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Proliferation is a key hallmark of cancer, but whether it differs between
evolutionarily distinct clones co-existing within a tumor is unknown. We
introduce the Single-cell Proliferation Rate Inference in Non-homogeneous
Tumors through Evolutionary Routes (SPRINTER) algorithm that uses
single-cellwhole-genome DNA sequencing data to enable accurate
identification and clone assignment of S- and G2-phase cells, as assessed

by generating accurate ground truth data. Applied to anewly generated

longitudinal, primary-metastasis-matched dataset 0f 14,994 non-small cell lung
cancer cells, SPRINTER revealed widespread clone proliferation heterogeneity,
orthogonally supported by Ki-67 staining, nucleiimaging and clinical imaging.

We further demonstrated that high-proliferation clones have increased
metastatic seeding potential, increased circulating tumor DNA shedding and
clone-specific altered replication timing in proliferation- or metastasis-related
genes associated with expression changes. Applied to previously generated
datasets of 61,914 breast and ovarian cancer cells, SPRINTER revealed
increased single-cell rates of different genomic variants and enrichment of
proliferation-related gene amplifications in high-proliferation clones.

High proliferation is one of the key hallmarks of cancer” and is linked
to worse clinical outcomes across a range of tumor types®'°. Thus far,
proliferation has been estimated by measuring the fraction of S-phase
cells using pathological or experimental techniques on bulk tumor
samples”?, such as Ki-67 staining, or using bulk and single-cell RNA
sequencing®®", However, most tumors have been shown to be het-
erogeneous compositions of genetically distinct subpopulations of can-
cer cells, or clones, with different evolutionary histories and roles'*°.

Because proliferation may vary between distinct clones within the same
tumor, thejoint inference of clone-specific proliferation rates and the
reconstruction of their evolutionary dynamics may allow the identifica-
tionof clones that develop more aggressive phenotypes'* 2 (for exam-
ple, metastatic potential), providing mechanistic insight into the link
between proliferation and prognosis. Recent studies have shown that
accurate identification of clones and reconstruction of their evolution
requires whole-genome DNA sequencing, as it provides a sufficiently
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high number of mutations and genomic alterations for robust evolution-
ary analyses”"*?. Therefore, the joint measurement of clone-specific
proliferation rates and related evolutionary dynamics has thus far been
unfeasible because proliferation and tumor clonal evolution could not
easily be measured from the same data for the same cells.

Recentsingle-cellwhole-genome DNA sequencing (scDNA-seq) tech-
nologies based ontagmentation without genome preamplification**°,
suchasdirectlibrary preparation+ (DLP+)""'?, and similar techniques'®**
have enabled the accurate genomic and evolutionary characterization
of distinct tumor clones”?° while also providing a signal to identify cell
cyclestates™"”*, Onthe one hand, scDNA-seq dataenables the inference
of' single-cell copy-number alterations (CNAs)>'7 2% whichare frequent
genomic alterations in cancer resulting from amplifications or dele-
tions of large genomic regions™*°. Tumor clones can thus be inferred by
grouping cells that share the same CNAs"™"7? and their evolution canbe
reconstructed using corresponding mutations™"”*°, Onthe other hand,
scDNA-seq datacanbe used toidentify S-phase cellsbecause replication
induces fluctuationsin the sequencing read counts observed acrossthe
whole genome™", In fact, replication is an asynchronous process in
which different genomic regions replicate their DNA at different times
during S phase, and early-replicating regions thus yield higher read
counts thanlate-replicating regions.

In principle, these joint scDNA-seq measurements should allow
the estimation of clone proliferation by analysis of S fractions in dis-
tinct tumor clones. However, in practice, this task remains unfea-
sible due to the lack of a formal method to assign S-phase cells to
their corresponding clones, which is a challenging problem because
replication-induced fluctuations prevent accurate CNA identification
in S-phase cells™" %%, Moreover, high-sensitivity identification of
S-phase cellsis required for accurate S fraction estimates of the small
clones often found in single-cell studies” ™, but two key limitations
restrict the power of previous methods''”*, First, these methods
rely on standard algorithms for copy-number analysis (for example,
guanine-cytosine (GC) content correction or copy-number segmen-
tation) that ignore sequencing fluctuations induced by replication.
Second, they assume that the sequenced cells belong to a homoge-
neous population and thus aggregate all cells together, identifying
S-phase cells as those with some sequencing signal that deviates from
the rest™"”?%, While this assumption may be true in cell lines (used in
most previous studies'"”*®), this is not the case in cancer tissues that
are often heterogeneous mixtures of normal and different cancer cell
clones™™*%2! such that each clone may need to be treated differently
for S-phase identification.

In this study, we introduce Single-cell Proliferation Rate Infer-
ence in Non-homogeneous Tumors through Evolutionary Routes
(SPRINTER), an algorithm that uses tumor scDNA-seq data to enable
accurateidentification and clone assignment of S-and G2-phase cells,
thus providing a proxy to estimate clone-specific proliferation rates.
We evaluated SPRINTER’s accuracy by generating a scDNA-seq data-
set of 8,844 cells from diploid and tetraploid cell lines sorted with
5-ethynyl-2-deoxyuridine (EdU) into different cell cycle phases®, pro-
vidingamoreaccurate ground truth dataset than previous approaches.

While the link between cancer proliferation and prognosis has
been clearly shown>"°, SPRINTER allows us to investigate if distinct
clones co-existing within the same tumor have different prolifera-
tion rates, particularly clones with different evolutionary roles, such
as metastatic seeding clones comprising the subset of cancer cells
responsible for metastasis. To explore this, we generated alongitudinal,
primary-metastasis-matched dataset of 14,994 single non-small cell
lung cancer (NSCLC) cells, applied SPRINTER and performed detailed
phylogenetic analysis to characterize the evolutionary dynamics of
genetic and non-genetic features, such as proliferation and altered
replication timing (ART), of distinct clones. We additionally analyzed
circulating tumor DNA (ctDNA), for which a link with proliferation
has only been revealed in previous bulk-based studies®* for distinct

tumors in different patients. Furthermore, we illustrated SPRINTER’s
broad applicability on previous scDNA-seq datasets” of 61,914 cells
from 7 triple-negative breast cancer (TNBC) and 15 high-grade serous
ovarian cancer (HGSC) tumors.

Results

The SPRINTER algorithm

The SPRINTER algorithm uses scDNA-seq data to identify S- and
G2-phase cells and assign them to distinct tumor clones identified
using inferred single-cell CNAs. SPRINTER achieves this goal by lev-
eraging prior information on genomic regions that are expected to
have early or late replication timing, which is known to be conserved
across a high fraction of the genome in different cell types** and
cancer cells*** (-50% at minimum; Supplementary Fig. 1). Because
the replication timing of some genomic regions can still vary in the
analyzed cells, SPRINTER uses statistical approaches that do not fully
rely on this prior information but rather account for the presence of
potential changes or errors. As such, SPRINTER introduces two key
contributions to overcome previous limitations. First, SPRINTER intro-
duces a probabilistic method to enable the accurate clone assignment
of S-phase cells. CNAs cannot be directly inferred for S-phase cells
because both replication and CNAs induce read count fluctuations
in scDNA-seq data (Extended Data Figs. 1-3). Therefore, SPRINTER
corrects replication-induced fluctuations using the distribution of
early- or late-replicating regions across the genome to calculate the
probability that any S-phase cell belongs to each clone identified using
non-S-phase cells (Extended Data Fig. 4). Second, SPRINTER intro-
ducesareplication-aware framework for the accurate identification of
S-phase cells. Particularly, SPRINTER extends previous methods that
rely onalgorithms designed for CNA analysis of non-S-phase cells""" 2%
to account for expected replication-induced fluctuations and intro-
duces a statistical permutation test based on these fluctuations for
the high-sensitivity identification of S-phase cells.

SPRINTER is composed of six steps (Fig.1) based on a partitioning
of the reference genome into bins (50 kb by default). First, it iden-
tifies early- and late-replicating bins using experimentally derived
replication scores fromnormal and cancer cells***** (Supplementary
Figs.1-4) and calculates read depthratios (RDRs) to capture read count
variations as per standard CNA identification"2°?°, During this step,
SPRINTER accounts for varying total read counts for cells in different
phases and incorporates a replication-aware GC-content bias correc-
tion (Supplementary Figs. 5 and 6). Second, it infers high-confidence
CNA-induced segments in the genome of each cell while accounting
for replication-induced RDR fluctuations (leveraging the fact that
CNAs are substantially larger than regions with the same replication
timing”'**°; Supplementary Fig. 2). Third, it identifies S-phase cells
using astatistical permutation test based on the higher and lower RDRs
expected for early and late bins within copy-number segmentsinthese
cells, respectively (Extended Data Figs.1-4 and Supplementary Fig. 7).
Fourth, itidentifies clones by inferring and clustering CNAsin GO/G1/
G2-phase cells by extending previous approaches'” ™. Fifth, it assigns
S-phase cells to maximume-a-posteriori probability clones and infers
related CNAs by subtracting replication-induced fluctuations from
RDRs (Extended Data Fig. 4). Finally, it identifies G2-phase cells per
clone based on expected higher total read counts” (Supplementary
Fig.8). The details of each of SPRINTER’s steps are reported in Methods.

