3  |  Autophagy

Autophagy is a highly conserved eukaryotic process, de-
fined as a lysosomal degradation pathway which recycles 
cellular components to maintain energy homeostasis.126 
Importantly, autophagy deficiency within the kidneys—
specifically the proximal tubules—has been observed in 
people with T2DM127 and diabetic nephropathy,128 as 
well as in rodent models of diabetes.129–131 Induction of 

autophagy can be attributed to phosphorylation and activa-
tion of AMPK,104 which regulates the expression of down-
stream autophagy genes (e.g., forkhead box O3 [FOXO3] 
and bromodomain-containing protein 4 [BRD4]), and also 
promotes autophagy directly by phosphorylating several 
autophagy-related proteins.132 The inhibitory relationship 
between autophagy and senescence has been well charac-
terised.133–135 In in vivo models of STZ-induced DKD, ac-
tivation of autophagy attenuates podocyte senescence.104 
Similarly, selective clearance of senescent cells by seno-
lytics (i.e., dasatinib and quercetin) activates autophagy 
in podocytes which protects against DKD progression.100 
Activation of autophagy was also associated with reduced 
levels of senescence in murine models of both T1DM 
and T2DM, specifically in three renal cell types when 
cultured in  vitro (i.e. PTECs, mesangial cells and podo-
cytes).136 Notably, the use of rapamycin, an inhibitor of 
mTOR, activated autophagy and reduced levels of p16 and 
p21 in PTECs.123 In contrast, murine models with a renal 

F I G U R E  2   Multiple pathways govern the induction of senescence and ultimately culminate in the phosphorylation of pRB to induce 
cell cycle arrest. Sustained hyperglycaemia triggers up-regulation of reactive oxygen species and pro-fibrotic cytokine TGFβ-1, leading to 
increased transcription of pro-inflammatory cytokines and cell cycle arrest. High glucose can also regulate AMPK and mTOR activity, 
leading to repression of autophagy which promotes senescence in its later stages. Similarly, oncogene activation culminates in repression 
of autophagy through modulation of the PI3K/AKT axis. This pathway directly regulates mTOR activity to down-regulate autophagy and 
promote the senescent state. In addition to effects on autophagy, oncogene activation also induces cell cycle arrest through the p38/MAPK 
axis, which leads to p53 up-regulation and consequent arrest via inhibition of cyclins. Exposure to radiation also causes up-regulation 
of p53 through effects on Nrf2 activity and MDM2. AKT, protein kinase B; AMPK, adenosine monophosphate-activated protein kinase; 
ATM, ataxia-telangiectasia mutated; C/EPB β, CCAAT-enhancer-binding protein beta; ERK, extracellular signal-regulated kinase; ETS, 
erythroblast transformation specific; MAPK, mitogen-activated protein kinase; MDM2, mouse double minute 2; mTOR, mammalian 
target of rapamycin; NAD, nicotinamide adenine dinucleotide; NF-kB, nuclear factor kappa B; Nrf2, nuclear factor erythroid 2-related 
factor; P13K, phosphatidylinositol 3-kinase; pRB, phosphorylated retinoblastoma; RAS, rat sarcoma; ROS, reactive oxygen species; SASP, 
senescence-associated secretory phenotype; TGFβ-1, transforming growth factor beta 1.
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tubule-specific autophagy knockout exhibit increased tu-
bular cell senescence, leading to maladaptive kidney re-
pair post-ischaemic AKI.137 Interestingly, mitophagy, the 
selective degradation of mitochondria by autophagy, has 
also been linked to induction of cell senescence in primary 
proximal tubule cells in people with type 2 DKD138 and in 
STZ-induced mice.139

Initially believed to have a one-dimensional role in 
negatively regulating cellular senescence through target-
ing cells for degradation, a recent study suggests autoph-
agy may differentially modulate cellular senescence via 
a pro-senescence autophagy-mediated function. Zhang 
et  al. demonstrated that kidney PTECs exhibit elevated 
expression of both senescence and autophagy-related pro-
teins in response to high glucose.135 High levels of tubular 
autophagosomes were also observed, and co-incubation 
with an inhibitor of autophagy reversed increases in p21 
and p53 expression.135 While these results suggest a dual 
role for autophagic flux in hyperglycaemia-induced renal 
tubular senescence, further studies are required to sup-
port such a statement.

