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Abstract

BACKGROUND & AIMS: A genome-wide significant association between anti–Helicobacter 
pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated 

for individuals of European ancestry, but not uniformly replicated. We re-investigated this 

association in an updated genome-wide association study (GWAS) meta-analysis for populations 

with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore 

functional implications of genetic variation at the TLR1/6/10 locus.

METHODS: The dichotomous GWAS (25% individuals exhibiting highest anti–H pylori IgG 

titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 

and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed 

on H pylori–eradicated subjects (n = 132) and patients under surveillance for premalignant 

gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were 

measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants.
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RESULTS: The association of the TLR1/6/10 locus with anti–H pylori IgG titers (rs12233670; b 

= −0.267 ± SE 0.034; P = 4.42 × 10−15) presented with high heterogeneity and failed replication. 

Anti–H pylori IgG titers declined within 2–4 years after eradication treatment (P = 0.004), and 

decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the 

TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on 

monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels.

CONCLUSIONS: The association between anti–H pylori IgG titers and TLR1/6/10 locus was not 

replicated across cohorts, possibly owing to dependency of anti–H pylori IgG titers on therapy, 

clearance, and antibody decay. H pylori–mediated immune cell activation is partly mediated via 

TLR1 signaling, which in turn is affected by genetic variation.

Graphical Abstract
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The discovery of Helicobacter pylori (H pylori) at the epithelial surface of the human 

stomach as late as 1983 represented a major breakthrough in gastric microbiology.1 This 

flagellated bacterium has since been implicated in the etiology of atrophic gastritis and 

gastroduodenal ulcerative disease,2 identified as a class 1 carcinogen for gastric cancer,3–5 

and ranked as the most important contributor to infection-attributable cancers in 2018.6 

With estimates indicating that more than half of the world’s population is colonized 

by H pylori, the size of this global health problem is further emphasized.7 Because H 
pylori gastric presence has been linked to early stages of gastric carcinogenesis according 

to the Correa model,8 eradication strategies have been implemented to prevent gastric 

cancer development.9–12 However, global resistance of H pylori to antibiotics is reaching 

alarming levels,13 which puts further pressure on the H pylori–related health burden and 

warrants new strategies to prevent colonization and infection-related consequences. It is 

generally accepted that H pylori infection is acquired during early childhood,14–17 but 

the overall rate of infection is reported to be much higher in developing countries.18 

Although socioeconomic and environmental factors likely explain the wide variation in 

H pylori prevalence between regions and countries,7 genetic predisposition also needs 

to be considered. It has been shown that the same rearing environment contributes to 

a familial tendency to acquire H pylori infection, but higher similarity in monozygotic 

than dizygotic twin pairs indicates that genetic factors account for a large part of the 
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variation.19 Some individuals are never infected by H pylori, and others are able to clear 

the infection spontaneously when colonized.14,16 Moreover, only a small proportion of the 

H pylori–colonized population develop gastric cancer,20 indicating that host-specific factors 

governing the host-pathogen interactions are involved in disease risk.21 Because the host 

genetic background is suggested to be involved in the clinical outcome of H pylori infection, 
22 a better understanding of the genetic contributions to the interaction between host and H 
pylori may improve our insight into this complex relationship.

An increasing number of genome-wide association studies (GWASs) have linked single-

nucleotide polymorphisms (SNPs) to gastroduodenal ulcer disease,23,24 gastric premalignant 

lesions,25–29 and gastric cancer.24,27–39 Interestingly, some of the associations found in those 

studies seem to be influenced by the presence of H pylori infection,25,29–33 suggesting 

that genomic variants might be involved in H pylori colonization as well. The first and 

largest GWAS on H pylori combined data of Dutch and German population-based cohorts 

in a meta-analysis of anti–H pylori IgG titers by means of a dichotomic study design 

that compared the 25% of individuals exhibiting the highest anti–H pylori IgG titers vs 

the remaining 75%.40 Two loci, the Toll-like receptor (TLR1/6/10) locus on 4p14 (lead 

SNP rs10004195) and the Fc gamma receptor 2A (FCGR2A) locus on 1q23.3 (lead SNP 

rs368433), were identified to be associated with increased anti–H pylori IgG titers.40 A 

GWAS among Finnish male smokers (n = 1402) confirmed the lead SNP rs10004195 to be 

associated with the height of IgG titer rather than a seropositive status itself.41 However, 

no further replication of these findings have been reported so far, and in contrast to those 

European studies, no genome-wide significant associations of H pylori serology with any 

loci were found in a Mexican-American population (n = 1931).42 Because the main findings 

of the first GWAS study have not been uniformly confirmed,40 the present study aimed to 

update the original meta-analysis with the use of a larger sample size and to investigate the 

functional relevance of variation at the TLR1/6/10 locus in H pylori colonization.

