
Nature Genetics | Volume 57 | January 2025 | 103–114 103

nature genetics

https://doi.org/10.1038/s41588-024-01989-zArticle

Characterizing the evolutionary dynamics of 
cancer proliferation in single-cell clones with 
SPRINTER

Olivia Lucas    1,2,3,4,14, Sophia Ward    2,3,5,14, Rija Zaidi    1,2, Abigail Bunkum    1,2,6, 
Alexander M. Frankell    2,3, David A. Moore    2,3,7, Mark S. Hill    3,  
Wing Kin Liu2,6, Daniele Marinelli    6,8,9, Emilia L. Lim2,3, Sonya Hessey1,2,4,6, 
Cristina Naceur-Lombardelli    2, Andrew Rowan3, Sukhveer Kaur Purewal-Mann10,  
Haoran Zhai    2,3, Michelle Dietzen    2,3,8, Boyue Ding11, Gary Royle11, 
Samuel Aparicio    12,13, TRACERx Consortium*, PEACE Consortium*, 
Nicholas McGranahan    2,8, Mariam Jamal-Hanjani    2,4,6, Nnennaya Kanu    2,15  , 
Charles Swanton    2,3,4,15   & Simone Zaccaria    1,2,15 

Proliferation is a key hallmark of cancer, but whether it differs between 
evolutionarily distinct clones co-existing within a tumor is unknown. We 
introduce the Single-cell Proliferation Rate Inference in Non-homogeneous 
Tumors through Evolutionary Routes (SPRINTER) algorithm that uses 
single-cell whole-genome DNA sequencing data to enable accurate 
identification and clone assignment of S- and G2-phase cells, as assessed 
by generating accurate ground truth data. Applied to a newly generated 
longitudinal, primary-metastasis-matched dataset of 14,994 non-small cell lung 
cancer cells, SPRINTER revealed widespread clone proliferation heterogeneity, 
orthogonally supported by Ki-67 staining, nuclei imaging and clinical imaging. 
We further demonstrated that high-proliferation clones have increased 
metastatic seeding potential, increased circulating tumor DNA shedding and 
clone-specific altered replication timing in proliferation- or metastasis-related 
genes associated with expression changes. Applied to previously generated 
datasets of 61,914 breast and ovarian cancer cells, SPRINTER revealed 
increased single-cell rates of different genomic variants and enrichment of 
proliferation-related gene amplifications in high-proliferation clones.

High proliferation is one of the key hallmarks of cancer1 and is linked 
to worse clinical outcomes across a range of tumor types2–10. Thus far, 
proliferation has been estimated by measuring the fraction of S-phase 
cells using pathological or experimental techniques on bulk tumor 
samples2–5, such as Ki-67 staining, or using bulk and single-cell RNA 
sequencing6–8,11–13. However, most tumors have been shown to be het-
erogeneous compositions of genetically distinct subpopulations of can-
cer cells, or clones, with different evolutionary histories and roles14–20. 

Because proliferation may vary between distinct clones within the same 
tumor, the joint inference of clone-specific proliferation rates and the 
reconstruction of their evolutionary dynamics may allow the identifica-
tion of clones that develop more aggressive phenotypes14,21–26 (for exam-
ple, metastatic potential), providing mechanistic insight into the link 
between proliferation and prognosis. Recent studies have shown that 
accurate identification of clones and reconstruction of their evolution 
requires whole-genome DNA sequencing, as it provides a sufficiently 
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tumors in different patients. Furthermore, we illustrated SPRINTER’s 
broad applicability on previous scDNA-seq datasets19 of 61,914 cells 
from 7 triple-negative breast cancer (TNBC) and 15 high-grade serous 
ovarian cancer (HGSC) tumors.

Results
The SPRINTER algorithm
The SPRINTER algorithm uses scDNA-seq data to identify S- and 
G2-phase cells and assign them to distinct tumor clones identified 
using inferred single-cell CNAs. SPRINTER achieves this goal by lev-
eraging prior information on genomic regions that are expected to 
have early or late replication timing, which is known to be conserved 
across a high fraction of the genome in different cell types35–37 and 
cancer cells38–43 (~50% at minimum; Supplementary Fig. 1). Because 
the replication timing of some genomic regions can still vary in the 
analyzed cells, SPRINTER uses statistical approaches that do not fully 
rely on this prior information but rather account for the presence of 
potential changes or errors. As such, SPRINTER introduces two key 
contributions to overcome previous limitations. First, SPRINTER intro-
duces a probabilistic method to enable the accurate clone assignment 
of S-phase cells. CNAs cannot be directly inferred for S-phase cells 
because both replication and CNAs induce read count fluctuations 
in scDNA-seq data (Extended Data Figs. 1–3). Therefore, SPRINTER 
corrects replication-induced fluctuations using the distribution of 
early- or late-replicating regions across the genome to calculate the 
probability that any S-phase cell belongs to each clone identified using 
non-S-phase cells (Extended Data Fig. 4). Second, SPRINTER intro-
duces a replication-aware framework for the accurate identification of 
S-phase cells. Particularly, SPRINTER extends previous methods that 
rely on algorithms designed for CNA analysis of non-S-phase cells13,17–20,29 
to account for expected replication-induced fluctuations and intro-
duces a statistical permutation test based on these fluctuations for 
the high-sensitivity identification of S-phase cells.

SPRINTER is composed of six steps (Fig. 1) based on a partitioning 
of the reference genome into bins (50 kb by default). First, it iden-
tifies early- and late-replicating bins using experimentally derived 
replication scores from normal and cancer cells38,44,45 (Supplementary 
Figs. 1–4) and calculates read depth ratios (RDRs) to capture read count 
variations as per standard CNA identification13,17–20,29. During this step, 
SPRINTER accounts for varying total read counts for cells in different 
phases and incorporates a replication-aware GC-content bias correc-
tion (Supplementary Figs. 5 and 6). Second, it infers high-confidence 
CNA-induced segments in the genome of each cell while accounting 
for replication-induced RDR fluctuations (leveraging the fact that 
CNAs are substantially larger than regions with the same replication 
timing17–19,30; Supplementary Fig. 2). Third, it identifies S-phase cells 
using a statistical permutation test based on the higher and lower RDRs 
expected for early and late bins within copy-number segments in these 
cells, respectively (Extended Data Figs. 1–4 and Supplementary Fig. 7). 
Fourth, it identifies clones by inferring and clustering CNAs in G0/G1/
G2-phase cells by extending previous approaches17–19. Fifth, it assigns 
S-phase cells to maximum-a-posteriori probability clones and infers 
related CNAs by subtracting replication-induced fluctuations from 
RDRs (Extended Data Fig. 4). Finally, it identifies G2-phase cells per 
clone based on expected higher total read counts17 (Supplementary 
Fig. 8). The details of each of SPRINTER’s steps are reported in Methods.

