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In the past two decades, considerable
effort has been devoted to elucidating

the mechanisms of transcriptional regula-
tion in metazoans. A number of funda-
mental principles have been established
concerning the functions of many tran-
scription factors (TFs) and the cis-acting
sequences to which they bind (1). One
hypothesis that has emerged from these
studies is that genes with similar temporal
and spatial expression patterns are subject
to a common regulatory logic. That is,
unique ‘‘transcriptional codes’’ govern the
activation and repression of genes in par-
ticular developmental contexts (2, 3).
However, because of the laborious nature
of cis-regulatory sequence dissection, few
comprehensive examples exist to support
this concept. A more efficient approach to
the identification of coexpressed genes
and their associated regulatory elements
would accelerate this field greatly. The
availability of complete human and model
organism genome sequences represents a
tremendous windfall for those interested
in this problem. Two papers appearing in
this issue of PNAS (4, 5) exemplify how a
marriage between computational and ex-
perimental biology can yield a powerful
approach for exploiting genomic informa-
tion to predict and validate new genes, the
expression of which are subject to similar
transcriptional codes.

The complex spatial and temporal pat-
terns of gene expression occurring in de-
velopment are orchestrated by cis-acting
regulatory modules (CRMs) or enhancers
(2, 3). CRMs comprise sets of short oli-
gonucleotide motifs, each of which has an
affinity for one or more sequence-specific
DNA-binding proteins or TFs. TFs in turn
interact with each other and the basal
transcriptional machinery to either acti-
vate or repress the expression of coding
regions associated with the particular
CRM. A recurring theme in the organi-
zation of CRMs is their ability to integrate
multiple convergent inputs through the
binding of TFs belonging to different
classes, often in a cooperative manner
(6–10). The clusters of binding sites found
within a CRM can include multiple copies

of the same or different motifs. This com-
binatorial nature of CRMs contributes to
the response specificity of proteins that
individually would not discriminate
among different targets effectively and at
the same time broadens the diversity of
potential outputs generated by a limited
set of factors. For example, unique com-
binations of tissue-specific selector pro-
teins and signal-activated TFs can induce
target gene expression in exquisitely pre-
cise domains, and a given TF can activate
distinct genes in different developmental
contexts (6, 8–10).

A major goal of developmental biolo-
gists is to understand in fine detail how the
genomic control apparatus is organized
and functions, that is, how sets of related
genes are coexpressed. The traditional
approach to this problem is to use in vitro
and in vivo meth-
ods to analyze indi-
vidual CRMs, a
slow and painstak-
ing process for the
characterization of
genetic networks.
For larger scale dis-
covery of candidate
regulatory regions,
computational algorithms have been
developed for genome-wide scans (re-
viewed in refs. 11–13). However, with a
purely computational approach, uncer-
tainty remains as to whether a predicted
CRM actually possesses the expected
function. The work of Markstein et al. (4)
and Berman et al. (5) represents an im-
portant step forward by addressing this
issue directly.

These two groups used related but dis-
tinct computational strategies for the pre-
diction of coexpressed genes and their
associated CRMs in the Drosophila mela-
nogaster genome (4, 5). Each identified
sets of similar CRMs based on the dense
clustering of individual TF binding sites.
However, whereas Markstein et al. used a
single class of TF, Berman et al. employed
five different TFs with known concerted
functions during Drosophila embryogene-
sis. Most importantly, both efforts in-

volved not only computational predictions
but also experimental evaluation of the
candidates obtained from their respective
genome-wide searches. This is a critical
aspect of this approach that distinguishes
it from prior studies where experimental
validation of novel CRMs derived from a
search was not undertaken (14–18).

The work of Berman et al. (5) builds on
earlier efforts that defined the hierarchy of
TFs controlling anteroposterior patterning
of the Drosophila embryo (3). Five such TFs
with well defined DNA binding specificities
were selected: Bicoid (Bcd), Caudal (Cad),
Hunchback (Hb), Krüppel (Kr), and Knirps
(Kni). A position weight matrix (19), which
reflects the frequency with which a given
nucleotide appears in each position of a
binding site, was constructed for each set of
available TF recognition sequences. The

position weight ma-
trixes then were
used to search the
Drosophila genome
for the locations of
potential TF sites. A
further parameter
was added to the
search algorithm to
eliminate those sites

with a theoretical low affinity for each fac-
tor. An initial test run of 1 megabase of
sequence surrounding even skipped (eve), a
known target gene of these regulators, iden-
tified the majority of experimentally docu-
mented binding sites as well as many others.
To distinguish between random and func-
tionally relevant occurrences of these sites,
an additional consideration was introduced:
the latter should be densely clustered, as
defined arbitrarily by the colocalization of at
least 13 sites in a 700-bp window. The va-
lidity of this in silico analysis was established
with the identification of three previously
characterized eve stripe enhancers.