Materials and Methods

Study Cohorts

The discovery GWAS was conducted in subjects of European ancestry from population-

based cohorts in Europe and the United States with low gastric cancer incidence to re-

investigate the previous association between TLR1/6/10 and anti–H pylori IgG levels, and to 

explore the possibility of new genetic associations. A total of 7 cohorts were included and 

consisted of 15,685 participants (Supplementary Table S1). The replication was conducted 

in 2 independent European cohorts with a total of 9676 participants with GWAS or de 

novo genotyping data. In all cohorts, serologic measurements of anti–H pylori IgG were 

performed by means of either commercial or customized enzyme-linked immunosorbent 

assay (ELISA) (Supplementary Table S1). As in the initial study, the 25% of subjects 

with the highest anti–H pylori IgG values were compared with the remaining 75% in 

a dichotomous study design.40 Informed consents for participation were obtained for all 

study subjects, and approvals were given by the institutional review boards. More details 

concerning individual cohorts are described in the Supplementary Methods.
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Discovery

Genome-wide genotyping, imputation to 1kgP1v3, and genome-wide association analyses 

were conducted separately by the discovery cohorts (Supplementary Methods). EasyQC 

using standard settings was applied for quality control of individual cohort summary 

statistics.43 The inverse-variance weighted fixed-effects model approach was used for meta-

analysis with the use of METAL.44 A quantile-quantile plot of observed compared with 

expected —log10 (P value) was computed to investigate genome-wide distribution of P 
values, and a Manhattan plot to illustrate genome-wide P values. Genome-wide significance 

was set at a threshold with P value <5.0 × 10−8. A regional plot was generated to show 

the genomic regions within 100 kb of top hits. In addition, a random-effects model was 

conducted to explore the association between the TRL locus (rs12233670) with H pylori in 

more detail.

Replication

Eight top SNPs with the lowest association P values from the discovery phase were 

selected for replication, particularly rs12233670 within the TLR1/6/10 locus. The ESTHER 

(Epidemiological Investigations on Chances of Preventing Recognizing Early and Optimally 

Treating Chronic Diseases in an Elderly Population) cohort achieved in silico replication 

of 7 out of 8 SNPs (excluding rs147174426), and the Latvian cohort performed de novo 

genotyping for 4 individual SNPs (rs12233670, rs147174426, rs6107461, rs147900026) 

(Supplementary Methods). Replication was considered successful with P value <0.05 for 

individual cohorts and P value <5.0 × 10−8 for the combined analysis.

Longitudinal Analysis of Serologic Data From H pylori–Positive Subsets

To determine whether the timing of anti–H pylori IgG testing may influence serologic 

outcomes relevant for genetic association studies, 2 different serologic data subsets were 

analyzed. The first subset consisted of RS (Rotterdam Study) participants with pharmacy 

records of H pylori eradication treatment before serology (n = 132), allowing analysis of 

anti–H pylori IgG titers in relation to time following eradication. Anti–H pylori antibodies 

were measured with the use of the Pyloriset EIA-G III (Orion Diagnostica, Espoo, Finland). 

The second subset consisted of patients from an ongoing prospective study aimed at the 

surveillance of atrophic gastritis, intestinal metaplasia, and dysplasia in the Netherlands and 

Norway.45 Anti–H pylori antibodies were measured as part of the GastroPanel test (Biohit, 

Helsinki, Finland) using serum samples collected during clinical follow-up. Patients with 

elevated anti–H pylori IgG levels (>30 enzyme immunoassay units) at baseline in addition to 

consecutive serum measurements (n = 107) were included to explore fluctuation of the titers 

over time. All subjects with positive histopathologic/urea breath test findings for H pylori 
received eradication therapy with efficacy verified by means of fecal antigen testing.