SPRINTER exhibits high accuracy and sensitivity

To evaluate SPRINTER’s performance, we generated a ground truth
scDNA-seq dataset of 8,844 diploid and tetraploid cancer cells with
known cell cycle phases from the HCT116 colorectal cancer cell
line*®. While previous datasets have been generated using standard
fluorescence-activated cell sorting (FACS)"?%, these approaches are
error-prone and mostly enriched for mid-S-phase cells and are thus not
suitable for the comprehensive assessment of S-phase identification.
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Fig.1|The SPRINTER algorithm. There are six main steps in SPRINTER. (1) The
first step calculates the RDR and replication timing (early and late in magenta and
green, respectively) of each genomic bin. (2) The second step infers segments
of neighboring bins likely to be affected by the same CNAs by identifying
candidate breakpointsindependently in early or late bins and preserving

only those breakpoints supported by both (dashed red lines preserved

versus dashed gray lines discarded). (3) The third step identifies S-phase cells
by performing a statistical permutation test of replication timing on RDRs
normalized per segment (to remove the effect of CNAs) to assess the presence
of significant differences between early (higher values) and late (lower values)
bins expected for S-phase cells (bottom row) in contrast to GO/G1/G2-phase
cells (top row). (4) The fourth step infers clones by identifying cell-specific

CNAs (black lines) for all GO/G1/G2-phase cells and grouping cells with the same
complement of CNAs (colored bars). (5) The fifth step assigns each S-phase cell
to the maximum-a-posterioriclone (green check mark)—RDRs are corrected

for replication fluctuations, and clone assignment is chosen to maximize the
posterior probability across all possible assignments (best fit of black lines).

(6) The sixth step identifies G2-phase cells per clone by deconvolving the
distribution of total read counts yielded by either GO/G1-phase (light gray with
lower values) or G2-phase (black with higher values) cells. SPRINTER’s results—
each cell (row) with inferred CNAs (colors) across bins (columns) is assigned to a
clone, providing estimates of S (left dark gray bars) and G2 (black bars) fractions.
Thefigureis created with BioRender.com.

To overcome these limitations, we applied a FACS approachincorpo-
rating EdU, as demonstrated in recent studies®, and sequenced cells
separated into five different cell cycle phases using DLP+ (Supplemen-
tary Figs. 9-11and Methods). The availability of tetraploid cells also
improved upon previous datasets, as the increased rate of CNAs in
genome-doubled cells may complicate related analyses®**.

In the identification of S-phase cells, we found that SPRINTER
outperformed two previously established methods, the cell cycle clas-
sifier (CCC)" and the median absolute deviation of pairwise differences
(MAPD) method?, as well as aversion of the latter incorporating repli-
cationtiminginformation (rtMAPD), inboth the diploid and tetraploid
datasets, withimprovements of 10-90% in mid- and late-S-phase iden-
tification while maintaining high precision (Fig. 2aand Supplementary
Fig.12). SPRINTER’s improved accuracy was further confirmed on a

previous phase-sorted dataset®® of 5,970 lymphoblastoid cells gener-

ated with a different scDNA-seq technology (Supplementary Figs. 13
and14).In contrast, methods like MAPD that aggregate all cells during
S-phaseidentification failed to deal with an additional dataset compris-
ing cells of mixed ploidy, confirming the importance of SPRINTER’s
cell-specific test in analyzing these heterogeneous but realistic cases
(Supplementary Fig. 15). Notably, SPRINTER’s accuracy remained
robust for afraction of replication timing errors higher than the maxi-
mum expected inboth normal and cancer cells (Supplementary Fig.16)
and for the use of different input replication scores (Supplementary
Fig. 17). Moreover, SPRINTER accurately identified G2-phase cells
(>80% precision and recall; Supplementary Fig. 18) and provided the
best prediction of actively replicating cells (inSand G2 phase; Fig. 2b).
Further details are given in Supplementary Note 1.
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Fig.2|SPRINTER improves S-phase identification and enables accurate clone
assignment of S-phase cells. a, The proportion of correctly identified G1/G2-
and S-phase cells (y axis) was computed for CCC (blue), MAPD (orange), rtMAPD
(MAPD extended with replication timing, red) and SPRINTER (green) across cell
cycle phases (x axis) for 100 cell subpopulations (dots), each formed by sampling
500 cells from the diploid (left) or tetraploid (right) ground truth datasets.

b, ROC curves (false-positive rates versus true-positive rates) measure the
performancein distinguishing G1-phase cells from actively replicating cells using
the classification scores computed by existing methods (blue, orange and red)

or combining SPRINTER’s S- and G2-phase P values (using the minimum, green)
by bootstrapping 300 diploid (top) or tetraploid (bottom) cells for 100 repeats
(eachcurve). c, A binomial process was used to generate cell subpopulation pairs
with the same (top) or different (bottom) true underlying fractions of replicating
cells (that s, proliferation). The figure is created with BioRender.com.d, The
proliferation accuracy was computed for all methods (colors) considering 600

pairs of clones generated as described in c by sampling varying numbers of
diploid (left) and tetraploid (right) cells per clone (x axis) with varying S and G2
fractions (20-30% + 30-50%) for 50 repeats (dots). e, Top, RDRs across 50 kb bins
(xaxis) for an S-phase cell are affected by replication-induced fluctuations (early-
and late-replicating bins in magenta and green, respectively) preventing accurate
CNA identification (scattered black lines for expected CNAs). Bottom, instead,
SPRINTER’s replication-corrected RDRs are similar to CNA expectations (black
lines). f, The absolute error rate (x axis) between true and expected fractions of
S-phase cells assigned to a clone was calculated per cell using all methods (colors)
in30 populations of 300 tetraploid cells each, altogether comprising 389 clones.
The proportion of clones for which the assigned true S fraction was compatible
with the expected S fraction was computed using abinomial test (pie charts). In

d and f, box plots show the median and IQR with whiskers denoting values within
1.5times the IQR from the first and third quartiles. AUC, area under the curve;
ROC, receiver operating characteristic; IQR, interquartile range.

We further demonstrated that the increased number of replicat-
ing cellsinferred by SPRINTER was necessary to accurately distinguish
proliferation rate differences between clones of sizes similar to those
identifiedin previous studies”*° (Fig. 2c,d and Supplementary Note 2).

Evenmore notably, we found that SPRINTER’s new features are required
for the accurate clone assignment of S-phase cells, outperforming
correlation-based heuristics proposed in previous studies"” (98% ver-
sus 62-69% accuracy), as measured using the clones in the tetraploid
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dataset expected to have equal proliferation rates*® (Fig. 2e,f, Supple-
mentary Figs.19 and 20 and Supplementary Note 3). Finally, a spike-in
experiment of CNAs demonstrated that SPRINTER’s clone assignments
alsoenabled the accurate inference of most >3 Mb CNAs for both S-and
non-S-phase cells (Supplementary Fig. 21).

Primary and metastatic tumor proliferation heterogeneity

To assess whether genomically distinct clones with different prolif-
eration rates are present in tumors, we applied DLP+ (refs. 17,19) to
sequence 14,994 cells from ten tumor samples from patient CRUKP9145
with metastatic NSCLC enrolled in the TRAcking non-small cell lung
Cancer Evolution through therapy (Rx) (TRACERx) study'** and Post-
humous Evaluation of Advanced Cancer Environment (PEACE) autopsy
study® (Supplementary Figs. 22 and 23 and Supplementary Note 4).
We sequenced 9,532 cells from five distinct samples from the primary
tumor (regions 2, 3,4, 5and 8; Supplementary Fig. 24) and 5,462 cells
from five samples obtained from anatomically distinct metastases
(left adrenal, right adrenal, left frontal lobe, right occipital lobe and
liver; Supplementary Fig.25), demonstrating the applicability of DLP+
to fresh frozen human metastatic tissues obtained at autopsy. Using
SPRINTER, weidentified the presence of 52 distinct tumor clones with
S-and G2-phase cells (Extended DataFig. 5 and Supplementary Figs. 26
and 27), highrates of CNAs and enough cells for accurate clone identi-
fication (Supplementary Fig. 28).

SPRINTER revealed widespread heterogeneity in the proliferation
rates of clones between and within tumor samples (Fig. 3a). In fact,
SPRINTER identified clones with substantially different proliferation
rates both between different primary tumor samples and between
different metastases (Fig. 3a and Supplementary Fig. 29). Moreover,
in nearly all samples, SPRINTER identified clones with significantly
higher or lower S fractions compared to other clones within the same
sample (Fig.3a), with similar patterns supported by related G2 fractions
(Supplementary Figs. 30 and 31). Notably, SPRINTER’s clone-specific
estimates were required to identify these differences as they would
have been missed by previous bulk-based estimates (for example, Ki-67
analysis). For example, primary regions 2, 3,4 and 8 had indistinguish-
able bulk-based S fraction estimates (22% compatible with all samples;
Fig. 3a) despite the presence of several differentially proliferative
clones. Conversely, the bulk-based estimate in the right occipital lobe
was halfthat of the right adrenal (13% versus 31%) despite the presence
of clones with similar S fractions.

We orthogonally validated SPRINTER’s results using Ki-67 analysis,
DLP+nuclearimaging and clinicalimaging (see details in Supplemen-
tary Notes 5 and 6). First, for samples with sufficiently high-quality
Ki-67 staining, proliferation estimates from Ki-67 and SPRINTER were
overall consistent, and Ki-67 analysis corroborated the heterogeneous
proliferation rates revealed by SPRINTER within samples (Fig. 3b and
Supplementary Fig. 32). Second, SPRINTER’s phase predictions were

significantly associated with nuclear diameters measured with DLP+
nozzle-based imaging" both per cell and per clone (Fig. 3c and Sup-
plementary Fig. 33), in keeping with previous expectations'” and with
the ground truth datasets (Supplementary Fig. 34). Finally, SPRINT-
ER’s estimated average S fractions ranked metastases in the same
order as tumor growth rates measured using longitudinal computed
tomography and magnetic resonance imaging (Extended Data Fig. 6),
further confirming that increased S fractions relate to increased pro-
liferation and disease burden rather than changes in the length of cell
cycle phases. Furthermore, while the numerous clones identified by
SPRINTER’s single-cell analysis demonstrated itsincreased resolution
over previous bulk analysis of the same tumor, we observed highly
consistent somatic single-nucleotide variants (SNVs) and CNAs (Fig. 3d,
Supplementary Figs. 35 and 36 and Supplementary Note 4).