5.4  |  Wnt signalling

Wingless-related integration site (Wnt)/β-catenin signal-
ling comprises a pathway crucial in normal organogen-
esis and tissue repair in healthy individuals.140 In healthy 
adult kidneys, Wnt signalling is usually silent, but is reac-
tivated in response to renal injury141 and the ageing pro-
cess.142 The canonical Wnt/β-catenin pathway involves 
nuclear translocation of β-catenin following dephospho-
rylation, from where it binds to transcription factor T-cell 
factor (TCF)/lymphoid-enhancer-binding factor (LEF), 
triggering up-regulation of downstream target genes (e.g., 
fibronectin, collagen I and granulocyte colony stimulating 
factor).143,144

Studies have confirmed the effects of Wnt signalling 
in promoting cellular senescence in many cell types in-
volved in age-related disease, including alveolar epithelial 
cells,145 and chondrocytes.146 Immunostaining of kidney 
biopsies from people with various nephropathies, includ-
ing diabetic nephropathy, revealed that Wnt9a expression 
was significantly increased and predominantly localised 
to the renal tubular epithelium.147 These changes were 
positively correlated to elevated expression of senes-
cence markers, such as β-galactosidase and p16, with 
ablation of Wnt9a reversing these changes.147 Similarly, 
in a gene set enrichment analysis, senescent cells from 
the renal epithelium demonstrated significant increases 
in Wnt signalling when compared with non-senescent 
counterparts.148

Activation of the Wnt/β-catenin pathway has been 
shown to promote tubular cell senescence in murine mod-
els of kidney disease.149 Here, up-regulation of senescence 
through the Wnt/β-catenin pathway resulted in develop-
ment of renal fibrosis, with inhibition of this pathway 
negating increases in markers of senescence.149 Ectopic 
expression of Wnt1 was also associated with increases in 
cellular senescence in PTECs,142 with inhibition of Wnt/β-
catenin restoring these changes.142 Furthermore, a study 
by Luo et al. reported that the Wnt9a ligand promotes ac-
celerated cellular senescence of PTECs in rodent models 
of kidney injury.147 Consequently, aberrant Wnt/β-catenin 
signalling has been identified as a key mediator of cellular 
senescence within the kidney.

6   |   ENDOGENOUS PROTECTION 
AGAINST CELLULAR SENESCENCE 
WITHIN THE KIDNEY

Due to the heterogeneous nature of senescence and its 
dual role in both longevity and disease, the process is 
dichotomously controlled by both negative and positive 
regulators. Importantly, several endogenous factors are 
involved in the regulation of cellular senescence within 
the kidney and are thought to naturally protect against 
progression of DKD (Figure 3).

6.1  |  Klotho

Predominantly expressed in tubular cells, klotho is a 
pleiotropic protein with both reno-protective and gero-
protective (anti-ageing) functions within the kidney.150 It 
acts as an endocrine signalling molecule and has multiple 
protective roles through its ability to dampen oxidative 
stress, extend lifespan and improve insulin sensitiv-
ity.151 Studies have identified the relative loss of soluble 
klotho in the plasma as a predictor of renal impairment 
in people with T2DM.152,153 In this context, loss of klotho 
negatively correlates to the annual rate of decline in esti-
mated GFR in people with diabetes,152 suggesting it may 
be a useful biomarker for predicting renal impairment in 
this group of people. Deficiency in soluble klotho is also 
associated with microalbuminuria in individuals with 
T1DM,154 suggesting a causal role for klotho deficiency 
on albumin excretion, while recent observations associ-
ate diminished klotho with albuminuric DKD in people 
with T2DM.155