Restriction Fragment Length Polymorphism Polymerase Chain Reaction Assay

Human genomic DNA was isolated from EDTA whole blood with the use of the Kleargene 

Blood DNA isolation kit (LGC, Teddington, UK) to determine the genotype of subjects 

included in our functional assays. A restriction fragment length polymorphism polymerase 

chain reaction (PCR) assay could not be designed for rs10004195, but TLR variant 
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rs28393318 is in complete linkage disequilibrium (LD) (r2 = 1 among Utah residents 

from north and west Europe [CEUs]) and was therefore used as proxy (Supplementary 

Table S2). For genotyping of rs28393318, 35 cycles of PCR amplification were performed 

with custom-designed primers (forward: 5′-TAGCTCAGTGTAGGTGGTCT-3′; reverse: 5′-

ATGATTAGT-GACCTTGGGGC-3′) at an annealing temperature of 53◦C. PCR products 

were confirmed on 2% Tris-borate-EDTA agarose gel and 10 μL of amplicons were 

subjected to 5 international units of Hin1II restriction enzyme (Thermo Fisher, Waltham, 

MA) for 2.5 hours at 37◦C. After 20 minutes of enzyme inactivation at 80◦C, digestion 

products were visualized on agarose gel, showing 1 band of 433 base pairs (bp) for genotype 

GG, 2 bands of 311 and 122 bp for AA, and 3 bands for GA.

Functional Analysis

Flow cytometry.—To investigate whether genetic variation at the TLR locus on 4p14 
affects the expression of the receptor at the cell surface, the presence of TLR1, TLR6, 

and TLR10 was measured with the use of flow cytometry. Whole-blood samples from 

non–H pylori–infected individuals without significant comorbidities (n = 26), taken after 

informed consent, were treated with eBioscience 1-step Fix/Lyse Solution (Thermo Fisher) 

to lyse red blood cells. Monocytes and polymorphonuclear cells (PMNs) were incubated 

with antibodies specific for CD14 (APC-cy7, cat. no. A15453), CD66B (APC, cat. no. 17–

0666-42), and TLR1 (PE, cat. no. 12–9911-42) (all from Thermo Fisher) or mouse IgG1κ 
isotype control (PE, cat. no. 554121; BD Biosciences, Franklin Lakes, NJ) for 15 minutes 

on ice. Because the genes encoding TLR6 (PE, cat. no. MA5–16177) and TLR10 (PE, cat. 

no. 12–2909-42) reside within the same genetic locus as rs28393318, the surface expression 

of those proteins was also measured. Flow cytometry was performed on the MACSQuant 

Flow Cytometer (Miltenyi Biotec, Gladbach, Germany) and analysis conducted with the 

use of FlowJo v10 (BD Biosciences). Monocytes and PMNs were identified on the basis 

of the forward/sideward scatter and further gating on CD14 and CD66b, respectively. TLR 

positivity was measured with gating based on the isotype control of the same sample.

Reverse-transcription quantitative PCR analysis of TLR1 transcript levels.
—To explore whether differences in TLR1 surface expression among genotypes were 

attributable to variation in mRNA expression, quantitative PCR (qPCR) analysis 

was conducted. Total RNA was isolated from peripheral blood mononuclear cells 

(PBMCs) of non–H pylori–infected individuals without significant comorbidities (n 

= 22) by means of the column-based NucleoSpin RNA kit (Macherey-Nagel & 

Co, Düren, Germany) and reverse transcribed into complementary DNA (cDNA) 

with the use of PrimeScript RT (Takara, Kusastsu, Shiga, Japan). A qPCR assay 

of 40 cycles was performed on the StepOnePlus Real-Time PCR system (Thermo 

Fisher) using SYBR Select Master Mix (Thermo Fisher) and custom-designed TLR1 
gene primers (forward: 5′-TGCCAAATGGAACAGACAAGCAG-3′; reverse: 5′-ACA-

GATTCCTTTTGTAGGGGTGCC-3′) and RP2 housekeeping gene primers (forward: 5′-

AAGCTGAGGATGCTCAAAGG-3′; reverse: 5′-CCCATTAAACTCCAAGGCAA-3′). The 

annealing temperature was 61◦C for both primer sets. The delta-delta cycle threshold (ΔΔCt) 

method was applied for data analysis.
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ELISA for cytokine analysis on TLR1 stimulation.—To study TLR1 signaling in 

more detail, PBMCs from non–H pylori–infected individuals (n = 22) were isolated from 

heparinized blood as described previously.46 In brief, phosphate-buffered saline solution 