The evolution and ART of clones with different proliferation
In addition to the identification of clones, scDNA-seq data enable the
accurate reconstruction of their evolutionary history”** and related
metastatic migration patterns*s, We reconstructed the tumor phylogeny
based onboth SNVsand CNAs (Fig.4a,b and Supplementary Figs. 37-41)
in multiple steps by combining pseudobulk approaches’'® and extend-
ing existing phylogenetic methods*~! (Methods). We further used the
MACHINA algorithm*®to reconstruct metastatic migration patterns and
identify seeding clones, which are the ancestral clones comprising the
disseminating cancer cells responsible for seeding metastases. As such,
weidentified three main metastatic clades, each of which was defined by
adistinct seeding cloneinthe primary tumor (Fig. 4c)—thefirst defined
by the clone seeding the liver metastasis, the second by the clone seeding
the right occipital lobe metastasis and the third by the clone seeding
the other metastases. Remarkably, only one of these clades, the third,
contained most of the clones with the highest proliferation.

Weinvestigated the presence of genetic alterationsin key cancer
genes associated with these clades. Despite the high proliferation of
the third clade, no driver mutation was identified unique to this clade
and shared by most ofits clones, and all the identified driver mutations,
for example, in TP53, NFI and CDK12 genes, were shared with other
clades (Supplementary Fig. 38). Similarly, no particular CNA specific
to this clade was identified (Supplementary Fig. 41). In addition to
genetic alterations, non-genetic alterations have a key role in cancer
progression*®** and may be present in different metastatic clades.
To investigate this, we demonstrated that SPRINTER’s clone assign-
ments can be used to identify clone-specific ART (that is, changes in
the replication timing of a genomic region in the tumor compared to
the default reference replication timing classifications derived from
normal cell lines; Methods).

Overall, the fraction of the genome with ART was <10% on aver-
age across clones (Extended Data Fig. 7), which matched previ-
ous measurements®**°* and did not affect SPRINTER’s results

Fig.3|SPRINTER identifies tumor clone proliferation heterogeneity in
patient CRUKP9145 withNSCLC. a, The distributions of SPRINTER's inferred S
fractions (bottom, y axis) for each NSCLC clone (x axis) with varying cell numbers
(top, yaxis) in primary (top) and metastatic (bottom) samples were calculated

by bootstrapping (300 repeats; dashed lines represent sample-level averages).
Clone S fractions were compared per sample using a two-sided chi-square

test, combined using the minimum and a Benjamini-Hochberg correction was
applied (family-wise error rate = 0.1; red asterisks indicate significant P values).
Sample-level S fraction 95% Cls (between axes) were computed by bootstrapping
cells per sample. *P < 0.1, **P < 0.05 and ***P < 0.005. b, Ki-67 staining from one
representative slide in primary and metastatic samples, indicating areas with
high and lowKi-67 (boxes) that were consistent with SPRINTER clone S fractions
(red asterisk). ¢, Top, nuclear diameter (x axis, micrometers, normalized by
sample mean) was measured by DLP+ nozzle-based imaging for 14,569 cells with
successfully recorded images inferred to be in G1, S or G2 phase by SPRINTER
(yaxis), with each pair of distributions compared using a one-sided

Mann-Whitney Utest (Pvalues onright). Bottom, the nuclear diameter per
clone (xaxis) was calculated using the minimum diameter across the cells
ineach clone (each dot) that were assigned to different cell cycle phases by
SPRINTER (y axis). Across cell cycle phases, clones are linked by lines, such that
the line width is proportional to clone size and the line color indicates whether
the nuclear diameter per clone has increased as expected (red) or not (blue).
Nuclear diameters in different cell cycle phases were compared per clone

using a one-sided Wilcoxon signed-rank test (P values on right). Right, example
microscopy images of nuclei in each phase. d, For five primary tumor samples in
this study (colored circles on photo) and three additional samples (gray circles),
each bulk clone identified in previous analysis (hexagons comprising clones
with different inner shapes of size proportional to cell proportion) was assigned
to the most similar SPRINTER clone using SNVs (colors, with legend marker size
proportional to SPRINTER’s inferred S fraction). Inaand ¢, box plots show the
median and the IQR with whiskers denoting values within 1.5 times the IQR from
the first and third quartiles. CI, confidence interval.
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(Supplementary Fig. 42). We found ART events affecting genes known
to impact tumor proliferation or metastatic potential that were shared
or unique to different metastatic clades (Fig. 4d and Extended Data
Fig. 8); for example, ART of PDL1 and PIK3CA was shared by all clones,
ART of CDK12was only presentin the right phylogenetic branch compris-
ing the second and third clades and ART of KRAS was mostly exclusive
to the most proliferative third clade. Because ART is associated with

differential gene expression (higher/lower expression for genes affected
by late-to-early/early-to-late ART compared to normal tissue without
ART, respectively)***’, we showed that these ART events were supported
by related expression changes. Specifically, we compared previous bulk
RNA sequencing data® from matched primary tumor regions to primary
regions from different clades, to cancer and normal tissue samples from
347 other TRACERX patients or toa premortemrelapse sample fromthe
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left adrenal metastasis in the third clade (Fig. 4d and Supplementary
Fig. 43). For example, the comparisons with different clades and the
premortem relapse sample confirmed a significant increase in KRAS
expression in the third clade, particularly in the left adrenal metastasis
that contained the highest proliferation clones, most of which displayed
late-to-early ART of KRAS (Fig. 4d). Moreover, reduced PDL1 expression
correlating to early-to-late ART inalmost all clones was further confirmed
by the clinalimmunohistochemistry report (PDL10%; Methods).

Seeding potential and ctDNA shedding of proliferative clones
Inaddition to primary tumor clones, clonesin metastases canalso dis-
seminate and seed further metastases™. In fact, we found that the third
metastatic clade, comprising the most proliferative clones identified
by SPRINTER (Fig. 4b), was the only clade containing additional seed-
ing clones—MACHINA identified two seeding clonesin the left adrenal
metastasis that disseminated and further seeded two other metastases
in the right adrenal and left frontal lobe (Fig. 4c). This occurrence of
metastasis-to-metastasis seeding was also supported by clinicalimag-
ing, whichindicated that the right adrenal metastasis likely arose after
the left adrenal metastasis (Extended Data Fig. 6). Prompted by this
observation, we investigated whether high-proliferation clones are
the specific clones that are more likely to seed metastases. While the
proliferation of seeding clones cannot generally be measured because
these clones are often extinct at the time of sampling*®, we calculated a
seeding genetic distance between each SPRINTER clone and the closest
seeding clone using the evolutionarily reconstructed SNVs and CNAs
as a proxy. We found significant negative correlations between the
seeding genetic distance (where a smaller distance indicates a higher
similarity to seeding clones) and S fraction for primary tumor and
metastatic clones using both SNV- and CNA-based distances (Fig. 4e
and Supplementary Fig. 44). These results suggest that clones that are
more genomically similar to seeding clones exhibit higher proliferation
rates, thusindicating anassociation between high clone proliferation
and the metastatic seeding potential of individual clones.

Finally, because highly proliferative tumors in different patients
have been shown to shed more ctDNA into the bloodstream®**, we
leveraged SPRINTER’s results to investigate whether the same asso-
ciation holds for different clones within the same tumor. Based on
previous ctDNA measurements for the same patient®, we found that
clones belonging to the third metastatic clade harbored SNVs with
high ctDNA frequency (that is, cancer cell fraction) across multiple
time points, consistent with the high-proliferation rates inferred by
SPRINTER (Supplementary Fig. 45a). Because ctDNA frequency is
not only influenced by proliferation but also by clone volume (that
is, number of cells), we calculated a ctDNA shedding index at surgery
for each clone as the difference between ctDNA and primary tumor
frequencies of SNVs, with the latter estimated based on either this
single-cell analysis or previous bulk analyses' (Methods). In all cases,

the ctDNA shedding index was significantly and strongly correlated
with SPRINTER’s estimated S fractions (Fig. 4f and Supplementary
Fig.45), indicating differential ctDNA shedding between clones, with
more proliferative clones shedding more ctDNA.

Dynamics of genomic variants in proliferative clones

Finally, we demonstrated applicability to different datasets and
cancer types by applying SPRINTER to two previous datasets",
including 42,009 cells from 7 TNBC tumors and 19,905 cells from
15HGSC tumors. SPRINTER identified 280 tumor clones with CNAs
highly consistent with those previously inferred for non-S-phase
cells (Supplementary Fig. 46). Moreover, SPRINTER identified the
presence of clones with varying S fractions in most tumors (Fig. 5a),
supported by similar patterns of G2 fractions (Extended Data Fig. 9).
Overall, there was no relationship between the number of cellsin a
cloneandits S fraction, nor between the number of clonesin atumor
and the presence of differentially proliferative clones, indicating that
SPRINTER’s results are not biased by varying clone sizes or numbers
(Supplementary Fig. 47).

Leveraging these large datasets, we investigated whether there
isarelationship between clone proliferation and the rates of different
genomic variants in individual cells by integrating SPRINTER with
scDNA-seq measurements of clone-specific variants”’'°. When cal-
culating single-cell rates of clone-specific SNVs, structural variants
(SVs) and CNAs for each cellindividually (Methods), we found in both
datasets that cells belonging to high-proliferation clones (higher than
the cancer-type median) displayed significantly higher rates of all types
of variants compared to cells belonging to low-proliferation clones
(Fig. 5b—d). Because most of these SNVs have been shown' to be gener-
ated by mutational processes that act during cell divisions**** and most
SVs and CNAs might also be generated during cell divisions***, these
results are compatible with the expectation that clones with higher
proliferation underwent more cell divisions.