In mouse models of obesity, selective clearance of se-
nescent cells using the senolytics dastatinib and querce-
tin restored klotho levels within the kidney, highlighting 
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an inverse relationship between klotho and cellular se-
nescence.156 This inhibitory relationship has been docu-
mented in studies using models of kidney disease157,158 
where supplementation of rodent kidney cells with klotho 
blunted oxidative stress-induced senescence and reduced 
cellular injury.158 Regulated via a Wnt9a-dependant path-
way, ectopic expression of klotho was able to mitigate 
increases in p16 protein expression and SA-β-gal activity 
in murine models of CKD.157 Similarly, klotho abolished 
renal fibrosis in a high glucose-induced accelerated age-
ing murine model through antagonist effects on endog-
enous Wnt signalling, a well established pathway in the 
induction of renal senescence and a potential pathway in 
which klotho may mediate its anti-senescence effects.128 
In support of this suggestion, overexpression of klotho 
in murine models of T2DM abolished injury in renal glo-
merular endothelial cells while also negating increased 
Wnt-β-catenin signalling.151 Comparatively, regulation 
of autophagy may be another pathway by which klotho 
protects against cellular senescence, since autophagy is 
a recognised repressor of senescence induction. A study 
by Xue et al. confirmed that klotho expression was down-
regulated in murine models of T1DM and high glucose-
induced PTECs; however, overexpression of klotho was 
associated with enhancement of autophagy and AMPK 
both in vivo and in vitro.159 Soluble klotho also increased 

renal levels of AMPK in in vivo models of T2DM while 
down-regulating levels of mTOR.160

The anti-inflammatory properties exerted by klotho 
are also thought to confer renoprotection in response to 
disease. Exogenous supplementation of klotho supresses 
cytokine production following TNFα stimulation in mu-
rine models of CKD.161 In rodent renal cells exposed to ox-
idative stress-induced senescence, treatment with klotho 
abrogates increases in SASP markers (e.g., IL-6, TNFα and 
IL-1β).158 Further studies are needed to evaluate a mecha-
nistic role for klotho in mediating renal senescence in the 
presence of glycaemic injury.

6.2  |  Sirtuin1

Sirtuin1 (SIRT1) is a member of a conserved family of 
nicotinamide adenine dinucleotide (NAD+)-dependant 
deacetylases that exert a wide range of cellular functions 
in ageing and cellular homeostasis.162 Moreover, with 
potent antioxidant properties, SIRT1 protects against 
oxidative stress, a recognised hallmark of age-associated 
conditions, including DKD. In fact, loss of SIRT1 has been 
identified as a biomarker of DKD,163 with renal levels re-
portedly decreased in murine models of both T1DM and 
T2DM.164 In murine models of overfeeding, decreased 

F I G U R E  3   Endogenous factors and their mechanisms of action to protect against cellular senescence. Endogenous factors SIRT1 and 
α-klotho have been shown in studies to have anti-senescence effects through mediation of several pathways implicated in the induction 
of cellular senescence. SIRT1 is a negative regulator of NF-kB, a potent transcription factor associated with regulation of SASP gene 
transcription, and also has regulatory effects on AMPK and PGC-1α, Similarly, α-klotho can repress NF-kB activity and directly reduce 
senescence through effects on cell cycle inhibition. AMPK, adenosine monophosphate-activated protein kinase; mTOR, mammalian target 
of rapamycin; NF-kB, nuclear factor kappa B; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1α; SASP, senescence-
associated secretory phenotype. Peroxisome proliferator-activated receptor-gamma coactivator-1α.
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SIRT1 is associated with induction of renal cellular se-
nescence, confirmed by increases in SA-β-gal activity and 
elevations in cell cycle inhibitor p53.165 Studies have dem-
onstrated that SIRT1 is able to combat oxidative stress by 
modulating transcriptional activities of proteins involved 
in the oxidative stress response. Specifically, SIRT1 has 
been shown to be a regulator of peroxisome proliferator-
activated receptor-gamma coactivator-1α (PGC-1α), a 
transcriptional factor which prevents and protects mu-
rine podocytes against oxidative stress.166 Consequently, 
SIRT1 can reduce high glucose-induced oxidative stress 
within the kidney, attenuating progression of DKD in 
STZ mice.167 Through p53 deacetylation, SIRT1 has 
also demonstrated attenuation of renal senescence in 
PTECs.168 Furthermore, in murine models of AKI, SIRT1 
activation promotes autophagy,169 while pharmacologi-
cal inhibition of SIRT1 (via EX-527) blocked autophagy 
in STZ rats having received pharmacological interven-
tion.170 In support of this, SIRT1 down-regulation blocks 
mesenchymal stem cell-mediated enhancement of podo-
cyte autophagy in DKD rats.171