(PBS)–diluted blood was layered onto Ficoll (Amersham, Uppsala, Sweden) and PBMCs 

harvested after centrifugation, washed in PBS, and plated in Roswell Park Memorial 

Institute medium (Lonza, Basel, Switzerland) containing 10% fetal bovine serum and 

penicillin/streptomycin (Lonza). Two million PBMCs were seeded in 12-well plates in 

a total volume of 2 mL. After 24 hours of incubation, wells were washed and PBMCs 

stimulated with 1 million colony-forming units of heat-killed H pylori (strain ATCC-43504 

[cagA+, vacA(s1/m1), iceA+, babA2+]; Manassas, VA) grown on Trypticase Soy Agar (Oxoid, 

Hampshire, UK) supplemented with 5% defibrinated sheep blood (VWR, Radnor, PA) and 

DENT selective medium (Oxoid). Other stimuli used were TLR1 inhibitor CU-CPT-22 

(5 μmol/L; Tocris Bioscience, Bristol, UK) and TLR1 agonist Pam3Cys4 (300 ng/mL; 

InvivoGen, San Diego, CA).47 Supernates were harvested after 8 hours of stimulation for 

ELISA experiments unless otherwise specified to measure tumor necrosis factor (TNF) α, 

interleukin-8 (IL8), and IL10 (eBioscience, San Diego, CA) as described previously.48 All 

samples were tested in duplicate.

Statistical Analysis of Serologic and Functional Data

Statistical differences among 3 groups were determined by means of 1-way analysis 

of variance or Kruskal-Wallis tests for unpaired data and repeated-measures analysis of 

variance or Friedman tests for paired data and was followed by post hoc analysis for selected 

pairs with adjustment for multiple testing. The 2-sample t test or Mann-Whitney test were 

applied to compare 2 groups with unpaired data. GraphPad Prism software version 5.01 

(GraphPad Software, San Diego, CA) was used for calculations and graphic representation.

Results

Genomic Variants Associated With Anti–H pylori IgG Titers in an Updated GWAS

We performed a GWAS meta-analysis based on 7 independent European epidemiologic 

cohorts with the use of the fixed-effect model. The quantile-quantile plot showed a clear 

deviation from the null-distribution at the tail (Figure 1A). A genome-wide significant 

association for the TLR1/6/10 locus on chromosome 4p14 was found with top SNP 

rs12233670 carrying the lowest P value (β = −0.267 ± SE 0.034 for minor allele T; P 
= 4.42 × 10−15; minor allele frequency = 25%) (Figure 1B and C), albeit with statistical 

heterogeneity (Table 1). The association between top SNP rs12233670 and anti–H pylori 
IgG titers was not significant in either ESTHER (β = 0.041 ± SE 0.050 for the minor 

allele; P = 0.41) or LATVIA (β = 0.017 ± SE 0.079 for the minor allele; P = 0.83) cohorts, 

resulting in a failed replication (β = 0.034 ± SE 0.042 for minor allele; P = 0.42) (Table 

1). Consequently, the level of genome-wide significance decreased in the combined analysis 

(β = −0.149 ± SE 0.027 for the minor allele; P = 1.97 × 10−8) (Table 1). Seven other 

promising SNPs were identified but did not reach genome-wide significance, including the 

FCGR locus (1q23.3; top-ranked SNP rs147174426; β = 0.480 ± SE 0.094 for major allele 

A; P = 2.89 × 10−7; minor allele frequency = 7%). Similar results were obtained with the 

use of a sensitivity model including adult participants only (data not shown). None of these 
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selected SNPs reached genome-wide significance in the combined analysis with discovery 

and replication cohorts (Supplementary Table S3).

With high inter-study heterogeneity observed for rs12233670 in the discovery, a random-

effects model was applied for this particular SNP. The P value was no longer genome-wide 

significant (P = 0.0056), but the effect estimate was similar with a odds ratio of 1.26 (95% 

CI 1.07–1.48) instead of 1.3 (95% CI 1.22–1.39) obtained with the fixed-effect model.