We next investigated whether specific driver mutations or CNAs
in known cancer genes were enriched in high-proliferation clones
in the TNBC and HGSC datasets (Methods). We found several onco-
gene amplifications that were significantly associated with increased
clone proliferation (for example, CDK4 and EGFR; Fig. 5e), further
supported by agene set enrichment analysis revealing an enrichment
in relevant pathways related to the cell cycle and proliferation (for
example, PI3K/AKT/mTOR signaling and KRAS signaling upregulation;
Fig. 5f). Moreover, asmaller number of driver mutations and deletions
intumor suppressor genes (for example, KEAPI and SMAD4) were also
significantly associated with high clone proliferation (Supplementary
Fig. 48), matching results in previous cell line small interfering RNA
experiments®”*,

Finally, SPRINTER can elucidate changes in the relative length of
different cell cycle phases that might occur in cancer®, given that they

Fig.4 | SPRINTER reveals alink between clone proliferation and metastatic
seeding, and clone-specific ART present in distinct metastatic clades.

a, Tumor phylogeny was reconstructed for SPRINTER’s single-cell clones (tree
leaves) from patient CRUKP9145 (colored by sample, with clones uniquely
shaded). Seeding clones (dark gray) and ancestral clones (white with border
colored according to inferred anatomical site) were inferred, with some clones
harboring ctDNA-tracked SNVs (Roman numerals). b, Phylogeny from a with
clones colored by SPRINTER’s S fractions. ¢, Across samples (anatomical
location indicated as circles on body map), metastatic migrations (arrows)
were inferred, and metastatic clades (blue, green and pink with corresponding
clonesindicated in tree) were defined based on primary tumor seeding clones.
Thefigure is created with BioRender.com. d, In the two main phylogenetic
branches containing different metastatic clades (top row), SPRINTER inferred
ART (colored rectangles) for each clone (second row) for genes (left) known to
impact proliferation or metastatic potential, with reference replication timing
derived from normal cells shown (left column). ART is supported by related gene

expression changes measured using bulk RNA sequencing (right heatmap),
with late-to-early and early-to-late ART associated with increased and decreased
gene expression, respectively (Pvalues derived using a two-sided Wald test with
aBenjamini-Hochberg correction with family-wise error rate = 0.05).*P< 0.1,
**P<0.05and **P<0.01.e,For each SPRINTER clone (dot) in the primary
tumor (dark blue) or metastases (orange), the seeding genetic distance (x axis)
computed with respect to the closest seeding clone based on either SNVs (left)
or CNAs (right) was compared to SPRINTER’s S fraction (y axis) using two-sided
Pearson correlation tests (correlation coefficients and Pvalues reported),

and the 95% Cl was calculated for linear regressions (shaded areas). f, For each
ctDNA-tracked clone (dot), a ctDNA shedding index (x axis) was calculated
using the frequency of SNVs for either (left) SPRINTER single-cell clones or
(right) previous bulk clones and compared to the maximum S fraction inferred
from descendant SPRINTER clones (y axis). In each case, atwo-sided Spearman
correlation test was performed (with correlation coefficients and Pvalues
reported), and the 95% Cl was calculated for linear regressions (shaded areas).
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areexpected toinduce changesinthe relative ratio of G2and S fractions
(G2/S ratio; Methods). For example, in the TNBC dataset, SPRINTER
tumor clones with previously identified”” homologous recombination
deficiency (HRD) displayed a significantly higher G2/Sratio than other
clones (P=0.008; Extended Data Fig.10). This resultis consistent with
aprolonged G2 phaserelative toS phasein HRD clones, asreportedin
previous studies®°,

Reconstructed tumor phylogeny of SPRINTER clones
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Discussion

Despite several evolutionary studies on cancer'*?, the evolutionary
dynamics of cancer phenotypes remain poorly explored, partially due
to the lack of methodologies that allow the joint and accurate charac-
terization of cancer genotypes and phenotypes. Recent scDNA-seq
technologies enable astepin this direction by jointly allowing accurate
genomic characterization of distinct tumor clones and measurement of
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replicating cells”, providing a potential proxy for proliferation** ", To
realize this potential, we introduced the SPRINTER algorithm, aformal
method to enable accurateidentification and, especially, clone assign-
ment of S-and G2-phase cells. We demonstrated SPRINTER s utility and

accuracy onground truth datasets and validated results with multiple

orthogonal analyses on primary and metastatic tumor samples.
Using a newly generated single-cell, longitudinal, primary-

metastasis-matched NSCLC dataset, SPRINTER’s results combined
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Fig. 5| SPRINTER reveals increased single-cell rates of clone-specific genomic
variants and enrichment for specific oncogene amplifications in TNBC and
HGSC high-proliferation clones. a, In7 TNBC and 15HGSC tumors (dark blue
and dark pink in the first row with distinct tumors colored differently in the
second row), the distribution of the S fraction (bottom, y axis) of each SPRINTER
clone (x axis) with varying cell numbers (top, y axis in log,, scale) was calculated
by bootstrapping (with 300 repeats) using the S-phase cells identified and
assigned to clones by SPRINTER. b-d, Single-cell rates of clone-specific genomic
variants were measured inindividual cells (y axis, for 23,383 TNBC and 10,235
HGSC cells, excluding cells classified as outliers, tumors with single clones and
cells without measured variants) for SNVs (b), SVs (c) and CNAs (d) in high- and
low-proliferation clones (separated by the median of inferred S fractions,

xaxis) inthe TNBC (left) and HGSC (right) datasets, with Pvalues as measured

by a one-sided Mann-Whitney Utest and Cohen’s d effect sizes shown. e, For

each known oncogene (dots, obtained from the COSMIC Cancer Gene Census
excluding tumor suppressor genes), aone-sided Mann-Whitney U test was
used to identify amplifications present in clones with significantly higher S
fractions than other clones, with Pvalues multiple hypothesis-corrected using
the Benjamini-Hochberg method with family-wise error rate = 0.05 (y axis,
negative log scale) and the related differences between the average S fractions
(xaxis) shown for each test. Genes passing the test (red, with the minimum
corrected threshold indicated with the dotted line) are enriched in clones with
increased proliferation, with genes relevant to cancer proliferation annotated.
f, Cancer-relevant pathways (y axis) enriched for genes with amplifications
significantly associated with high clone proliferation from e were identified using
agene set enrichment analysis (combined scores on x axis). Ina-d, box plots
show the median and the IQR with whiskers denoting values within 1.5 times
the IQR from the first and third quartiles, respectively.

with metastatic evolutionary analysis suggest that high-proliferation
clones within an individual tumor have increased metastatic seeding
potential, that is, comprise the specific cancer cells more likely to
metastasize. While consistent with the known link between prolifera-
tion and outcomes for distinct tumors in different patients®®, these
clone-specific results were not necessarily expected based on previous
studies suggesting that disseminating cells undergo epithelial-mesen-
chymal transition, associated with a more invasive but less prolifera-
tive phenotype® **. Our results are consistent with high-proliferation
clones undergoing epithelial-mesenchymal transition but then
plastically returning to a proliferative state in a target organ. Further-
more, our results are consistent with the recent TRACERX"* obser-
vation that metastatic seeding clones, despite being present in only
some primary tumor regions, are highly expanded in those regions,
which could be explained by the increased proliferation illustrated
by SPRINTER. Because SPRINTER revealed that high-proliferation
clones also shed more ctDNA, these results motivate the develop-
ment of scalable precision-medicine approaches®?* (for example,
liquid biopsies®* or inexpensive methylation assays®) to predict
the metastatic potential of different clones. Nonetheless, SPRINTER’s
results warrant careful ctDNA interpretation given thatits prevalence
doesnotonlyrelate to clone volumebut also clone proliferation. While
theseresults were derived from anindividual case, the cancer-agnostic
andtechnology-independent nature of SPRINTER demonstrated here
makes it applicable to the increasing number of different scDNA-seq
datasets™>7 %%, allowing generalization of these findings.

SPRINTER’s results lay the foundation for investigating the cellular
and evolutionary mechanisms underlying cancer proliferation and
progression in human tumors. Here we found that high-proliferation
clones in TNBC and HGSC tumors have increased rates of multiple
genomic variants (SNVs, SVs and CNAs), which might provide an evo-
lutionary advantage. In fact, high-proliferation clones were associated
with specific genetic alterations enriched in proliferation-related gene
pathways, illustrating a possible mechanism driving clone prolifera-
tion. Beyond genetic mechanisms, SPRINTER s results also enable ART
investigationin tumor clones. Giventhe established link between ART
and both gene expression changes and epigenetic modifications®,
SPRINTER thus provides a way toinvestigate non-genetic evolutionary
mechanisms driving cancer progression. For instance, in the NSCLC
case, we did not identify genetic drivers unique to the most prolifera-
tive and disseminating metastatic clade, but we did identify a unique
late-to-early ART eventin KRAS associated with increased expression.
To further these opportunities, SPRINTER’s results can be leveraged
to improve ART identification in individual cells, for which methods
arebeing developed®*®.

While SPRINTER establishes a general framework to enable the
evolutionary and clone-specific analysis of S- and G2-phase cells in
human tumors, there are opportunities for furtherimprovement. For
instance, G2 fraction estimates are expected to be less robust than S
fraction estimates because G2-phase identification only relies on a

single signal (that is, total read counts). Incorporation of additional
signals (for example, nuclear imaging) could thus improve G2-phase
identification, further enhancing the analysis of the relative length
of cell cycle phases in human tumors that we started to demonstrate
here. Moreover, while SPRINTER provides high sensitivity for mid-
and late-S-phase identification, early-S-phase identification remains
limited. We expect that the generated ground truth datasets will sup-
port the development of related algorithmic improvements. Finally,
we note that low scDNA-seq coverage prevents the comprehensive
characterization of SNVs only present inindividual cells, which would
require deeper sequencing experiments.