Extending their search strategy to the
entire Drosophila genome but increasing the
requisite density of TFs imposed by their
program, Berman et al. (5) found an addi-
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tional 28 clusters that defined 49 candidate
target genes (some clusters fell within in-
trons, whereas others were located in inter-
genic regions, the latter defining two poten-
tial targets). Of these, �40% were found to
be expressed in early embryos in patterns
consistent with regulation by the TFs used
to model the search. As a further empirical
test of this approach, one of the high-density
clusters that is found just upstream of the
gap gene, giant (gt), was evaluated for en-
hancer activity in transgenic embryos. Strik-
ingly, this genomic sequence directed re-
porter gene transcription in a pattern that
faithfully recapitulated the posterior do-
main of endogenous gt expression. Thus, a
previously unknown enhancer was identi-
fied by a purely computational approach.

In designing their computational
search, Markstein et al. focused on only
one TF, Dorsal (Dl; ref. 4). Dl is involved
in patterning the early Drosophila embryo
by activating or repressing particular
genes in discrete regions along the dorso-
ventral axis (3). A Dl-responsive silencer
from one gene, zerknullt (zen), was used to
develop a specific model for a genome-
wide computational scan to identify re-
lated CRMs. In this case, clusters of at
least three high-affinity Dl binding sites
were sought in a 400-bp window. This
search yielded only 15 matches, an im-
probable occurrence by chance alone.
Furthermore, three of these matches were
associated with known Dl-responsive
genes. One such candidate Dl-dependent
CRM was found in an intron of short
gastrulation (sog). When fused to a re-
porter transgene, this putative enhancer
activated transcription in a lateral embry-
onic domain that corresponds to that of
endogenous sog. Two additional candidate
Dl target genes were found to be ex-
pressed in patterns that are consistent
with direct regulation by this TF, although
the functions of the associated CRMs
were not assessed. These examples affirm
the feasibility of computationally discov-
ering new regulatory elements that adhere
to a common code defined by Dl binding.

Markstein et al. built a successful search
algorithm around a single TF binding site
(4). However, even here combinatorics
can be applied. Some characterized Dl-
responsive enhancers are known to con-
tain binding sites for other TFs such as the
zinc finger protein Snail (20). At least one
of the new CRMs identified also con-
tained potential Snail sites, which can
explain features of its function. Twist, a
basic helix–loop–helix TF, also acts to-
gether with Dl in regulating some enhanc-
ers (21). Inclusion of these additional
classes of sites in the search algorithm
might reduce the rate of false-positive
returns. One explanation offered by the
authors for such false positives is the pos-
sibility that these genes are targets of

other Dl family members with similar
DNA binding specificities but with activ-
ities in other stages of development. If this
hypothesis is correct, then it is unlikely
that these CRMs would contain the same
additional binding sites as true Dl-
responsive enhancers. Rather, they should
have their own combinations of interact-
ing TFs that contribute to their specifici-
ties. A similar case can be made for false
positives obtained in the screen for seg-
mentation gene targets (5).

Although the two studies reviewed
here represent a significant advance in
the application of bioinformatics to un-
derstanding genetic regulatory networks,
how generally ap-
plicable are the ap-
proaches? There
are �700 TFs in the
Drosophila genome
(22), most of which
are active at much
later stages of de-
velopment than
those examined in the present papers. This
is a potentially significant issue, because
these studies involved several TFs that
function as morphogens early in develop-
ment when the fly embryo is a single
syncytial cell; that is, such TFs generate
unique threshold responses at different
concentrations produced by free diffusion
of the proteins within the embryonic syn-
cytium (3, 23). This point is relevant to the
clustering of cognate DNA binding sites,
because the number and affinities of these
sites provide a readout of the local TF
concentrations. For example, a CRM with
a large number of high-affinity sites would
be activated in response to low levels of
the corresponding TF (24). Although
other mechanisms might generate cell-
specific TF levels, the majority of Dro-
sophila transcriptional regulators probably
do not act as morphogens and thus may be
less likely to be associated with high bind-
ing-site densities. Rather, combinatorial
interactions of multiple TFs each binding
to relatively few sites may be the rule in
these cases. Any computational algorithm
designed to identify such CRMs must take
this point into account. Similar arguments
apply to attempts at analyzing the �1,850
TFs estimated to be encoded by the hu-
man genome (25).