Anti–H pylori Antibody Decay in H pylori–Infected Subjects

We considered that antibody decay and timing of sampling for H pylori serology may 

contribute to cohort heterogeneity. To investigate the serologic course of H pylori–infected 

subjects, anti–H pylori IgG data were studied in 2 settings. In a subset of RS participants 

that received H pylori eradication treatment at some point before the measurement of IgG 

antibodies (n = 132), titers were significantly higher in individuals tested within 0–2 years 

(n = 48) after receiving eradication therapy than in those tested 2–4 (n = 53) or >4 (n = 

31) years (P = 0.004) after treatment (Figure 2A). When analyzing sequential anti–H pylori 
IgG titers from patients with gastric premalignant lesions with positive H pylori serology (n 

= 107), a significant decline between baseline measurement (time point 0) and retesting at 

<4 (n = 104) or >4 (n = 25) years of medical follow-up (P < 0.001) was seen (Figure 2B). 

Together, these data indicate that anti–H pylori antibody decay occurs within 2 years after 

treatment or clearance of H pylori.

Higher TLR1 Surface Protein but Not Intracellular mRNA Expression Levels in Leukocytes 
of G Allele Carriers of rs28393318

To investigate potential functional consequences of variation at the 4q14 locus, expression 

of the TLR-encoding genes within this locus was investigated in healthy subjects (n = 

26) genotyped for rs28393318. A significant difference in the percentage of TLR1-positive 

monocytes (P = 0.016) and PMNs (P = 0.030) was observed between AA, GA, and GG 

genotype carriers (Figure 3A and B). Post hoc analysis revealed significantly higher TLR1 

surface expression on monocytes for carriers of the minor rs28393318 allele (G) and on 

PMNs in subjects homozygous for the G allele compared with A allele carriers. Variation at 

rs28393318 did not influence TLR6 and TLR10 surface expression on either monocytes or 

PMNs (Supplementary Figure S1).

Unlike previous RNA sequencing–based findings of reduced TLR1 mRNA levels for 

minor rs10004195 A allele carriers,40 our reverse-transcription qPCR findings showed 

no differences in TLR1 transcript levels in PBMCs between healthy subjects (n = 22) 

with different genotypes of rs28393318 (Supplementary Figure S2), which is in line with 

previous reports demonstrating no differences in mRNA and total cellular TLR1 protein 

levels among other TLR1 variants (in high LD with rs28393318 and rs10004195 among 

CEUs) tested.49–52

TLR1 rs28393318 Affects Immune Cell Cytokine Production

To first confirm TLR1 involvement in H pylori pathogenesis, PBMCs from healthy subjects 

(n = 22) were treated with H pylori in the presence of selective TLR1 inhibitor CU-CPT-22 
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or vehicle control. H pylori significantly stimulated IL8, IL10, and TNFα production (all 

P < 0.001), which was significantly but not fully abrogated on treatment of cells with 

CU-CPT-22 (P = 0.005 for IL8; P < 0.001 for IL10; P = 0.001 for TNFα) (Figure 4). These 

findings suggest that H pylori–related cytokine signaling is partly mediated via TLR1.

We next explored TLR1-mediated differences in cytokine production between healthy 

subjects with rs28393318 genotypes AA (n = 12) and GG (n = 8). PBMCs were stimulated 

with the specific TLR1 agonist Pam3Cys4 or with H pylori, and cytokine levels were 

measured at different time points afterward (0.25, 0.5, 1, 2, 6, and 20 hours). Pam3Cys4 

stimulation resulted in higher IL8 (P = 0.010), IL10 (P = 0.003), and TNFα (P = 0.014) 

production at 6 hours as well as higher IL10 levels at 20 hours (P = 0.001) in GG carriers 

compared with AA carriers. Cytokine production on H pylori treatment was considerably 

higher than on Pam3Cys4 stimulation, but no differences among genotypes were observed 

(Figure 5).

Discussion

This study aimed to better understand the genome-wide association between the TLR1/6/10 
locus and H pylori. We extended the original work of Mayerle et al40 by the inclusion 

of an additional 4747 subjects of European ancestry in an updated GWAS meta-analysis. 

An association between anti–H pylori IgG titers and the TLR1/6/10 locus with top SNP 

rs12233670 was demonstrated in the discovery phase using the fixed-effect model, but 

replication proved to be challenging. Significant heterogeneity for our top association was 

observed across cohorts, with the SHIP-TREND and both replication cohorts showing 

association in the opposite direction. The interpretation of these findings remains complex 

but might be partially explained by methodologic differences that are inherent in the 

inclusion of longitudinally population cohorts, including time of recruitment (eg, SHIP 

vs SHIP-TREND) and use of nonuniform serologic assays. The concession of accounting 

for false positive assignment of cases by using the 25% highest vs 75% lowest IgG 

distribution might be another explanation. The allocation of truly H pylori–infected subjects 

into the control group could have possibly limited the detection and replication of promising 