SPRINTER exhibits high accuracy and sensitivity
To evaluate SPRINTER’s performance, we generated a ground truth 
scDNA-seq dataset of 8,844 diploid and tetraploid cancer cells with 
known cell cycle phases from the HCT116 colorectal cancer cell 
line46. While previous datasets have been generated using standard 
fluorescence-activated cell sorting (FACS)17,28, these approaches are 
error-prone and mostly enriched for mid-S-phase cells and are thus not 
suitable for the comprehensive assessment of S-phase identification. 

high number of mutations and genomic alterations for robust evolution-
ary analyses15–19,27. Therefore, the joint measurement of clone-specific 
proliferation rates and related evolutionary dynamics has thus far been 
unfeasible because proliferation and tumor clonal evolution could not 
easily be measured from the same data for the same cells.

Recent single-cell whole-genome DNA sequencing (scDNA-seq) tech-
nologies based on tagmentation without genome preamplification17,19,20, 
such as direct library preparation+ (DLP+)17,19, and similar techniques18,28 
have enabled the accurate genomic and evolutionary characterization 
of distinct tumor clones17–20 while also providing a signal to identify cell 
cycle states13,17,28. On the one hand, scDNA-seq data enables the inference 
of single-cell copy-number alterations (CNAs)13,17–20,29, which are frequent 
genomic alterations in cancer resulting from amplifications or dele-
tions of large genomic regions15,30. Tumor clones can thus be inferred by 
grouping cells that share the same CNAs13,17–20 and their evolution can be 
reconstructed using corresponding mutations13,17–20. On the other hand, 
scDNA-seq data can be used to identify S-phase cells because replication 
induces fluctuations in the sequencing read counts observed across the 
whole genome13,17,28. In fact, replication is an asynchronous process in 
which different genomic regions replicate their DNA at different times 
during S phase, and early-replicating regions thus yield higher read 
counts than late-replicating regions.

In principle, these joint scDNA-seq measurements should allow 
the estimation of clone proliferation by analysis of S fractions in dis-
tinct tumor clones. However, in practice, this task remains unfea-
sible due to the lack of a formal method to assign S-phase cells to 
their corresponding clones, which is a challenging problem because 
replication-induced fluctuations prevent accurate CNA identification 
in S-phase cells13,17–20,29. Moreover, high-sensitivity identification of 
S-phase cells is required for accurate S fraction estimates of the small 
clones often found in single-cell studies17–20, but two key limitations 
restrict the power of previous methods13,17,28. First, these methods 
rely on standard algorithms for copy-number analysis (for example, 
guanine–cytosine (GC) content correction or copy-number segmen-
tation) that ignore sequencing fluctuations induced by replication. 
Second, they assume that the sequenced cells belong to a homoge-
neous population and thus aggregate all cells together, identifying 
S-phase cells as those with some sequencing signal that deviates from 
the rest13,17,28. While this assumption may be true in cell lines (used in 
most previous studies13,17,28), this is not the case in cancer tissues that 
are often heterogeneous mixtures of normal and different cancer cell 
clones14,15,18,21, such that each clone may need to be treated differently 
for S-phase identification.

In this study, we introduce Single-cell Proliferation Rate Infer-
ence in Non-homogeneous Tumors through Evolutionary Routes 
(SPRINTER), an algorithm that uses tumor scDNA-seq data to enable 
accurate identification and clone assignment of S- and G2-phase cells, 
thus providing a proxy to estimate clone-specific proliferation rates. 
We evaluated SPRINTER’s accuracy by generating a scDNA-seq data-
set of 8,844 cells from diploid and tetraploid cell lines sorted with 
5-ethynyl-2-deoxyuridine (EdU) into different cell cycle phases31, pro-
viding a more accurate ground truth dataset than previous approaches.

While the link between cancer proliferation and prognosis has 
been clearly shown2–10, SPRINTER allows us to investigate if distinct 
clones co-existing within the same tumor have different prolifera-
tion rates, particularly clones with different evolutionary roles, such 
as metastatic seeding clones comprising the subset of cancer cells 
responsible for metastasis. To explore this, we generated a longitudinal, 
primary-metastasis-matched dataset of 14,994 single non-small cell 
lung cancer (NSCLC) cells, applied SPRINTER and performed detailed 
phylogenetic analysis to characterize the evolutionary dynamics of 
genetic and non-genetic features, such as proliferation and altered 
replication timing (ART), of distinct clones. We additionally analyzed 
circulating tumor DNA (ctDNA), for which a link with proliferation 
has only been revealed in previous bulk-based studies32–34 for distinct 
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To overcome these limitations, we applied a FACS approach incorpo-
rating EdU, as demonstrated in recent studies31, and sequenced cells 
separated into five different cell cycle phases using DLP+ (Supplemen-
tary Figs. 9–11and Methods). The availability of tetraploid cells also 
improved upon previous datasets, as the increased rate of CNAs in 
genome-doubled cells may complicate related analyses30,47.

In the identification of S-phase cells, we found that SPRINTER 
outperformed two previously established methods, the cell cycle clas-
sifier (CCC)17 and the median absolute deviation of pairwise differences 
(MAPD) method28, as well as a version of the latter incorporating repli-
cation timing information (rtMAPD), in both the diploid and tetraploid 
datasets, with improvements of 10–90% in mid- and late-S-phase iden-
tification while maintaining high precision (Fig. 2a and Supplementary 
Fig. 12). SPRINTER’s improved accuracy was further confirmed on a 

previous phase-sorted dataset28 of 5,970 lymphoblastoid cells gener-
ated with a different scDNA-seq technology (Supplementary Figs. 13 
and 14). In contrast, methods like MAPD that aggregate all cells during 
S-phase identification failed to deal with an additional dataset compris-
ing cells of mixed ploidy, confirming the importance of SPRINTER’s 
cell-specific test in analyzing these heterogeneous but realistic cases 
(Supplementary Fig. 15). Notably, SPRINTER’s accuracy remained 
robust for a fraction of replication timing errors higher than the maxi-
mum expected in both normal and cancer cells (Supplementary Fig. 16) 
and for the use of different input replication scores (Supplementary 
Fig. 17). Moreover, SPRINTER accurately identified G2-phase cells 
(>80% precision and recall; Supplementary Fig. 18) and provided the 
best prediction of actively replicating cells (in S and G2 phase; Fig. 2b). 
Further details are given in Supplementary Note 1.
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Fig. 1 | The SPRINTER algorithm. There are six main steps in SPRINTER. (1) The 
first step calculates the RDR and replication timing (early and late in magenta and 
green, respectively) of each genomic bin. (2) The second step infers segments 
of neighboring bins likely to be affected by the same CNAs by identifying 
candidate breakpoints independently in early or late bins and preserving 
only those breakpoints supported by both (dashed red lines preserved 
versus dashed gray lines discarded). (3) The third step identifies S-phase cells 
by performing a statistical permutation test of replication timing on RDRs 
normalized per segment (to remove the effect of CNAs) to assess the presence 
of significant differences between early (higher values) and late (lower values) 
bins expected for S-phase cells (bottom row) in contrast to G0/G1/G2-phase 
cells (top row). (4) The fourth step infers clones by identifying cell-specific 