Not surprisingly, activators of SIRT1, for example, res-
veratrol, show promising results in arresting high glucose-
induced kidney cell senescence,125 with recent findings 
in aged mice reporting that resveratrol protects against 
glomerulosclerosis through SIRT1-mediated klotho ex-
pression.172 Collectively, these studies highlight SIRT1 as 
a promising therapeutic target in mediation of renal se-
nescence. However, further studies are now required to 
delineate a specific role for SIRT1 in the induction of se-
nescence within the diabetic kidney.

7   |   PHARMACOLOGICAL 
INTERVENTIONS PROMOTING 
RENAL SENESCENT CELL 
CLEARANCE

Pharmacological interventions that promote the selective 
clearance of senescent cells are of key therapeutic inter-
est for treatment of DKD. These compounds, referred to 
as senotherapeutics, can be divided into senolytics (which 
selectively eliminate senescent cells) and senomorphics 
(which supress and modulate expression of the SASP). 
Senolytic therapies are able to overcome the resistance 
of senescent cells to apoptosis by inducing programmed 
cell death.15 Comparatively, senomorphics modulate the 
SASP through targeting signalling pathways linked to 
SASP expression173 (Figure 4).

7.1  |  Dasatinib, quercetin and fisetin

Dasatinib is a second-generation tyrosine kinase inhibi-
tor approved for the treatment of chronic myeloid leu-
kaemia, while quercetin is a plant flavonoid abundant in 
several fruits and vegetables that possesses antioxidant 
and anti-inflammatory properties.100 The therapeu-
tic potential of dastatinib and quercetin in eliminating 
the senescent cell burden in disease has been evalu-
ated in several in vivo and in vitro studies. In diabetic 
mice, dastatinib and quercetin enhanced renal func-
tion and improved histopathological changes, including 
a reduction in renal fibrosis and glomerular basement 

F I G U R E  4   The mechanisms of action of senolytics and senomorphics and their roles in reducing the burden of senescent cells. 
Senolytics, for example, dasatinib, quercetin, fisetin and navitoclax (ABT-263) act by initiating pro-apoptotic pathways (e.g., Bcl-2) 
dysregulated by senescence to promote senescent cell clearance. Senomorphics, such as SGLT2is and metformin, work to modulate 
the pathways involved in senescent cell initiation, thereby targeting them for removal. AKT, protein kinase B; AMPK, adenosine 
monophosphate-activated protein kinase; MDM2, mouse double minute 2; mTOR, mammalian target of rapamycin; Nrf2, nuclear factor 
erythroid 2-related factor; P13K, phosphatidylinositol 3-kinase; RAS, rat sarcoma.
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membrane expansion.100 In this context, the benefits 
of dastatinib and quercetin are believed to be mediated 
by the activation of autophagy.100 Similarly, dastatinib 
and quercetin abrogated the senescence response in 
renal PTECs exposed to the diabetic microenvironment, 
and attenuated changes in expression of p16, p53 and 
fibronectin.113

The use of dastatinib and quercetin in reducing total 
senescent cell burden is currently under investigation 
in an open-label, phase I pilot study (NCT02848131).76 
Study participants include adults aged 50–80 years 
with diabetes mellitus (on anti-diabetes therapy) and 
CKD (estimated GFR range: 15–45 mL/min/1.73 m2).76 
Preliminary observations report decreased expression 
of p21 and p16 and a reduction in senescent cell accu-
mulation as evidenced by SA-β-gal activity in adipose 
tissue biopsies isolated from these individuals (11 days 
post-drug initiation).76 Circulating SASP factors (such as 
IL-6, MMP-9, MMP-12 and IL-1α) were also reduced, as 
was accumulation of CD68+ tissue macrophages,76 the 
latter of which was attributed to decreased macrophage 
attraction and loss of anchoring within adipose tissue 
as a consequence of senescent cell clearance. Despite 
promising results, it is important to note that one of the 
major limitations dastatinib and quercetin is their po-
tential for nephrotoxicity.174,175 While pre-clinical and 
clinical trials have not provided conclusive evidence 
of these toxic effects, real-world applications of dasati-
nib have been associated with rare renal adverse effects 
(e.g., proteinuria and diffuse foot process damage).174 
Consequently, at present, the potential for clinical appli-
cation of dastatinib and quercetin remains limited, with 
further studies now required to assess any potential off-
target effects.