In conclusion, SPRINTER enables the characterization of the evo-
lutionary dynamics of proliferation and non-genetic alterations such
as ART in distinct clones co-existing within a tumor. This provides the
substrate for the next generation of cancer research studies that can
jointly investigate the genetic and non-genetic mechanisms underlying
clinically relevant cancer phenotypes, like metastatic potential.
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Methods

Clinical data, ethics and consent

The five primary tumor samples and five anatomically distinct
metastatic samples analyzed in this study have been obtained from
patient CRUKP9145 with NSCLC (Supplementary Note 7) from the
TRACERx study"* (https://clinicaltrials.gov/ct2/show/NCT01888601,
approved by anindependent Research Ethics Committee, 13/L0/1546)
and the PEACE autopsy study® (https://clinicaltrials.gov/ct2/show/
NCT03004755, approved by anindependent Research Ethics Commit-
tee, 13/L0O/0972). Ethical approvals for the research performed in this
study and informed written consent were obtained as part of TRACERx
and PEACE studies. Moreover, pathological assessment of Ki-67 and
patient clinicalimaging were obtained and processed according to the
standards of these studies (Supplementary Notes 8 and 9). The other
patient data analyzed in this study are publicly available with ethics
and consent reported in the corresponding studies”.

The SPRINTER algorithm

We introduce the SPRINTER algorithm to identify and assign S- and
G2-phase cells to distinct tumor clones using scDNA-seq data. Spe-
cifically, SPRINTER enables this goal in the following six main steps:
(1) the computation of replication-specific DNA sequencing signals,
(2) thereplication-aware segmentation of the genome into likely CNA
segments, (3) the high-sensitivity inference of S-phase cells, (4) the
inference of distinct tumor clones as subpopulations of cells with
different complements of CNAs, (5) the assignment of S-phase cells
tothe corresponding clone and (6) the inference of G2-phase cells for
each clone. To do this, SPRINTER uses the following two inputs: the
count of sequencing reads aligned to different genomic regions (or
read counts) for each sequenced cell and replication scores (that is,
ameasure of the replication timing****) for each genomic region. We
detail how SPRINTER sequentially performs each of these stepsinthe
following sections.

Deriving replication-specific DNA sequencing signals. Thefirst chal-
lenge addressed by SPRINTER is the computation of DNA sequencing
signals thatincorporate replication-specificinformation for the identi-
fication and clone assignment of S-phase cells. For each cell, given a par-
tition of the reference genome into mbins (50 kb by default), SPRINTER
calculates two signals for each bin. The first signal is the replication
timing, which is a classification of the bin as either early-replicating,
late-replicating or unknown. In particular, SPRINTER computes the
average replication scores per bin across a subset of available****
Repli-Seq™® datasets generated for different normal and cancer cell
lines, and it identifies early/late bins as those that confidently belong
to the two main modes of the replication score distribution (Sup-
plementary Note 10). The remaining bins are classified as unknown
and are only used in the CNA analysis of GO/G1/G2-phase cells. In fact,
preserving >50% of bins with conserved early or late replication timing
is sufficient for S-phase identification and clone assignment because
CNAs are large (mostly >2 Mb (refs. 16-19,30); Supplementary Fig. 2),
while replication fluctuations are substantially shorter (Supplementary
Fig.2) and occur across the whole genome (Extended Data Figs. 1-3).

The second signal calculated for each binisthe RDR, whichis a sig-
nalused instandard copy-number analysis to identify CNAs'®. Because
different bins replicate their DNA at different times, the genome of
S-phase cellsis characterized by the alternation of replicated regions
with higher read counts and unreplicated regions with lower read
counts, inducing read count fluctuations across the whole genome'"*%,
To capture these fluctuations, SPRINTER calculates RDRs similarly
to previous scDNA-seq methods' " by aggregating read counts in
windows of neighboring bins and applying standard normalizations
for alignment bias (Supplementary Note 11).

Additionally, SPRINTER improves RDR calculation in two ways.
First, during the identification of S-phase cells, SPRINTER only

aggregates bins with the same replication timing and chooses the
window size for each cell independently given a fixed value of aver-
age read counts per bin. This cell-specific choice is important as it
accounts for the fact that cells in different cell cycle states yield differ-
enttotal read counts, and it hence allows SPRINTER to calculate RDRs
with the same expected variance across cells, in contrast to previous
studies™""** (Supplementary Note 11). Second, SPRINTER introduces
areplication-aware method to correct RDRs for GC sequencing bias®>®.
While previous methods correct GC bias in RDRs by fitting a function
that models the relationship between RDRs and GC content (for exam-
ple, using local regressions'*?%’), these approaches also lead to the
erroneous correction of RDR fluctuations induced by replication in
S-phase cells (Supplementary Fig. 5). Thisis because early-replicating
genomic regions are GC enriched and late-replicating regions are GC
depleted, and hence replication-induced fluctuations are identified as
GCbiasand erroneously corrected, discarding the main signal used to
identify S-phase cells. To preserve replication fluctuations, SPRINTER
leverages two key observations. First, groups of bins with the same
replication timing (early or late) are less affected by replication fluctua-
tions as they replicate at more similar times. Thus, SPRINTER infers GC
biases in early and late bins separately using a quantile linear regres-
sion.Second, bins with higher GC content tend toreplicate earlier than
bins with lower GC content, and they produce increased RDRs during S
phase (Supplementary Fig. 6). Thus, SPRINTER identifies the inferred
regressions that are still affected by GC bias as those with an inferred
slope substantially higher than other cells and corrects them, assuming
that cellssequenced together have similar GC bias. Further details are
giveninSupplementary Note 12.

Replication-aware copy-number segmentation. The second chal-
lenge addressed by SPRINTER is the copy-number segmentation of
the genome of each cell into groups of consecutive bins affected by
the same CNAs. Inferring CNA segments is an essential task for the
accurate identification of S-phase cells because CNAs induce similar
RDR fluctuations (higher/lower RDRs for higher/lower copy num-
bers, respectively) to those induced by replication in S-phase cells
(higher/lower RDRs for replicated/unreplicated bins, respectively;
Extended Data Figs. 1-4). Therefore, identifying RDR fluctuations
thatareinduced by CNAs with high confidence is essential for S-phase
identification because fluctuations induced by replication are only
present in S-phase cells. Previous methods to identify S-phase cells
rely onstandard algorithms for single-cell copy-number segmentation
andadoptapproaches that eitherignore CNA fluctuations” or use CNA
information that can be obtained by collapsing all cells together?.
However, the former approach is not suited to the analysis of cancer
cells with high rates of CNAs as in most solid tumors™"72%*°, and the
latter is affected by intratumor heterogeneity and cell-unique CNAs,
whichare also frequent in most solid tumors' 2,

SPRINTER overcomes the challenges of CNA segmentation in
S-phase cells by introducing a replication-aware segmentation algo-
rithm that leverages the expected differences between early- and
late-replicating bins to only identify segments that are likely induced by
CNAs. Specifically, SPRINTER separates early- and late-replicating bins
intotwo groups and identifies candidate breakpoints for CNA segments
in each group independently, such that most replication-induced
fluctuationsin RDRs between early and late bins that occurin S-phase
cells are not erroneously inferred as CNA breakpoints. In each group,
SPRINTER identifies breakpoints by using a hidden Markov model
(HMM), similar to standard copy-number methods'"". Because
CNAs tend to affect large genomic segments'®'>*° (that is, ~42 Mb
on average with >99.9% of CNA segments >2 Mb in size, as measured
in previous single-cell studies') in contrast to the short length of
consecutive regions of bins with the same replication timing (that is,
<1 Mb on average with a median of 250 kb; Supplementary Figs.1-3),
CNAs are expected to induce segments containing both early- and

Nature Genetics


http://www.nature.com/naturegenetics
https://clinicaltrials.gov/ct2/show/NCT01888601
https://clinicaltrials.gov/ct2/show/NCT03004755
https://clinicaltrials.gov/ct2/show/NCT03004755

Article

https://doi.org/10.1038/s41588-024-01989-z

late-replicating bins. As such, SPRINTER obtains a cell-specific
copy-number segmentation by combining all the identified break-
points and preserving only related segments that include both early
andlatebins, corresponding to likely CNA segments. Instead, segments
that only include either early or late bins are discarded because they
arelikely duetoreplication (thatis, due to differences in RDRs between
replicated and unreplicated bins with the same replication timing).
Note that rare CNAs that exclusively overlap large domains of early/
late regions canbe correctly recoveredin later SPRINTER steps—in GO/
G1/G2-phasecells, all CNAs can be accurately inferred because all RDR
fluctuations canbe related to CNAs in these cells, whilein S-phase cells,
theserare CNAs canbe later corrected using the CNAs inferred for the
GO0/G1/G2-phase cells assigned to the same clone. Further details are
givenin Supplementary Note 13.

Identifying S-phase cells. The third challenge addressed by SPRINTER
is the identification of S-phase cells. Existing methods calculate a
statistic per cell by combing multiple sequencing signals to identify
replication-induced fluctuations and separate GO/G1/G2- and S-phase
cells by using a single threshold after aggregating these statistics
across all cells™""*, However, this approach has two main limitations
that reduce its sensitivity. First, replication fluctuations are difficult
to identify in cells during the early and late stages of S phase because
only a limited fraction of bins is replicated or unreplicated during
these stages, respectively (Extended Data Fig. 3 and Supplementary
Figs. 11-13). Second, RDR fluctuations differ for cells with different
ploidies because copy-number changes generally result in smaller
fluctuationsin the expected RDRs for cells with higher ploidies™. There-
fore, approaches that rely on aggregating sequencing signals across
all sequenced cells are not suited to accurately identify S-phase cells
when sequencing mixtures of cells with different ploidies, for example,
mixtures of diploid normal cells and aneuploid cancer cells that are
often found in tumor samples.