CNAs (black lines) for all G0/G1/G2-phase cells and grouping cells with the same 
complement of CNAs (colored bars). (5) The fifth step assigns each S-phase cell 
to the maximum-a-posteriori clone (green check mark)—RDRs are corrected 
for replication fluctuations, and clone assignment is chosen to maximize the 
posterior probability across all possible assignments (best fit of black lines). 
(6) The sixth step identifies G2-phase cells per clone by deconvolving the 
distribution of total read counts yielded by either G0/G1-phase (light gray with 
lower values) or G2-phase (black with higher values) cells. SPRINTER’s results—
each cell (row) with inferred CNAs (colors) across bins (columns) is assigned to a 
clone, providing estimates of S (left dark gray bars) and G2 (black bars) fractions. 
The figure is created with BioRender.com.
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We further demonstrated that the increased number of replicat-
ing cells inferred by SPRINTER was necessary to accurately distinguish 
proliferation rate differences between clones of sizes similar to those 
identified in previous studies17–20 (Fig. 2c,d and Supplementary Note 2).  

Even more notably, we found that SPRINTER’s new features are required 
for the accurate clone assignment of S-phase cells, outperforming 
correlation-based heuristics proposed in previous studies13 (98% ver-
sus 62–69% accuracy), as measured using the clones in the tetraploid 
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and S-phase cells (y axis) was computed for CCC (blue), MAPD (orange), rtMAPD 
(MAPD extended with replication timing, red) and SPRINTER (green) across cell 
cycle phases (x axis) for 100 cell subpopulations (dots), each formed by sampling 
500 cells from the diploid (left) or tetraploid (right) ground truth datasets. 
b, ROC curves (false-positive rates versus true-positive rates) measure the 
performance in distinguishing G1-phase cells from actively replicating cells using 
the classification scores computed by existing methods (blue, orange and red) 
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by bootstrapping 300 diploid (top) or tetraploid (bottom) cells for 100 repeats 
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proliferation accuracy was computed for all methods (colors) considering 600 

pairs of clones generated as described in c by sampling varying numbers of 
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S-phase cells assigned to a clone was calculated per cell using all methods (colors) 
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The proportion of clones for which the assigned true S fraction was compatible 
with the expected S fraction was computed using a binomial test (pie charts). In 
d and f, box plots show the median and IQR with whiskers denoting values within 
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dataset expected to have equal proliferation rates46 (Fig. 2e,f, Supple-
mentary Figs. 19 and 20 and Supplementary Note 3). Finally, a spike-in 
experiment of CNAs demonstrated that SPRINTER’s clone assignments 
also enabled the accurate inference of most >3 Mb CNAs for both S- and 
non-S-phase cells (Supplementary Fig. 21).

Primary and metastatic tumor proliferation heterogeneity
To assess whether genomically distinct clones with different prolif-
eration rates are present in tumors, we applied DLP+ (refs. 17,19) to 
sequence 14,994 cells from ten tumor samples from patient CRUKP9145 
with metastatic NSCLC enrolled in the TRAcking non-small cell lung 
Cancer Evolution through therapy (Rx) (TRACERx) study14,21 and Post-
humous Evaluation of Advanced Cancer Environment (PEACE) autopsy 
study32 (Supplementary Figs. 22 and 23 and Supplementary Note 4). 
We sequenced 9,532 cells from five distinct samples from the primary 
tumor (regions 2, 3, 4, 5 and 8; Supplementary Fig. 24) and 5,462 cells 
from five samples obtained from anatomically distinct metastases 
(left adrenal, right adrenal, left frontal lobe, right occipital lobe and 
liver; Supplementary Fig. 25), demonstrating the applicability of DLP+ 
to fresh frozen human metastatic tissues obtained at autopsy. Using 
SPRINTER, we identified the presence of 52 distinct tumor clones with 
S- and G2-phase cells (Extended Data Fig. 5 and Supplementary Figs. 26 
and 27), high rates of CNAs and enough cells for accurate clone identi-
fication (Supplementary Fig. 28).

SPRINTER revealed widespread heterogeneity in the proliferation 
rates of clones between and within tumor samples (Fig. 3a). In fact, 
SPRINTER identified clones with substantially different proliferation 
rates both between different primary tumor samples and between 
different metastases (Fig. 3a and Supplementary Fig. 29). Moreover, 
in nearly all samples, SPRINTER identified clones with significantly 
higher or lower S fractions compared to other clones within the same 
sample (Fig. 3a), with similar patterns supported by related G2 fractions 
(Supplementary Figs. 30 and 31). Notably, SPRINTER’s clone-specific 
estimates were required to identify these differences as they would 
have been missed by previous bulk-based estimates (for example, Ki-67 
analysis). For example, primary regions 2, 3, 4 and 8 had indistinguish-
able bulk-based S fraction estimates (22% compatible with all samples; 
Fig. 3a) despite the presence of several differentially proliferative 
clones. Conversely, the bulk-based estimate in the right occipital lobe 
was half that of the right adrenal (13% versus 31%) despite the presence 
of clones with similar S fractions.

We orthogonally validated SPRINTER’s results using Ki-67 analysis, 
DLP+ nuclear imaging and clinical imaging (see details in Supplemen-
tary Notes 5 and 6). First, for samples with sufficiently high-quality 
Ki-67 staining, proliferation estimates from Ki-67 and SPRINTER were 
overall consistent, and Ki-67 analysis corroborated the heterogeneous 
proliferation rates revealed by SPRINTER within samples (Fig. 3b and 
Supplementary Fig. 32). Second, SPRINTER’s phase predictions were 

significantly associated with nuclear diameters measured with DLP+ 
nozzle-based imaging17 both per cell and per clone (Fig. 3c and Sup-
plementary Fig. 33), in keeping with previous expectations17 and with 
the ground truth datasets (Supplementary Fig. 34). Finally, SPRINT-
ER’s estimated average S fractions ranked metastases in the same 
order as tumor growth rates measured using longitudinal computed 
tomography and magnetic resonance imaging (Extended Data Fig. 6), 
further confirming that increased S fractions relate to increased pro-
liferation and disease burden rather than changes in the length of cell 
cycle phases. Furthermore, while the numerous clones identified by 
SPRINTER’s single-cell analysis demonstrated its increased resolution 
over previous bulk analysis of the same tumor14, we observed highly 
consistent somatic single-nucleotide variants (SNVs) and CNAs (Fig. 3d, 
Supplementary Figs. 35 and 36 and Supplementary Note 4).