SNPs, particularly for high-endemic regions such as Latvia.53 On the other hand, using 

a dichotomous cutoff based on IgG titers rather than test-defined H pylori positivity 

precludes bias introduced by the use of different tests with varying sensitivity and specificity 

across the different cohorts. Heterogeneity in our study may also have been introduced 

through antibody decay. Studying 2 different serologic datasets, we demonstrated that 

anti–H pylori IgG antibody decay over time occurs relatively quickly, as was previously 

observed on H pylori eradication treatment.54 Knowing that this process takes place, it is 

imperative to know the time of collection in relation to H pylori infection. Different rates 

of spontaneous clearance, re-infection, and H pylori eradication might have contributed 

to study heterogeneity, but this information was unfortunately not routinely collected in 

addition to data regarding H pylori–related disease status (eg, gastric cancer). Finally, 

various H pylori strains with varying virulence may interact differently with their human 

host, influencing the clinical outcome.55
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Despite technical challenges preventing a clear replication, several studies do point toward 

a role of the TLR1/6/10 locus in the interaction between H pylori and its human host.40,41 

With the data of the discovery phase showing an association with anti–H pylori IgG titers 

in the same direction as the original report, the relevance of the TLR1/6/10 locus in relation 

to H pylori pathology was further indicated. Our functional experiments demonstrate that 

variation at the TLR locus indeed has functional implications, as shown by a higher TLR1 

surface expression and higher cytokine production in minor allele G carriers of rs28393318 

(which is in complete LD with our top SNP rs12233670 and rs10004195 among CEUs). 

This might be explained by 2 non-synonymous TLR1 variants affecting intracellular–to–cell 

surface trafficking (rs5743618; r2 = 0.86 with rs28393318 among CEUs) and transportation 

of the receptor to the cell membrane (rs4833095; r2 = 0.97 with rs28393318 among 

CEUs).49–52,56,57 Minor allele carriers of these TLR1 genetic variants displayed higher 

cytokine responses on targeted TLR1 stimulation (ie, with Pam3Cys4), which was attributed 

to increased TLR1 surface expression rather than to changes in total protein or mRNA 

levels measured in cells,49–52 which is in line with our findings. Although H pylori mediates 

IL8, IL10, and TNFα production at least partially via TLR1 signaling in PBMCs, H pylori–
mediated cytokine production was not affected by rs28393318 status of carriers. It is likely 

that rs28393318 variation effects are masked by other components of the host immune 

system triggered by this highly virulent H pylori strain.58 Similarly, the effect of rs28393318 

variation on serologic titers induced by H pylori infection may be masked by additional H 
pylori–induced host-specific immune responses.

This study has 2 major limitations that need to be addressed. First, the identification of 

new genetic variants and replication of promising candidates for anti–H pylori IgG titers 

may have been hampered by the chosen definition of seropositivity for H pylori antibodies. 

Future studies might have to reconsider the phenotype definition, because the interpretation 

of H pylori serologic determination is not straightforward. Anti–H pylori IgG levels are 

more likely to represent a combination of the host’s ability to mount an immunologic 

response to infection as well as antibody clearance than actual H pylori incidence. With 

time from H pylori eradication therapy to serum collection influencing IgG antibody titers, 

it would be of value to collect those data in future studies. It should also be noted that H 
pylori infection involves an interplay of factors (host, bacterial, and environmental). Many 

genetic variants have been identified for H pylori–related conditions, such as ulcerative and 

(pre)malignant gastric lesions in different ethnic populations,23–25,27–32,38 and therefore it 

seems plausible that other genetic variants are relevant in H pylori pathogenesis besides the 

TLR locus. Second, we tested a selective cytokine panel in our functional analysis as a proof 

of concept. To better understand the immune response with regard to H pylori susceptibility, 

future experiments with different H pylori strains in different ethnic populations would be of 

interest.

In summary, the previously observed association between the TLR1/6/10 locus and anti–

H pylori antibody titers was not uniformly confirmed across cohorts in this study. The 

interpretation of H pylori serology is complex and subject to alterations in response to 

therapy and over time. While variation at the TLR1/6/10 locus regulates surface expression 

and cytokine production on stimulation, further efforts are required to better understand the 

clinical relevance of TLR variants and other loci in their complex interaction with H pylori.
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TLR Toll-like receptor

TNF tumor necrosis factor
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WHAT YOU NEED TO KNOW

BACKGROUND

The identification of a genome-wide association between the Toll-like receptor (TLR) 

locus and anti–Helicobacter pylori IgG titers presented a major breakthrough, but this 

link is complex and not fully understood.