Toimprove the sensitivity of previous approaches, SPRINTER lever-
agesthe expected RDR fluctuations between early-and late-replicating
bins to introduce a statistical permutation test that can be applied
to each cell independently. This test is based on the replication tim-
ing profile (RTP) of each cell, which is calculated by normalizing the
RDRs of all bins within the same copy-number segment (inferred in
the previous SPRINTER step) by their median to correct for the effect
of CNAs (Extended Data Fig. 4 and Supplementary Fig. 7). Because
the resulting RTP values only depend on the replication state of the
corresponding bins with higher and lower values indicating repli-
cated and unreplicated bins, respectively, varying RTP values across
the genome are a hallmark of S-phase cells. Although the replication
state of a bin is unknown, early bins are expected to replicate before
late bins, and, hence, every S-phase cell is expected to have a subset
of early-replicating bins with higher RTP values than late-replicating
binsacross the genome, or a subset of late-replicating bins with lower
RTP values than early-replicating bins (Extended Data Fig. 3 and Sup-
plementary Figs. 11-13).

Assuch, SPRINTER performs two permutation tests of replication
timing classifications (by default 10° permutations) to test the presence
of suchasubset containing a significantly high number of bins. Specifi-
cally, thisisachieved by introducing anew summary statistic that cap-
turesthefraction of early or late bins with substantially higher or lower
RTP values, respectively, than bins with different replication timing.
Note that thisstatisticis expected to be robust to the presence of altera-
tions or errorsinreplication timing classifications because it requires
only asubset of bins, not all early or late bins, to display the expected
difference in RTPs. Because replication fluctuations are expected to
occur along the entire genome during the S phase, SPRINTER per-
forms the test on each chromosome independently, and theresulting
values of each statistic are combined using the harmonic mean; this
approach helps overcome noise and errors that can be localized to

certain genomic regions. Finally, the two P values obtained for each
test are combined using the minimum, and a multiple-hypothesis
correctionis applied toall cells using the Holm-Sidak method to iden-
tify S-phase cells. In contrast to previous approaches that aggregate
all sequenced cells together, SPRINTER’s method is applied to each
cellindependently, providing a significance assessment for each cell
individually and making the method suitable to heterogeneous tumor
samples characterized by cells with different ploidies and CNA rates.
Further details are given in Supplementary Note 14.

Inferring distinct clones. The fourth challenge addressed by SPRINTER
is the inference of clones. Like previous single-cell studies’°,
SPRINTER identifies CNAs in single cells, and, based on these, it infers
clones as subpopulations of cells that share the same complement of
CNAs. Because CNAs cannot be directly and easily inferred from the
replication-influenced RDRs of S-phase cells, SPRINTER improves the
inference of clones by using only the inferred GO/G1/G2-phase cells,
under therealisticassumption that every clone contains corresponding
GO0/G1/G2-phase cells. Specifically, SPRINTER identifies CNAs in GO/G1/
G2-phase cellsby inferring the underlying copy numbers usingan HMM
thatalsoincorporates the parametersinferredin the previous segmen-
tation (Supplementary Note 15). Moreover, SPRINTER improves the
inference of clones intwo additional ways. First, SPRINTER introduces
anauto-tuning clustering procedure toinfer clones while automatically
adapting to different rates of CNAs and errors in the inferred CNAs
that can be present in distinct tumor samples, in contrast to previous
clustering approaches with fixed parameters'® (Supplementary Note
16). Second, SPRINTER introduces a hypothesis-testing approach
to identify and correct artefactual clones derived from errors in the
inferred ploidy of each cell (that is, mean copy number), which are
frequent errors asshown in previous studies'®". Specifically, SPRINTER
testsif any clone inferred with different ploidy, that is, a ploidy differ-
ent to most other tumor cells, can be equally explained by the ploidy
and CNAs of other clones, and, if so, the clone is discarded and the
corresponding cells are assigned to other clones while correcting their
ploidy (Supplementary Note 17).

Assigning S-phase cells to distinct clones. The fifth challenge
addressed by SPRINTER is the assignment of S-phase cells to the cor-
responding clone, as well as the inference of CNAs for these cells. While
S-phase cells are expected to have the same set of CNAs as the GO/G1/
G2-phase cells present in the same clone, CNAs cannot be directly
inferred fromtheir observed RDRs because RDRs are affected by both
CNAsand replication fluctuationsin S-phase cells, as described above.
Furthermore, different S-phase cells can be affected by substantially
different RDR fluctuations induced by replication. For example, RDR
fluctuations are frequent across the entire genome in cells that are in
mid-S phase, and these cells display the largest separation between the
RDRsof early and late bins (Extended Data Fig. 3). Conversely, cells that
arein early- or late-S phase might only display focal RDR fluctuations,
which can be mistakenly identified as potential CNAs (Extended Data
Fig. 3 and Supplementary Figs. 11-13). Consequently, every S-phase
cell must be treated differently for CNA analysis.

To enable the accurate assignment of S-phase cells to clones,
SPRINTER introduces a Bayesian, maximume-a-posteriori probability
method with two steps applied to each S-phase cell independently.
First, SPRINTER corrects replication-induced fluctuations by normal-
izing the RDRs of groups of bins within the same segment that have
been previously inferred to have the same underlying replication state
(that is, not separated by breakpoints inferred in SPRINTER’s second
step) around the median RDR of the segment (Extended Data Fig. 4
and Supplementary Fig.7). Next, SPRINTER obtains the likelihood that
each cellbelongsto every clone by calculating the probability that the
replication-corrected RDRs are generated by the copy numbers of the
clone. Based on this, it thus assigns the cell to the clone that maximizes
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the posterior probability, calculated using the likelihood and a prior
probability that depends on the clone’s size measured from the cor-
responding number of GO/G1/G2-phase cells. Further details are given
inSupplementary Note 18.

Inaddition to clone assignments, SPRINTER also infers the CNAs of
theidentified S-phase cells using the same HMM algorithm described
inSPRINTER’s previous step but using the replication-corrected RDRs
and additionally fixing the ploidy to be the same as the assigned clone.
Moreover, SPRINTER uses the assigned clone to correct small, rare
CNAs thatexclusively occur ingenomicregions with only early or late
replication timing and other small CNAs in S-phase cells (Supplemen-
tary Note 19), allowing SPRINTER to accurately recover most CNAs in
both S- and non-S-phase cells (Supplementary Fig. 21).

Identifying G2-phase cells in distinct clones. The sixth and last chal-
lenge addressed by SPRINTER is the identification of G2-phase cellsin
eachinferred clone. Although G2-phase cells cannot be distinguished
from GO/G1-phase cells solely based on RDRs (Supplementary Note
15), G2-phase cells are expected to yield higher total read counts than
Gl-phase cells due to increased DNA content, especially for
tagmentation-based technologies such as DLP+ (ref.17) (Supplemen-
tary Fig. 8). Based on this, SPRINTER introduces an importance sam-
pling method to estimate the fraction u of G2-phase cellsineach clone
by deconvolving the distributions of total read counts generated by
either GO/G1- or G2-phase cells using a negative binomial mixture
model. Additionally, the method integrates information from the
identified S-phase cells—because G2-phase cells are also expected to
yield higher read counts than S-phase cells on average (Supplementary
Fig.8), we constrain the inference of zsuch that the resulting G2-phase
cellshave an expected read count higher than the expected read count
of S-phase cells. As such, the probability of each cell being in GO/G1 or
G2 phaseis computed by using the likelihoods of the fitted model and
auniformprior, and G2-phase cells are defined as those with a probabil-
ity below a certain threshold of beingin GO/G1 phase (<0.3 by default).
Further details are given in Supplementary Note 20.

scDNA-seq

We performed scDNA-seq on all cells from the HCT116 ground truth
dataset and the NSCLC case using the DLP+ protocol as previously
described”". Given that only snap-frozen patient tissue was available for
thisstudy, allHCT116 single cells and patient tissue samples underwent
single nucleiisolationbefore DLP+library preparation and sequencing.
The details of the protocol are described in Supplementary Note 21.

Ground truth dataset of cell cycle-sorted cells

We generated a ground truth scDNA-seq dataset of 4,410 diploid and
4,434 tetraploid cells in known cell cycle phases sequenced using
the DLP+ protocol. To avoid cross-contamination between cell cycle
phases, known to be a common occurrence when using standard
FACS techniques?®®, we used animproved approach based on previous
studies®, which used two independent signals during FACS. The first is
EdU, whichisincorporatedintoactively replicating DNA and hasbeen
shown to accurately and comprehensively capture S-phase cells®, and
the second is DNA Hoechst 33342 dye, which is used to measure DNA
content (Supplementary Fig. 9). To apply this approach, we chose the
colorectal cancer cell line HCT116 as it provided an isogenic system
that had already been analyzed in previous longitudinal studies* and
enabled the generation of both diploid and tetraploid ground truth
datasets*. Related details are given in Supplementary Note 22.

Bioinformatics analysis of single-cell data

The generated datasets were aligned to the human reference genome
hg19 and processed using standard scDNA-seq pipelines, obtaining
a single-cell pseudobulk BAM file for each sample, for which all cells
have beensequenced together (see details in Supplementary Note 23).