The evolution and ART of clones with different proliferation
In addition to the identification of clones, scDNA-seq data enable the 
accurate reconstruction of their evolutionary history17,18,20 and related 
metastatic migration patterns48. We reconstructed the tumor phylogeny 
based on both SNVs and CNAs (Fig. 4a,b and Supplementary Figs. 37–41) 
in multiple steps by combining pseudobulk approaches17,18 and extend-
ing existing phylogenetic methods49–51 (Methods). We further used the 
MACHINA algorithm48 to reconstruct metastatic migration patterns and 
identify seeding clones, which are the ancestral clones comprising the 
disseminating cancer cells responsible for seeding metastases. As such, 
we identified three main metastatic clades, each of which was defined by 
a distinct seeding clone in the primary tumor (Fig. 4c)—the first defined 
by the clone seeding the liver metastasis, the second by the clone seeding 
the right occipital lobe metastasis and the third by the clone seeding 
the other metastases. Remarkably, only one of these clades, the third, 
contained most of the clones with the highest proliferation.

We investigated the presence of genetic alterations in key cancer 
genes associated with these clades. Despite the high proliferation of 
the third clade, no driver mutation was identified unique to this clade 
and shared by most of its clones, and all the identified driver mutations, 
for example, in TP53, NF1 and CDK12 genes, were shared with other 
clades (Supplementary Fig. 38). Similarly, no particular CNA specific 
to this clade was identified (Supplementary Fig. 41). In addition to 
genetic alterations, non-genetic alterations have a key role in cancer 
progression40–43 and may be present in different metastatic clades. 
To investigate this, we demonstrated that SPRINTER’s clone assign-
ments can be used to identify clone-specific ART (that is, changes in 
the replication timing of a genomic region in the tumor compared to 
the default reference replication timing classifications derived from 
normal cell lines; Methods).

Overall, the fraction of the genome with ART was <10% on aver-
age across clones (Extended Data Fig. 7), which matched previ-
ous measurements38,40–43 and did not affect SPRINTER’s results 

Fig. 3 | SPRINTER identifies tumor clone proliferation heterogeneity in 
patient CRUKP9145 with NSCLC. a, The distributions of SPRINTER’s inferred S 
fractions (bottom, y axis) for each NSCLC clone (x axis) with varying cell numbers 
(top, y axis) in primary (top) and metastatic (bottom) samples were calculated 
by bootstrapping (300 repeats; dashed lines represent sample-level averages). 
Clone S fractions were compared per sample using a two-sided chi-square 
test, combined using the minimum and a Benjamini–Hochberg correction was 
applied (family-wise error rate = 0.1; red asterisks indicate significant P values). 
Sample-level S fraction 95% CIs (between axes) were computed by bootstrapping 
cells per sample. *P < 0.1, **P < 0.05 and ***P < 0.005. b, Ki-67 staining from one 
representative slide in primary and metastatic samples, indicating areas with 
high and low Ki-67 (boxes) that were consistent with SPRINTER clone S fractions 
(red asterisk). c, Top, nuclear diameter (x axis, micrometers, normalized by 
sample mean) was measured by DLP+ nozzle-based imaging for 14,569 cells with 
successfully recorded images inferred to be in G1, S or G2 phase by SPRINTER  
(y axis), with each pair of distributions compared using a one-sided  

Mann–Whitney U test (P values on right). Bottom, the nuclear diameter per 
clone (x axis) was calculated using the minimum diameter across the cells 
in each clone (each dot) that were assigned to different cell cycle phases by 
SPRINTER (y axis). Across cell cycle phases, clones are linked by lines, such that 
the line width is proportional to clone size and the line color indicates whether 
the nuclear diameter per clone has increased as expected (red) or not (blue). 
Nuclear diameters in different cell cycle phases were compared per clone 
using a one-sided Wilcoxon signed-rank test (P values on right). Right, example 
microscopy images of nuclei in each phase. d, For five primary tumor samples in 
this study (colored circles on photo) and three additional samples (gray circles), 
each bulk clone identified in previous analysis (hexagons comprising clones 
with different inner shapes of size proportional to cell proportion) was assigned 
to the most similar SPRINTER clone using SNVs (colors, with legend marker size 
proportional to SPRINTER’s inferred S fraction). In a and c, box plots show the 
median and the IQR with whiskers denoting values within 1.5 times the IQR from 
the first and third quartiles. CI, confidence interval.
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(Supplementary Fig. 42). We found ART events affecting genes known 
to impact tumor proliferation or metastatic potential that were shared 
or unique to different metastatic clades (Fig. 4d and Extended Data 
Fig. 8); for example, ART of PDL1 and PIK3CA was shared by all clones, 
ART of CDK12 was only present in the right phylogenetic branch compris-
ing the second and third clades and ART of KRAS was mostly exclusive 
to the most proliferative third clade. Because ART is associated with 

differential gene expression (higher/lower expression for genes affected 
by late-to-early/early-to-late ART compared to normal tissue without 
ART, respectively)38,39, we showed that these ART events were supported 
by related expression changes. Specifically, we compared previous bulk 
RNA sequencing data52 from matched primary tumor regions to primary 
regions from different clades, to cancer and normal tissue samples from 
347 other TRACERx patients or to a premortem relapse sample from the 
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left adrenal metastasis in the third clade (Fig. 4d and Supplementary 
Fig. 43). For example, the comparisons with different clades and the 
premortem relapse sample confirmed a significant increase in KRAS 
expression in the third clade, particularly in the left adrenal metastasis 
that contained the highest proliferation clones, most of which displayed 
late-to-early ART of KRAS (Fig. 4d). Moreover, reduced PDL1 expression 
correlating to early-to-late ART in almost all clones was further confirmed 
by the clinal immunohistochemistry report (PDL1 0%; Methods).

Seeding potential and ctDNA shedding of proliferative clones
In addition to primary tumor clones, clones in metastases can also dis-
seminate and seed further metastases21. In fact, we found that the third 
metastatic clade, comprising the most proliferative clones identified 
by SPRINTER (Fig. 4b), was the only clade containing additional seed-
ing clones—MACHINA identified two seeding clones in the left adrenal 
metastasis that disseminated and further seeded two other metastases 
in the right adrenal and left frontal lobe (Fig. 4c). This occurrence of 
metastasis-to-metastasis seeding was also supported by clinical imag-
ing, which indicated that the right adrenal metastasis likely arose after 
the left adrenal metastasis (Extended Data Fig. 6). Prompted by this 
observation, we investigated whether high-proliferation clones are 
the specific clones that are more likely to seed metastases. While the 
proliferation of seeding clones cannot generally be measured because 
these clones are often extinct at the time of sampling48, we calculated a 
seeding genetic distance between each SPRINTER clone and the closest 
seeding clone using the evolutionarily reconstructed SNVs and CNAs 
as a proxy. We found significant negative correlations between the 
seeding genetic distance (where a smaller distance indicates a higher 
similarity to seeding clones) and S fraction for primary tumor and 
metastatic clones using both SNV- and CNA-based distances (Fig. 4e 
and Supplementary Fig. 44). These results suggest that clones that are 
more genomically similar to seeding clones exhibit higher proliferation 
rates, thus indicating an association between high clone proliferation 
and the metastatic seeding potential of individual clones.