Similar to quercetin, fisetin is a plant flavonoid which 
possesses a variety of pharmacological properties, such 
an antioxidant, anti-inflammatory and anti-cancer ac-
tivities.176 The therapeutic potential of fisetin to protect 
against senescence-related changes in the kidney has re-
cently been reported. In in vitro models of high glucose-
induced podocyte injury, treatment with fisetin attenuates 
a glucose-induced loss of function in podocytes, effects 
which were paralleled by suppression of the NLRP3 in-
flammasome and increased autophagy, the latter evi-
denced by increased autophagosome formation.73,177,178 
In murine models of CKD91,179 and T1DM176 fisetin ad-
ministration reduced senescent cell burden and renal 
fibrosis, culminating in improved tubular function and 
improved kidney injury.91 Notably, the anti-fibrotic effects 
of fisetin have been attributed to inhibition of the TGF-β1 
pathway;91,176 a ubiquitous cytokine well documented as a 
driver of both senescence and renal fibrosis in the context 
of hyperglycaemia.94,95,180 Through phosphorylation of 

signalling intermediates (Smad 2/3), fisetin reduced pro-
tein expression of extracellular matrix components (e.g., 
α-SMA) and attenuated increases in fibrosis-related genes 
(e.g., collagen 1).176

Although in  vitro and in  vivo results of fisetin treat-
ment on alleviating senescent cell burden in the diabetic 
kidney are promising, evaluation of fisetin in a clinical 
trial setting has yet to be conducted, with little informa-
tion currently available regarding long-term side effects or 
health risks of drug use.

7.2  |  ABT-263 (Navitoclax)

As an orally active Bcl-2 inhibitor, ABT-263 disrupts Bcl-2/
Bcl-xL interactions with pro-apoptotic proteins, triggering 
the initiation of apoptosis.12 Currently only tested in eug-
lycaemic conditions, ABT-263 selectively eliminates senes-
cent cells within the proximal tubular epithelium of young 
and aged mice with AKI, reducing fibrosis and improving 
renal function.181 Similar improvements are observed in a 
model of CKD, where ABT-263 attenuates renal fibrosis 
and improves tubular repair after repeated treatment with 
cisplatin.91 Although not evaluated in DKD, the ability of 
ABT-263 to reduce senescent cell burden makes it a com-
pound of interest for future investigations. However, as 
inhibition of Bcl-xL has effects on platelet survival, ABT-
263 has been linked with thrombocytopenia.182 Therefore, 
similar to dastatinib and quercetin, the therapeutic poten-
tial of ABT-263 remains to be determined.

7.3  |  Metformin

Metformin is commonly used as a first-line treatment of 
T2DM.183 However, its efficacy in regulating cellular and 
metabolic processes involved in the development of age-
related diseases has reignited widespread interest beyond 
its glycaemic actions. In computational modelling, met-
formin was shown to directly activate SIRT1,184 with stud-
ies reporting that metformin reduced glucose-induced 
cell senescence in PTECs as evidenced by diminished p21 
mRNA expression and β-gal staining.56 These findings were 
corroborated in rodent models of T2DM, where metformin 
improved senescent cell burden in the tubular epithelium 
in response to a high-glucose microenvironment.56,183 The 
protective effects of metformin in this context are thought 
to be mediated through the AMPK/SIRT1-FoxO1 axis, 
which works to reduce oxidative stress, a potent inducer of 
senescence, while enhancing autophagy.185

Effects of metformin in attenuating the hallmarks of 
ageing are being evaluated in the ongoing ‘targeting age-
ing by metformin (TAME)’ clinical trial, which examines 
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the efficacy of metformin in delaying the onset of age-
related diseases by modulating mechanistic pathways, 
for example, cellular senescence.186 As metformin has al-
ready exhibited favourable effects in reducing senescent 
cell burden in both in vitro and in vivo studies, its trans-
lational potential as an anti-ageing therapy is apparent 
and may play a crucial role in the treatment landscape 
for DKD.