SPRINTER was applied independently to each pseudobulk BAM file
generated for the ground truth datasets and the NSCLC samples using
default parameters (Supplementary Note 24). Moreover, SPRINTER was
applied to the previous TNBC and HGSC datasets using the available
read counts”. On the ground truth datasets, the previous methods
for inferring S-phase cells, CCC and MAPD, were applied using and
extending the available implementations** (Supplementary Note 24).

Phylogenetic and metastatic seeding analysis

We reconstructed the tumor phylogeny for the clones inferred by
SPRINTER in the NSCLC dataset using both SNVs and CNAs. In par-
ticular, SNVs and related driver mutations were identified using a
pseudobulk approach” " and standard tools (Supplementary Note
25). While existing methods can reconstruct tumor phylogenies from
single-cell SNVs*°, these methods cannot be directly applied to SPRINT-
ER’s clones due to the presence of subclonal SNVs, thatis, SNVs that are
only present in a subset of the cells within the same clone. Moreover,
while methods to reconstruct tumor phylogenies from clone-specific
CNAs* also exist, these methods do not integrate both SNVs and CNAs
in the reconstruction of tumor phylogenies. Therefore, we devised
a three-step approach to overcome these challenges by integrating
and extending existing methods—(1) the presence of SNVs in each
clone was inferred using pseudobulk approaches'® per clone and
probabilistic models of SNV cellular frequency*’, (2) SNV evolution was
reconstructed using the HUNTRESS algorithm®®and (3) CNA evolution
was reconstructed using the MEDICC2 algorithm®’, fixing the same
topology asthe SNV phylogeny reconstructed inthe previous step (Sup-
plementary Notes 26-28). Based on this phylogeny, the MACHINA algo-
rithm*®was applied to infer metastatic migration patterns and identify
seeding clones, which were also used to calculate the seeding genetic
distances based on both SNVs and CNAs (Supplementary Note 29).

Identifying clone-specific ART

SPRINTER’s results were leveraged to identify clone-specific ART for
the tumor clones inferred in the NSCLC dataset with respect to the
reference replication timing classifications obtained fromnormal cells,
included as an additional feature in the SPRINTER algorithm. Specifi-
cally, SPRINTER analyzes each cloneindependently and, based on previ-
ousreplication timing approaches®®**, uses high and low average RTP
values per clone (calculated as described above but using the segments
induced by the inferred CNAs) toidentify early- or late-replicating bins,
respectively, similar to SPRINTER’s first step. As such, ART is identified
in genomic regions inferred with early or late replication timing, but
which were classified as the opposite from the reference replication
timing classifications obtained from normal cells only (see details in
Supplementary Note 30).

To support the inferred ART classifications, two analyses were
performed integrating matched bulk RNA sequencing data previously
generated for regions of the same primary tumor>’. This is because
late-to-early and early-to-late ART are known to generally be asso-
ciated with increased and decreased gene expression compared to
normal tissue without ART, respectively®***°, First, a gene set variation
analysis® was performed using GSEApy®’ with the inferred replication
timing classifications, revealing enrichment scores that support the
inferred ART. To show that these results are specific to this patient,
we also showed that arbitrary scores are obtained from this analysis
when using gene expression data from 915 tumor samples from 347
other TRACERX patients (Supplementary Fig. 43). Second, for a sub-
set of ART specifically affecting genes known to be involved in cancer
proliferation or metastatic potential, we performed a differential gene
expression analysis using the same method as in previous TRACERx
studies®’ based on DESeq2 (ref. 70). We compared the gene expression
measured in the samples with a related ART event to the expression
measured in different sets of other samples not expected to have the
same ART event. Related details are given in Supplementary Note 31.
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Analysis of ctDNA

Four blood samples were collected, and ctDNA was processed in pre-
vious studies®? for patient CRUKP9145. Tracked SNVs were matched
to SPRINTER'’s identified single-cell clones using the reconstructed
phylogeny, and, for each clone with tracked SNVs, a ctDNA shedding
index at the primary tumor time point was calculated by either (1)
subtracting the frequency of the SNVs (that is, cancer cell fractions)
as measured by bulk or single-cell sequencing in the primary tumor
from the frequency of the same SNVs measured in ctDNA samples by
the ECLIPSE algorithm® or (2) subtracting the clone proportion (that
is, the proportion of cells uniquely assigned to the clone) as measured
ineither bulk or single-cell sequencingin the primary tumor fromthe
measured ctDNA clone proportion (measured by subtracting the SNV
frequencies of different clones according to the ancestral relationships
defined by the reconstructed phylogeny, as described in previous
studies*®*%). Further details are given in Supplementary Note 32.

Rates of clone-specific genomic variants inindividual cells

In the TNBC and HGSC datasets, the single-cell rates of clone-specific
SNVs, SVsand CNAsinindividual cells were calculated using the variants
identified in previous studies” by normalizing the number of variants per
cellby the totalnumber of clonal (that s, presentinall cellsin the clone)
or clone-unique variants for SNVs or SVs/CNAs, respectively. Moreover,
all clones in either the TNBC or HGSC datasets have been partitioned
into two groups of high or low proliferation based on the median of the
inferred S fractions. Further details are givenin Supplementary Note 33.

Genomicalterations enriched in high-proliferation clones

In the TNBC and HGSC datasets, a hypothesis-testing approach has
been used to identify amplifications of known oncogenes, deletions
of known tumor suppressor genes and driver mutations enriched in
high-proliferation clones. Specifically, for each of these identified
events, a one-sided Mann-Whitney U test has been performed com-
paring SPRINTER’s inferred S fractions for clones without the event to
the Sfraction for clones harboring the event, and enriched events have
beenselected after applying a multiple-hypothesis correction using the
Benjamini-Hochberg method. Finally, agene set enrichment analysis™
has been performed for the selected amplifications with GSEApy®’.
Related details are givenin Supplementary Note 34.

Investigating changes in the relative length of cell cycle phases
SPRINTER’s estimated S and G2 fractions can provide information about
changes in the relative length of different cell cycle phases that might
occur in cancer®. While increased or decreased S fractions are gener-
allyexpectedtoyieldincreased or decreased G2 fractions, respectively
(because the presence of more/less S-phase cells generally determines
if more/less cells enter G2 phase), an increase or decrease in the G2
fraction without a corresponding variationintheSfraction could indi-
cate a change in G2 phase length relative to the length of S phase. We
quantified these changes using the fraction of G2-phase cells over the
fraction of S-phase cells (G2/S ratio), with ahigher G2/S ratio consistent
withapossible prolonged G2 phaserelative tothe length of the S phase.

Statistics and reproducibility

All statistical analyses and tests in Results were performed in Python
(v3.10.13) using Scipy’* (v1.11.4) and are described in the correspond-
ing sections or figure legends. The target number of cells sequenced
per sample was chosen based on previous studies’. The number of
samples hasbeen chosen based on previous bulk analyses of the same
tumor™ and tissue availability, but no statistical methods were used to
predetermine the number of samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw scDNA-seq data generated in this study from the ground truth
datasets have been deposited at the National Center for Biotechnol-
ogy Information (NCBI) Sequence Read Archive (SRA) under acces-
sion code PRJNA1158752. Raw scDNA-seq data generated in this study
from the patient enrolled in the TRACERx and PEACE studies have
been deposited at the European Genome-Phenome Archive (EGA)
under accession code EGAD0O0001015411. Access is controlled by the
TRACERx and PEACE data access committees, who assess whether
the proposed research is allowed given patient consent and ethical
approvals, as well as the scientific purpose. Details on how to apply
foraccess areavailable on EGA. The processed datafor the figures and
analyses performed in this study are available in Zenodo at https://
doi.org/10.5281/zenodo.13754278 (ref. 73). The processed data and
related genomic variants from the previous TNBC and HGSC datasets
are available in Zenodo at https://doi.org/10.5281/zenod0.6998936
(ref. 74) and https://doi.org/10.5281/zenodo.7718917 (ref. 75) as part
of previous studies'. Raw scDNA-seq data generated in a previous
study?® from phase-sorted lymphoblastoid cells are available in SRA
under accession code PRJNA770772.

Code availability

SPRINTER is available on GitHub at https://github.com/zaccaria-lab/
sprinter, anditis distributed through Bioconda’. A reproducible cap-
sule of SPRINTER with data from this study is available on CodeOcean
https://doi.org/10.24433/C0.4888914.v1.
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Extended DataFig.1|S-phase cells display a clear difference inread depth
ratios (RDRs) between early and late genomic regions in contrast to
G1/G2-phase cells. Average RDRs (y axis) were measured by SPRINTER in 50 kb
genomic bins with early (magenta) or late (green) replication timing across
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depthratios (RDRs) between early and late genomicregions in S-phase cells
in contrast to G1/G2-phase cells. RDRs (y axis) were measured by SPRINTER in
50 kb genomic bins with early (magenta) or late (green) replication timing across
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replication-induced fluctuations of RDR. Average RDRs (y axis) were
measured by SPRINTER in 50 kb genomic bins with either early (magenta) or
late (green) replication timing across autosomes in the genome (x axis) for (a)
180 early-S-phase cells, (b) 916 mid-S-phase cells and (c) 901 late-S-phase cells
inthe generated tetraploid ground truth dataset that were identified as S phase

by SPRINTER. As expected, cells at different stages of S phase exhibit clearly
different replication fluctuations in RDRs: in early-S phase only early-replicating
bins shift to higher values of RDR, in mid-S phase all the early bins have
completed replication and have distinctly higher values of RDR than late bins,
andin late-S phase, late bins also start replicating and some of these bins increase
their values of RDR.
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Extended Data Fig. 4| SPRINTER’s replication-aware framework enables segments inferred by SPRINTER, preserving clear fluctuations between bins with
the differentiation of RDR fluctuations due to either replication or different replication timing (with magenta early regions having higher RDRs
CNAs. a, Average RDRs (y axis) were measured by SPRINTER in 50 kb genomic than green late regions on average). ¢, Replication-corrected RDRs (y axis) are
bins with either early (magenta) or late (green) replication timing across computed by SPRINTER for each bin (x axis) for the same cells by correcting RDRs
autosomes in the genome (x axis) for 73 mid-S-phase cells in the generated for replication fluctuations, such that the remaining fluctuations are likely due
tetraploid ground truth dataset assigned to the same clone by SPRINTER. b, A to CNAs and are not influenced by replication (in each segment there is no clear
replication timing profile (RTP, y axis) is calculated by SPRINTER for each bin (x difference between bins with different replication timing).