Finally, because highly proliferative tumors in different patients 
have been shown to shed more ctDNA into the bloodstream33,34, we 
leveraged SPRINTER’s results to investigate whether the same asso-
ciation holds for different clones within the same tumor. Based on 
previous ctDNA measurements for the same patient33, we found that 
clones belonging to the third metastatic clade harbored SNVs with 
high ctDNA frequency (that is, cancer cell fraction) across multiple 
time points, consistent with the high-proliferation rates inferred by 
SPRINTER (Supplementary Fig. 45a). Because ctDNA frequency is 
not only influenced by proliferation but also by clone volume (that 
is, number of cells), we calculated a ctDNA shedding index at surgery 
for each clone as the difference between ctDNA and primary tumor 
frequencies of SNVs, with the latter estimated based on either this 
single-cell analysis or previous bulk analyses14 (Methods). In all cases, 

the ctDNA shedding index was significantly and strongly correlated 
with SPRINTER’s estimated S fractions (Fig. 4f and Supplementary 
Fig. 45), indicating differential ctDNA shedding between clones, with 
more proliferative clones shedding more ctDNA.

Dynamics of genomic variants in proliferative clones
Finally, we demonstrated applicability to different datasets and 
cancer types by applying SPRINTER to two previous datasets19, 
including 42,009 cells from 7 TNBC tumors and 19,905 cells from 
15 HGSC tumors. SPRINTER identified 280 tumor clones with CNAs 
highly consistent with those previously inferred for non-S-phase 
cells (Supplementary Fig. 46). Moreover, SPRINTER identified the 
presence of clones with varying S fractions in most tumors (Fig. 5a), 
supported by similar patterns of G2 fractions (Extended Data Fig. 9). 
Overall, there was no relationship between the number of cells in a 
clone and its S fraction, nor between the number of clones in a tumor 
and the presence of differentially proliferative clones, indicating that 
SPRINTER’s results are not biased by varying clone sizes or numbers 
(Supplementary Fig. 47).

Leveraging these large datasets, we investigated whether there 
is a relationship between clone proliferation and the rates of different 
genomic variants in individual cells by integrating SPRINTER with 
scDNA-seq measurements of clone-specific variants17–19. When cal-
culating single-cell rates of clone-specific SNVs, structural variants 
(SVs) and CNAs for each cell individually (Methods), we found in both 
datasets that cells belonging to high-proliferation clones (higher than 
the cancer-type median) displayed significantly higher rates of all types 
of variants compared to cells belonging to low-proliferation clones 
(Fig. 5b–d). Because most of these SNVs have been shown19 to be gener-
ated by mutational processes that act during cell divisions53,54 and most 
SVs and CNAs might also be generated during cell divisions55,56, these 
results are compatible with the expectation that clones with higher 
proliferation underwent more cell divisions.

We next investigated whether specific driver mutations or CNAs 
in known cancer genes were enriched in high-proliferation clones 
in the TNBC and HGSC datasets (Methods). We found several onco-
gene amplifications that were significantly associated with increased 
clone proliferation (for example, CDK4 and EGFR; Fig. 5e), further 
supported by a gene set enrichment analysis revealing an enrichment 
in relevant pathways related to the cell cycle and proliferation (for 
example, PI3K/AKT/mTOR signaling and KRAS signaling upregulation; 
Fig. 5f). Moreover, a smaller number of driver mutations and deletions 
in tumor suppressor genes (for example, KEAP1 and SMAD4) were also 
significantly associated with high clone proliferation (Supplementary 
Fig. 48), matching results in previous cell line small interfering RNA 
experiments57,58.

Finally, SPRINTER can elucidate changes in the relative length of 
different cell cycle phases that might occur in cancer59, given that they 

Fig. 4 | SPRINTER reveals a link between clone proliferation and metastatic 
seeding, and clone-specific ART present in distinct metastatic clades. 
a, Tumor phylogeny was reconstructed for SPRINTER’s single-cell clones (tree 
leaves) from patient CRUKP9145 (colored by sample, with clones uniquely 
shaded). Seeding clones (dark gray) and ancestral clones (white with border 
colored according to inferred anatomical site) were inferred, with some clones 
harboring ctDNA-tracked SNVs (Roman numerals). b, Phylogeny from a with 
clones colored by SPRINTER’s S fractions. c, Across samples (anatomical 
location indicated as circles on body map), metastatic migrations (arrows) 
were inferred, and metastatic clades (blue, green and pink with corresponding 
clones indicated in tree) were defined based on primary tumor seeding clones. 
The figure is created with BioRender.com. d, In the two main phylogenetic 
branches containing different metastatic clades (top row), SPRINTER inferred 
ART (colored rectangles) for each clone (second row) for genes (left) known to 
impact proliferation or metastatic potential, with reference replication timing 
derived from normal cells shown (left column). ART is supported by related gene 

expression changes measured using bulk RNA sequencing (right heatmap), 
with late-to-early and early-to-late ART associated with increased and decreased 
gene expression, respectively (P values derived using a two-sided Wald test with 
a Benjamini–Hochberg correction with family-wise error rate = 0.05). *P < 0.1, 
**P < 0.05 and ***P < 0.01. e, For each SPRINTER clone (dot) in the primary 
tumor (dark blue) or metastases (orange), the seeding genetic distance (x axis) 
computed with respect to the closest seeding clone based on either SNVs (left) 
or CNAs (right) was compared to SPRINTER’s S fraction (y axis) using two-sided 
Pearson correlation tests (correlation coefficients and P values reported), 
and the 95% CI was calculated for linear regressions (shaded areas). f, For each 
ctDNA-tracked clone (dot), a ctDNA shedding index (x axis) was calculated 
using the frequency of SNVs for either (left) SPRINTER single-cell clones or 
(right) previous bulk clones and compared to the maximum S fraction inferred 
from descendant SPRINTER clones (y axis). In each case, a two-sided Spearman 
correlation test was performed (with correlation coefficients and P values 
reported), and the 95% CI was calculated for linear regressions (shaded areas).
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are expected to induce changes in the relative ratio of G2 and S fractions 
(G2/S ratio; Methods). For example, in the TNBC dataset, SPRINTER 
tumor clones with previously identified19 homologous recombination 
deficiency (HRD) displayed a significantly higher G2/S ratio than other 
clones (P = 0.008; Extended Data Fig. 10). This result is consistent with 
a prolonged G2 phase relative to S phase in HRD clones, as reported in 
previous studies59,60.