NEW FINDINGS

Genetic variation at the TLR1/6/10 locus confers immunologic cellular consequences, but 

high heterogeneity, cohort differences, and antibody decay likely prevent replication of 

previous associations with anti–H pylori IgG.

LIMITATIONS

Interpretation of study heterogeneity remains difficult owing to the inclusion of 

different longitudinal population-based cohorts for this largest dichotomous genome-wide 

association study for anti–H pylori IgG titers to date.

IMPACT

A role for the TLR1/6/10 locus in host–H pylori interaction is likely, but alternative 

definitions for H pylori positivity may be required.
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Figure 1. 
Results of genome-wide association meta-analysis for anti–Helicobacter pylori IgG titer. 

(A) Quantile-quantile plot with all single-nucleotide polymorphisms (SNPs) displayed as 

black dots and the red line corresponding to the null hypothesis of no true association. 

(B) Manhattan plot of the genome wide association meta-analysis with the chromosome 

position on the x-axis and —log10 P values on the y-axis. Each dot indicates an SNP, 

the blue line marks the threshold of P = 1.0 × 10−5, and the red line represents the 

genome-wide significant threshold of P = 5.0 × 10−8. (C) Regional plot showing locus 
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4p14 with rs12233670 and other flanking region markers. The P values of SNPs associated 

with H pylori are plotted against their chromosome position on the x-axis. Each SNP is 

represented by a colored dot indicating their correlation (linkage disequilibrium) with the 

top-ranked SNP (purple diamond). The y-axis at the right represents the recombination rates. 

The bottom part depicts the annotated genes at the locus and their transcriptional direction.
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Figure 2. 
Anti–Helicobacter pylori (HP) IgG levels over time in 2 subsets. (A) IgG levels of 

Rotterdam Study subjects (n = 132) who received eradication therapy before serologic 

testing. The measurements of subjects are divided into 3 groups based on the time between 

treatment and H pylori serology: 0–2 (n = 48), 2–4 (n = 53), and >4 (n = 31) years. (B) 

IgG levels of H pylori–positive patients with premalignant gastric lesions (n = 107) at 

baseline (time point 0 with IgG titers >30 enzyme immunoassay units) and during serologic 

follow-up at <4 (n = 104) and >4 (n = 25) years. In both plots, the mean ± SEM and the 

manufacturer’s test cutoff (red horizontal line) are shown.
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Figure 3. 
Measurement of Toll-like receptor 1 (TLR1)–positive cells by flow cytometry. Dot plots 

illustrating the percentage of TLR1 positive cells in healthy subjects genotyped for 

rs28393318. The mean ± SEM and statistical significance among 3 genotypes are shown. 

(A) TLR1 positivity of monocytes in AA (n = 12), GA (n = 9), and GG (n = 5) carriers. (B) 

TLR1 positivity of polymorphonuclear neutrophils in AA (n = 9), GA (n = 6), and GG (n = 

5) carriers.
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Figure 4. 
Cytokine production by peripheral blood mononuclear cells (PBMCs) on stimulation with 

Helicobacter pylori. (A) Interleukin-8 (IL8), (B) interleukin-10 (IL10), and (C) tumor 

necrosis factor α (TNFα) levels in PBMCs of healthy subjects (n = 22). Cytokine levels 

were measured at baseline without stimulation and after H pylori exposure in the absence 

and presence of TLR1 inhibitor CU-CPT-22.
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Figure 5. 
Time course of cytokine production by peripheral blood mononuclear cells (PBMCs) on 

stimulation with Toll-like receptor 1 (TLR1) ligand Pam3Cys4 or Helicobacter pylori in AA 

and GG carriers of rs28393318. (A, D) Interleukin-8 (IL8), (B, E) IL10, and (C, F) tumor 

necrosis factor α (TNFα) levels measured at different time points after stimulation with 

(A–C) TLR1 agonist Pam3Cys4 or (D–F) H pylori (HP). The results are stratified for AA (n 

= 12) and GG (n = 8) carriers of rs28393318. The mean ± SEM and statistical significance 

between genotypes are shown. CFU, colony-forming unit.
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