axis) for the same cells by correcting RDRs for CNAs based on the copy-number
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Extended Data Fig. 5| SPRINTER’s results for cells sequenced from five
primary tumor samples and five metastases from patient CRUKP9145 with
NSCLC. Baseline copy numbers (heatmap colors) were inferred by SPRINTER

on 7312 cancer cells assigned to clones by SPRINTER (rows, excluding normal
cells and cells classified as outliers) sequenced from 10 distinct tumor samples
(left bar), including (a) 4265 cells from five primary tumor samples obtained at
surgery and (b) 3047 cells from five metastases sampled at autopsy, across -1 Mb

genomic bins (columns) with SPRINTER-inferred clones (middle bar) and with
S-and G2-phase cells assigned to each corresponding clone (light gray for G1
phase, dark gray for S phase and black for G2 phase in right bar). The anatomical
locations of the samples (colored circles) for (a) primary tumor regions and (b)
metastases are displayed in corresponding body maps. The figure is created with
BioRender.com.
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Extended Data Fig. 6 | Analysis of growth rates of metastases measured
using serial clinical imaging for patient CRUKP9145. Individual metastases
were identified on computed tomography (CT) and magnetic resonance (MR)
imaging scans performed during routine clinical management and collected as
part of TRACERX. a, The volume of each metastasis (y axis, circle) was measured
onserial scans (vertical dashed black lines) allowing changes in volume to be
tracked over time (x axis). b, For each interval between two consecutive time
points, the growth rate (log(mm?®/day)) was calculated for each metastasis using

either CT scans for the extra-cranial metastases (solid lines) or MR imaging scans
for the brain metastases (dashed lines). For the right adrenal metastasis, which
was only detected on the final CT scan (day 139 after surgery), the growth rate
was calculated by assigning it a volume below the limit of CT detection on the
preceding CT scan (day 59 after surgery, unfilled circle). ¢, Axial CT images of the
left adrenal metastasis (red arrow, days 50 and 139 after surgery) and MR images
of the left frontal lobe metastasis (red arrow, days 70 and 112 after surgery) are
displayed.
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Extended Data Fig. 7| Clone-specific ART in the NSCLC dataset affects <10%
ofthe genome on average as expected from previous studies. The fraction
of clones affected by ART was calculated by combining the fractions of clones
affected across all samples (y axis) based on SPRINTER'’s clone-specific results
inthe NSCLC dataset for either late-to-early (positive values, dark magenta) or
early-to-late (negative values, dark green) ART in 50 kb genomic bins along the
genome (x axis, with autosomes separated by dashed lines). ART was inferred

only in high-confidence cases (thatis, only ART events that were present in

most clones in >2 samples). Known cancer oncogenes in late-to-early genomic
regions and known cancer tumor suppressor genes in early-to-late regions (from
the COSMIC Cancer Gene Census) are annotated (black text and lines), also
including tumor- and metastatic-clade-specific ART events affecting genesin the
expression analysis (for example, PDL1, CDK12, NCOA2 and KRAS).
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Extended Data Fig. 8| SPRINTER enables the identification of clone-specific
ART supported by underlying read counts. SPRINTER identifies different ART
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SPRINTER identifies clone-specific late-to-early (dark magenta) and early-to-late
(dark green) ART events in genomic regions across chromosomes (x axis) if they
have calculated values of the replication timing profile per clone (clone-specific
RTP,yaxis) that are higher or lower, respectively, than expected.

Nature Genetics


http://www.nature.com/naturegenetics

Article

CCCCCC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Fa! [l Signature TR0 O0 RO OOE OO OO OO OO OO AR AR RN AR RSN AR
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

RRRRRRRRRRRRR

row) with previously annotated genomic signatures (second row, with three identified and assigned to clones by SPRINTER. Box plots show the median
signatures defined in the previous analysis of these datasets, that is, HRD, FBI and theIQR, and the whiskers denote the lowest and highest values within 1.5

the (middle) S fraction and (bottom) the fraction of actively replicating cells recombination deficiency; FBI, fold-back inversions; TD, tandem duplications.
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fractions inferred by SPRINTER in the clones (dots) with or without HRD (y axis) IQR, and the whiskers denote the lowest and highest values within 1.5 times the

inthe TNBC (left) and HGSC (right) datasets, with Pvalues as measured by a IQR from the first and third quartiles, respectively.

two-sided Mann-Whitney Utest when considering (a) all 280 clones inferred
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Counting single-cell sequencing reads:
CHISEL (v1.1.4)

Calling genomic variants:
Mutect2 (GATK, v4.2.0)

Variant annotation:
Ensembl Variant Effect Predictor (VEP, v109) with the plugins CADD (v16), LOFTEE, and SpliceAl
openCRAVAT34 (v2.3.0) with CHASMplus, CHASMplus LUAD, and CHASMplus LUSC modules

Data analysis New method for identification and clone assignment of S and G2 phase cells:
SPRINTER (v1.0) available on GitHub at https://github.com/zaccaria-lab/sprinter with reproducible capsule linked to this manuscript available
on CodeOcean

Existing methods for S phase identification:
cell cycle classifier (CCC) with HMMcopy (v0.6.46)
MAPD, available on GitHub at https://github.com/TheKorenLab/Single-cell-replication-timing (commit 4773a8f)
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Raw scDNA-seq data generated in this study from the ground truth datasets have been deposited at the NCBI Sequence Read Archive (SRA) under accession code
PRINA1158752. Raw scDNA-seq data generated in this study from the patient enrolled in the TRACERx and PEACE studies have been deposited at the European
Genome—phenome Archive (EGA) under accession code EGAD0O0001015411. Access is controlled by the TRACERx and PEACE data access committees, who assess
whether the proposed research is allowed given patient consent and ethical approvals, as well as the scientific purpose. Details on how to apply for access are
available on EGA. The processed data for the figures and analyses performed in this study are available in Zenodo at https://doi.org/10.5281/zenodo.13754278. The
processed data and related genomic variants from the previous TNBC and HGSC datasets are available in Zenodo at https://doi.org/10.5281/zenodo0.6998936 and
https://doi.org/10.5281/zenodo.7718917 as part of previous studies. Raw scDNA-seq data generated in a previous study from phase-sorted lymphoblastoid cells are
available in SRA under accession code PRINA770772.
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Population characteristics The patient was a 60-year-old male with stage IlIA squamous cell carcinoma, who was part of the TRACERx study and
underwent surgical removal of the primary tumour and who subsequently relapsed and died 251 days later after receiving
multiple lines of chemotherapy and radiotherapy. The patient died with metastases in multiple anatomical sites and was
enrolled in the PEACE autopsy programme, through which a post-mortem examination was performed.

Recruitment Done as part of the previous TRACERx study (https://doi.org/10.1038/s41586-023-05783-5).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The number of primary tumour and metastatic samples was chosen based on tissue availability from the related TRACERx study and PEACE
autopsy programme. The number of cells sequenced per sample (2000-2500) was chosen based on previous power studies for scDNA-seq
data (https://doi.org/10.1038/s41587-020-0661-6).

Data exclusions  Cells with less than 100,000 sequencing reads have been excluded from downstream analysis in this study because this low number of
sequencing reads was insufficient for copy-number analysis and may indicate failures in the process of DNA library preparation as previously
reported.

Replication For reproducibility, the DNA sequencing reads of every cell, as well as the SPRINTER code and related guided demos to reproduce the results,
will be made publicly available after review. Currently, an automatic reproducible capsule for SPRINTER's results is available in CodeOcean at:
https://codeocean.com/capsule/9392115. The capsule can be accessed to review and verify previous automatically and independently tested
executions of SPRINTER and re-execute it. The processed results to reproduce every figure and downstream analysis in the manuscript,
including related demos, will be made publicly available in Zenodo.

Randomization  Randomization is not relevant as this is an observational study.

Blinding Blinding is not relevant as this is an observational study.
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|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Flow Cytometry was used for generation of the ground truth datasets using the colorectal cell line HCT116, using one diploid
and one tetraploid lineage. In detail, we first labelled cells with Click-iT EdU and fixed and stained using the Click-iT Plus EdU
Flow Cytometry Assay Kit (C10634 Invitrogen), halting further progression through the cell cycle. Cells were stained with 2ug/
ml Hoechst 33342 before flow sorting.
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Instrument Flow sorting was performed on a BD Influx cell sorter (BD, San Jose, CA, USA) using a 140 micron nozzle, with pressure
maintained at 14 psi.

Software Data was analysed using BD FACS Software v1.2.0.142 (BD, San Jose, CA, USA).

Cell population abundance Cells were simultaneously and electrostatically sorted into 5 uniform fractions of different cell cycle phases (G1, early S, mid
S, late S, and G2).

Gating strategy Cells were simultaneously and electrostatically sorted based on both EdU (Alexa Fluor 647, excited with a 642nm laser and
emission collected in a 670/30BP filter) and DNA Hoechst 33342 dye (excited using a 405nm laser and emission collected in a

460/50BP filter), with both parameters displayed on a linear scale.

g Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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