Discussion
Despite several evolutionary studies on cancer14–21, the evolutionary 
dynamics of cancer phenotypes remain poorly explored, partially due 
to the lack of methodologies that allow the joint and accurate charac-
terization of cancer genotypes and phenotypes. Recent scDNA-seq 
technologies enable a step in this direction by jointly allowing accurate 
genomic characterization of distinct tumor clones and measurement of 
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replicating cells17, providing a potential proxy for proliferation4,6–8,11–13. To 
realize this potential, we introduced the SPRINTER algorithm, a formal 
method to enable accurate identification and, especially, clone assign-
ment of S- and G2-phase cells. We demonstrated SPRINTER’s utility and 

accuracy on ground truth datasets and validated results with multiple 
orthogonal analyses on primary and metastatic tumor samples.

Using a newly generated single-cell, longitudinal, primary- 
metastasis-matched NSCLC dataset, SPRINTER’s results combined 

0 50 100 150 200

PI3K/AKT/mTOR signaling

KRAS signaling upregulation

G2-M checkpoint

Apoptosis downregulation

Myc targets

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0

0.5

1.0

1.5

2.0

2.5

3.0

0

0.5

1.0

1.5

2.0

2.5

3.0

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

a

b c d

0

2

0

0.2

0.4

0.6

0.8

1.0

N
um

be
r

of
 c

el
ls

(lo
g 10

)
S 

fr
ac

tio
n

Cancer type

Patient

HGSCTNBC

SPRINTER clone

SN
V 

ra
te

SV
 ra

te

C
N

A 
ra

te

Low High

Proliferation
Low High

Proliferation
Low High

Proliferation
Low High

Proliferation
Low High

Proliferation
Low High

Proliferation

P = 5 × 10−36

Cohen’s d = 0.12
P = 1 × 10−177

Cohen’s d = 0.94
P = 6 × 10−32

Cohen’s d = 0.32
P = 2 × 10−27

Cohen’s d = 0.28
P = 0.0

Cohen’s d = 0.50
P = 2 × 10−41

Cohen’s d = 0.21

TNBC HGSC TNBC HGSC TNBC HGSC

Amplifications in oncogenes associated with proliferatione f Pathway analysis for amplified oncogenes
associated with proliferation

TNBC HGSC

C
or

re
ct

ed
 P

 v
al

ue
 (n

eg
at

iv
e 

lo
g 

sc
al

e)

Di�erence in mean S fraction
(presence–absence)

Di�erence in mean S fraction
(presence–absence)

Gene set enrichment combined score 

SPRINTER clone S fractions in the TNBC and HGSC datasets

Per-clone single-cell rate of SNVs Per-clone single-cell rate of SVs Per-clone single-cell rate of CNAs

Significant (corrected P value < 0.05) Not significant

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

8

ATF1

CCND2

CDK4

CXCR4

DDIT3

DEK EGFR

ERBB2

ERBB3

ETV4

ETV5

HMGA1

HOXD11IL7R

MAFBMYCN

NSD2

PLCG1

RARA

SRSF3

STIL

U2AF1

XPO1

−0.2 −0.1 0 0.1 0.2 0.3 0.4

0

1

2

3

4

5

6

7

8

AKT3

CYSLTR2

H3F3A

HRAS

LMO1

MAF
MYOD1

NUP98

TNFRSF17

http://www.nature.com/naturegenetics


Nature Genetics | Volume 57 | January 2025 | 103–114 112

Article https://doi.org/10.1038/s41588-024-01989-z

with metastatic evolutionary analysis suggest that high-proliferation 
clones within an individual tumor have increased metastatic seeding 
potential, that is, comprise the specific cancer cells more likely to 
metastasize. While consistent with the known link between prolifera-
tion and outcomes for distinct tumors in different patients2–8, these 
clone-specific results were not necessarily expected based on previous 
studies suggesting that disseminating cells undergo epithelial–mesen-
chymal transition, associated with a more invasive but less prolifera-
tive phenotype61–64. Our results are consistent with high-proliferation 
clones undergoing epithelial–mesenchymal transition but then 
plastically returning to a proliferative state in a target organ. Further-
more, our results are consistent with the recent TRACERx14,21 obser-
vation that metastatic seeding clones, despite being present in only 
some primary tumor regions, are highly expanded in those regions, 
which could be explained by the increased proliferation illustrated 
by SPRINTER. Because SPRINTER revealed that high-proliferation 
clones also shed more ctDNA, these results motivate the develop-
ment of scalable precision-medicine approaches25,26 (for example, 
liquid biopsies32–34 or inexpensive methylation assays65) to predict 
the metastatic potential of different clones. Nonetheless, SPRINTER’s 
results warrant careful ctDNA interpretation given that its prevalence 
does not only relate to clone volume but also clone proliferation. While 
these results were derived from an individual case, the cancer-agnostic 
and technology-independent nature of SPRINTER demonstrated here 
makes it applicable to the increasing number of different scDNA-seq 
datasets13,17–20,28, allowing generalization of these findings.

SPRINTER’s results lay the foundation for investigating the cellular 
and evolutionary mechanisms underlying cancer proliferation and 
progression in human tumors. Here we found that high-proliferation 
clones in TNBC and HGSC tumors have increased rates of multiple 
genomic variants (SNVs, SVs and CNAs), which might provide an evo-
lutionary advantage. In fact, high-proliferation clones were associated 
with specific genetic alterations enriched in proliferation-related gene 
pathways, illustrating a possible mechanism driving clone prolifera-
tion. Beyond genetic mechanisms, SPRINTER’s results also enable ART 
investigation in tumor clones. Given the established link between ART 
and both gene expression changes and epigenetic modifications38,39, 
SPRINTER thus provides a way to investigate non-genetic evolutionary 
mechanisms driving cancer progression. For instance, in the NSCLC 
case, we did not identify genetic drivers unique to the most prolifera-
tive and disseminating metastatic clade, but we did identify a unique 
late-to-early ART event in KRAS associated with increased expression. 
To further these opportunities, SPRINTER’s results can be leveraged 
to improve ART identification in individual cells, for which methods 
are being developed28,66.

While SPRINTER establishes a general framework to enable the 
evolutionary and clone-specific analysis of S- and G2-phase cells in 
human tumors, there are opportunities for further improvement. For 
instance, G2 fraction estimates are expected to be less robust than S 
fraction estimates because G2-phase identification only relies on a 

single signal (that is, total read counts). Incorporation of additional 
signals (for example, nuclear imaging) could thus improve G2-phase 
identification, further enhancing the analysis of the relative length 
of cell cycle phases in human tumors that we started to demonstrate 
here. Moreover, while SPRINTER provides high sensitivity for mid- 
and late-S-phase identification, early-S-phase identification remains 
limited. We expect that the generated ground truth datasets will sup-
port the development of related algorithmic improvements. Finally, 
we note that low scDNA-seq coverage prevents the comprehensive 
characterization of SNVs only present in individual cells, which would 
require deeper sequencing experiments.