7.4  |  Sodium/glucose cotransporter-2 
(SGLT2) inhibitors

Sodium-glucose co-transporter 2 inhibitors (SGLT2is, e.g., 
empaglifozin, dapaglifozin and canagliflozin) are glucose-
lowering drugs currently prescribed for the treatment of 
T2DM.187,188 They selectively target the SGLT2 membrane 
protein in the proximal tubule, preventing glucose reab-
sorption, while preserving GFR through increased tubulo-
glomerular feedback and decreased hyperfiltration.189 In 
addition, SGLT2is have demonstrated adjunct protective 
effects outside of their glucose lowering ability, with im-
proved cardiovascular and renal outcomes observed in the 
absence of diabetes.190 However, the mechanism by which 
this occurs remains to be elucidated.

It has been proposed that SGLT2is may target the age-
ing process itself,191 with recent studies highlighting a role 
for the SGLT2 protein in kidney senescence, and hypergly-
caemia having been observed to induce cellular senescence 
in DKD via an SGLT2-dependant pathway.54,87,192,193 The 
diabetic microenvironment has been shown to increase ex-
pression of SGLT2 within proximal tubule epithelial cells in 
in vitro models of diabetes.57,115 Comparatively, inhibition 
of SGLT2 is associated with reduced tubular senescence in 
STZ-induced mice,57 and in in vitro models of diabetic ne-
phropathy.115,192 The protective effects of SGLT2is in amelio-
ration of senescence are likely due to their roles in reducing 
oxidative stress and DNA damage through induction of anti-
oxidant pathways.192 Regulation of autophagy has been pro-
posed as one of the mechanisms by which SGLT2is reduce 
cellular senescence and protect against DKD progression. 
In PTECs, empagliflozin was shown to increase AMPK lev-
els and recover autophagic flux, as evidenced by increased 
formation of autophagosomes in the presence of high glu-
cose.194 In vivo, these results were corroborated in murine 
models of T2DM displaying reactivation of glomerular au-
tophagy after treatment with empagliflozin.131 Moreover, 
dapagliflozin confers protective effects in T2DM murine 
models of DKD through increased AMPK activity,195 events 
in vivo linked to restoration of autophagy in high glucose-
treated PTECs.196 Similarly, hyperactivation of mTOR is 
reversed after treatment with empagliflozin in both in vitro 
models of diabetes194 and in  vivo models of DKD.193 As 

increased mTOR activity is a hallmark of senescence and po-
tent inhibitor of autophagy, SGLT2-mediated inhibition of 
mTOR may present a viable mechanism by which SGLT2is 
suppress senescence and confer renoprotection.57,192,193

8   |   CONCLUSION

The pathogenesis of DKD is driven by chronic and dys-
regulated inflammation and fibrosis. Notably, the aber-
rant accumulation of senescent cells has been implicated 
in this process, with many studies demonstrating the 
deleterious effects of cellular senescence in diabetes-
associated nephropathy.56,112,114,197 Exposure to various 
stress-inducing stimuli (e.g., hyperglycaemia), promotes 
cellular senescence and inhibits damage repair and re-
generation within the kidney. Subsequently, the release 
of pro-inflammatory and pro-fibrotic molecules through 
the senescent secretome results in a perpetual cycle which 
further perpetuates DKD progression. Reno-protective 
benefits of senomorphics and senolytics have been as-
sessed in various models of kidney disease. Repurposing 
currently approved therapeutics for diabetes management 
(e.g., metformin and SGLT2i) for modulation in the pa-
thology of age-related disease offers promising therapeutic 
potential. However, to generate future pharmacological 
therapies which prevent disease progression with minimal 
contraindications, future research is needed to help better 
understand the specific molecular mechanisms of senes-
cence in DKD.
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