Another limitation of computational ef-
forts to predict CRMs relates to the se-
quence complexity of the binding sites
included in the search algorithm. A single
TF was successfully used by Markstein et
al. (4) due not only to the dense clustering
of its sites in the genome but also to its
relatively high binding specificity. It is less
likely that this approach would be effec-
tive for TFs such as Hox proteins, the
binding sites of which have a much lower
information content (26). Although pro-

tein cofactors can modify Hox binding
specificity, in these cases a combinatorial
paradigm also would be useful for CRM
predictions. Indeed, this was a critical
design feature contributing to the success
of Berman et al. where homeodomain
proteins and other TFs with relatively
degenerate binding sequences were in-
cluded in the combinatorial model (5). A
similar approach should be applicable to
other TFs that have modest binding site
specificities and are known to act in bio-
logically relevant combinations (6, 8–10).

Future attempts to represent the com-
binatorial logic underlying CRM architec-
ture in a specific biological context will

require not only
consideration of
binding-site type
and number but
also their spacing,
orientations, affin-
ities, and order.
These parameters
will be difficult if

not impossible to predict accurately a pri-
ori. Instead, the derivation of a directed
computational approach to identity mem-
bers of a particular regulatory network
will benefit from the availability of at least
one well defined representative of that
network to serve as a starting paradigm.
Additional candidates then might be pre-
dicted computationally from this initial
example. Empirical testing of these can-
didates should enable further refinement
of the model, which in turn can be applied
in another round of computational screen-
ing. Again, this expectation underscores
the importance of combining informatics
with wet laboratory methodologies, as ex-
emplified by the precedent established in
the present papers.

Although both of these studies success-
fully predicted CRMs belonging to de-
fined regulatory networks, the extent to
which the individual TF binding sites
within these CRMs contribute to en-
hancer activity was not evaluated. Not all
the newly identified sites are necessarily
functional, because there is a reasonable
probability of random occurrence even
within a bona fide module. Testing the
functions of individual binding sites is of
obvious relevance to the aforementioned
goal of refining a particular combinatorial
model through an iterative screening and
validation strategy. Although a time-
consuming effort, such tests are valuable,
because their results will lead to revised
models that more closely resemble au-
thentic CRMs, thereby increasing the sen-
sitivity and specificity of the derived com-
putational algorithms.

In addition to searching an entire ge-
nome for known TF binding sites, it is
possible to screen for novel motifs shared
by a given set of sequences (27–29). Al-
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though neither of the present papers took
advantage of such an approach, this could
be an informative way of identifying as yet
unrecognized cis-regulatory sequences.
This strategy also can be used to increase
the combinatorial complexity of a specific
transcriptional code that could be applied
to a sequential screening strategy for
CRM characterization. In addition, em-
pirical efforts to identify more TF binding
specificities will provide a larger database
on which to draw in formulating such
paradigms.

Several other experimental approaches
can contribute valuable information to in-
crease the precision of computational
screens designed to identify coregulated
genes. One is the use of comparative se-
quence data from a related species, so-
called phylogenetic footprinting (13). This
method relies on the evolutionary conser-
vation of orthologous noncoding sequences

caused by selection for regulatory functions.
Such an approach should be possible soon
for the fruit fly, because an effort is under
way to sequence the genome of another
Drosophila species. Large-scale compari-
sons between mouse and human genomic
sequences should be useful also in this re-
gard (30, 31).

Another set of data that can be incorpo-
rated into CRM search algorithms is expres-
sion data as derived from genome-wide
expression profiling or high throughput in
situ hybridization screens of cDNA collec-
tions. This approach can be used as a filter
for identifying the most likely coregulated
genes from among the computational can-
didates or as a means of grouping biologi-
cally related TFs in an initial combinatorial
model. Chromatin immunoprecipitation
studies offer yet another source of informa-
tion that can contribute to the assignment of
genes to a common regulatory network (32,

33). Finally, the construction and functional
assessment of synthetic enhancers can be
used to test a particular combinatorial
model to ensure that the incorporated fea-
tures reproduce the intended effect (6, 7).

There is clearly much work to be done
before we have a comprehensive under-
standing of transcriptional codes on a
genomic scale. However, the promising
strategies and associated findings re-
ported by Berman et al. and Markstein et
al. suggest that this is a tractable problem.
It seems reasonable to anticipate, there-
fore, that in the not-too-distant future we
should gain considerable fresh insights
into the organization of genetic regulatory
networks in both invertebrate and verte-
brate systems.
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