In conclusion, SPRINTER enables the characterization of the evo-
lutionary dynamics of proliferation and non-genetic alterations such 
as ART in distinct clones co-existing within a tumor. This provides the 
substrate for the next generation of cancer research studies that can 
jointly investigate the genetic and non-genetic mechanisms underlying 
clinically relevant cancer phenotypes, like metastatic potential.
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Methods
Clinical data, ethics and consent
The five primary tumor samples and five anatomically distinct 
metastatic samples analyzed in this study have been obtained from 
patient CRUKP9145 with NSCLC (Supplementary Note 7) from the 
TRACERx study14,21 (https://clinicaltrials.gov/ct2/show/NCT01888601, 
approved by an independent Research Ethics Committee, 13/LO/1546) 
and the PEACE autopsy study32 (https://clinicaltrials.gov/ct2/show/
NCT03004755, approved by an independent Research Ethics Commit-
tee, 13/LO/0972). Ethical approvals for the research performed in this 
study and informed written consent were obtained as part of TRACERx 
and PEACE studies. Moreover, pathological assessment of Ki-67 and 
patient clinical imaging were obtained and processed according to the 
standards of these studies (Supplementary Notes 8 and 9). The other 
patient data analyzed in this study are publicly available with ethics 
and consent reported in the corresponding studies19.

The SPRINTER algorithm
We introduce the SPRINTER algorithm to identify and assign S- and 
G2-phase cells to distinct tumor clones using scDNA-seq data. Spe-
cifically, SPRINTER enables this goal in the following six main steps: 
(1) the computation of replication-specific DNA sequencing signals, 
(2) the replication-aware segmentation of the genome into likely CNA 
segments, (3) the high-sensitivity inference of S-phase cells, (4) the 
inference of distinct tumor clones as subpopulations of cells with 
different complements of CNAs, (5) the assignment of S-phase cells 
to the corresponding clone and (6) the inference of G2-phase cells for 
each clone. To do this, SPRINTER uses the following two inputs: the 
count of sequencing reads aligned to different genomic regions (or 
read counts) for each sequenced cell and replication scores (that is, 
a measure of the replication timing38,44) for each genomic region. We 
detail how SPRINTER sequentially performs each of these steps in the 
following sections.

Deriving replication-specific DNA sequencing signals. The first chal-
lenge addressed by SPRINTER is the computation of DNA sequencing 
signals that incorporate replication-specific information for the identi-
fication and clone assignment of S-phase cells. For each cell, given a par-
tition of the reference genome into m bins (50 kb by default), SPRINTER 
calculates two signals for each bin. The first signal is the replication 
timing, which is a classification of the bin as either early-replicating, 
late-replicating or unknown. In particular, SPRINTER computes the 
average replication scores per bin across a subset of available38,44 
Repli-Seq45 datasets generated for different normal and cancer cell 
lines, and it identifies early/late bins as those that confidently belong 
to the two main modes of the replication score distribution (Sup-
plementary Note 10). The remaining bins are classified as unknown 
and are only used in the CNA analysis of G0/G1/G2-phase cells. In fact, 
preserving >50% of bins with conserved early or late replication timing 
is sufficient for S-phase identification and clone assignment because 
CNAs are large (mostly >2 Mb (refs. 16–19,30); Supplementary Fig. 2), 
while replication fluctuations are substantially shorter (Supplementary 
Fig. 2) and occur across the whole genome (Extended Data Figs. 1–3).

The second signal calculated for each bin is the RDR, which is a sig-
nal used in standard copy-number analysis to identify CNAs18. Because 
different bins replicate their DNA at different times, the genome of 
S-phase cells is characterized by the alternation of replicated regions 
with higher read counts and unreplicated regions with lower read 
counts, inducing read count fluctuations across the whole genome17,28. 
To capture these fluctuations, SPRINTER calculates RDRs similarly 
to previous scDNA-seq methods17–19 by aggregating read counts in 
windows of neighboring bins and applying standard normalizations 
for alignment bias (Supplementary Note 11).

Additionally, SPRINTER improves RDR calculation in two ways. 
First, during the identification of S-phase cells, SPRINTER only 

aggregates bins with the same replication timing and chooses the 
window size for each cell independently given a fixed value of aver-
age read counts per bin. This cell-specific choice is important as it 
accounts for the fact that cells in different cell cycle states yield differ-
ent total read counts, and it hence allows SPRINTER to calculate RDRs 
with the same expected variance across cells, in contrast to previous 
studies13,17–19,28 (Supplementary Note 11). Second, SPRINTER introduces 
a replication-aware method to correct RDRs for GC sequencing bias29,67. 
While previous methods correct GC bias in RDRs by fitting a function 
that models the relationship between RDRs and GC content (for exam-
ple, using local regressions17,19,29,67), these approaches also lead to the 
erroneous correction of RDR fluctuations induced by replication in 
S-phase cells (Supplementary Fig. 5). This is because early-replicating 
genomic regions are GC enriched and late-replicating regions are GC 
depleted, and hence replication-induced fluctuations are identified as 
GC bias and erroneously corrected, discarding the main signal used to 
identify S-phase cells. To preserve replication fluctuations, SPRINTER 
leverages two key observations. First, groups of bins with the same 
replication timing (early or late) are less affected by replication fluctua-
tions as they replicate at more similar times. Thus, SPRINTER infers GC 
biases in early and late bins separately using a quantile linear regres-
sion. Second, bins with higher GC content tend to replicate earlier than 
bins with lower GC content, and they produce increased RDRs during S 
phase (Supplementary Fig. 6). Thus, SPRINTER identifies the inferred 
regressions that are still affected by GC bias as those with an inferred 
slope substantially higher than other cells and corrects them, assuming 
that cells sequenced together have similar GC bias. Further details are 
given in Supplementary Note 12.

Replication-aware copy-number segmentation. The second chal-
lenge addressed by SPRINTER is the copy-number segmentation of 
the genome of each cell into groups of consecutive bins affected by 
the same CNAs. Inferring CNA segments is an essential task for the 
accurate identification of S-phase cells because CNAs induce similar 
RDR fluctuations (higher/lower RDRs for higher/lower copy num-
bers, respectively) to those induced by replication in S-phase cells 
(higher/lower RDRs for replicated/unreplicated bins, respectively; 
Extended Data Figs. 1–4). Therefore, identifying RDR fluctuations 
that are induced by CNAs with high confidence is essential for S-phase 
identification because fluctuations induced by replication are only 
present in S-phase cells. Previous methods to identify S-phase cells 
rely on standard algorithms for single-cell copy-number segmentation 
and adopt approaches that either ignore CNA fluctuations17 or use CNA 
information that can be obtained by collapsing all cells together28. 
However, the former approach is not suited to the analysis of cancer 
cells with high rates of CNAs as in most solid tumors15,17–20,30, and the 
latter is affected by intratumor heterogeneity and cell-unique CNAs, 
which are also frequent in most solid tumors17–20.

SPRINTER overcomes the challenges of CNA segmentation in 
S-phase cells by introducing a replication-aware segmentation algo-
rithm that leverages the expected differences between early- and 
late-replicating bins to only identify segments that are likely induced by 
CNAs. Specifically, SPRINTER separates early- and late-replicating bins 
into two groups and identifies candidate breakpoints for CNA segments 
in each group independently, such that most replication-induced 
fluctuations in RDRs between early and late bins that occur in S-phase 
cells are not erroneously inferred as CNA breakpoints. In each group, 
SPRINTER identifies breakpoints by using a hidden Markov model 
(HMM), similar to standard copy-number methods17,19. Because 
CNAs tend to affect large genomic segments16–19,30 (that is, ~42 Mb 
on average with >99.9% of CNA segments >2 Mb in size, as measured 
in previous single-cell studies19) in contrast to the short length of 
consecutive regions of bins with the same replication timing (that is, 
<1 Mb on average with a median of 250 kb; Supplementary Figs. 1–3), 
CNAs are expected to induce segments containing both early- and 
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late-replicating bins. As such, SPRINTER obtains a cell-specific 
copy-number segmentation by combining all the identified break-
points and preserving only related segments that include both early 
and late bins, corresponding to likely CNA segments. Instead, segments 
that only include either early or late bins are discarded because they 
are likely due to replication (that is, due to differences in RDRs between 
replicated and unreplicated bins with the same replication timing). 
Note that rare CNAs that exclusively overlap large domains of early/
late regions can be correctly recovered in later SPRINTER steps—in G0/
G1/G2-phase cells, all CNAs can be accurately inferred because all RDR 
fluctuations can be related to CNAs in these cells, while in S-phase cells, 
these rare CNAs can be later corrected using the CNAs inferred for the 
G0/G1/G2-phase cells assigned to the same clone. Further details are 
given in Supplementary Note 13.

Identifying S-phase cells. The third challenge addressed by SPRINTER 
is the identification of S-phase cells. Existing methods calculate a 
statistic per cell by combing multiple sequencing signals to identify 
replication-induced fluctuations and separate G0/G1/G2- and S-phase 
cells by using a single threshold after aggregating these statistics 
across all cells13,17,28. However, this approach has two main limitations 
that reduce its sensitivity. First, replication fluctuations are difficult 
to identify in cells during the early and late stages of S phase because 
only a limited fraction of bins is replicated or unreplicated during 
these stages, respectively (Extended Data Fig. 3 and Supplementary 
Figs. 11–13). Second, RDR fluctuations differ for cells with different 
ploidies because copy-number changes generally result in smaller 
fluctuations in the expected RDRs for cells with higher ploidies18. There-
fore, approaches that rely on aggregating sequencing signals across 
all sequenced cells are not suited to accurately identify S-phase cells 
when sequencing mixtures of cells with different ploidies, for example, 
mixtures of diploid normal cells and aneuploid cancer cells that are 
often found in tumor samples.

To improve the sensitivity of previous approaches, SPRINTER lever-
ages the expected RDR fluctuations between early- and late-replicating 
bins to introduce a statistical permutation test that can be applied 
to each cell independently. This test is based on the replication tim-
ing profile (RTP) of each cell, which is calculated by normalizing the 
RDRs of all bins within the same copy-number segment (inferred in 
the previous SPRINTER step) by their median to correct for the effect 
of CNAs (Extended Data Fig. 4 and Supplementary Fig. 7). Because 
the resulting RTP values only depend on the replication state of the 
corresponding bins with higher and lower values indicating repli-
cated and unreplicated bins, respectively, varying RTP values across 
the genome are a hallmark of S-phase cells. Although the replication 
state of a bin is unknown, early bins are expected to replicate before 
late bins, and, hence, every S-phase cell is expected to have a subset 
of early-replicating bins with higher RTP values than late-replicating 
bins across the genome, or a subset of late-replicating bins with lower 
RTP values than early-replicating bins (Extended Data Fig. 3 and Sup-
plementary Figs. 11–13).

As such, SPRINTER performs two permutation tests of replication 
timing classifications (by default 105 permutations) to test the presence 
of such a subset containing a significantly high number of bins. Specifi-
cally, this is achieved by introducing a new summary statistic that cap-
tures the fraction of early or late bins with substantially higher or lower 
RTP values, respectively, than bins with different replication timing. 
Note that this statistic is expected to be robust to the presence of altera-
tions or errors in replication timing classifications because it requires 
only a subset of bins, not all early or late bins, to display the expected 
difference in RTPs. Because replication fluctuations are expected to 
occur along the entire genome during the S phase, SPRINTER per-
forms the test on each chromosome independently, and the resulting 
values of each statistic are combined using the harmonic mean; this 
approach helps overcome noise and errors that can be localized to 

certain genomic regions. Finally, the two P values obtained for each 
test are combined using the minimum, and a multiple-hypothesis 
correction is applied to all cells using the Holm–Šidák method to iden-
tify S-phase cells. In contrast to previous approaches that aggregate 
all sequenced cells together, SPRINTER’s method is applied to each 
cell independently, providing a significance assessment for each cell 
individually and making the method suitable to heterogeneous tumor 
samples characterized by cells with different ploidies and CNA rates. 
Further details are given in Supplementary Note 14.

Inferring distinct clones. The fourth challenge addressed by SPRINTER 
is the inference of clones. Like previous single-cell studies17–20, 
SPRINTER identifies CNAs in single cells, and, based on these, it infers 
clones as subpopulations of cells that share the same complement of 
CNAs. Because CNAs cannot be directly and easily inferred from the 
replication-influenced RDRs of S-phase cells, SPRINTER improves the 
inference of clones by using only the inferred G0/G1/G2-phase cells, 
under the realistic assumption that every clone contains corresponding 
G0/G1/G2-phase cells. Specifically, SPRINTER identifies CNAs in G0/G1/
G2-phase cells by inferring the underlying copy numbers using an HMM 
that also incorporates the parameters inferred in the previous segmen-
tation (Supplementary Note 15). Moreover, SPRINTER improves the 
inference of clones in two additional ways. First, SPRINTER introduces 
an auto-tuning clustering procedure to infer clones while automatically 
adapting to different rates of CNAs and errors in the inferred CNAs 
that can be present in distinct tumor samples, in contrast to previous 
clustering approaches with fixed parameters18 (Supplementary Note 
16). Second, SPRINTER introduces a hypothesis-testing approach 
to identify and correct artefactual clones derived from errors in the 
inferred ploidy of each cell (that is, mean copy number), which are 
frequent errors as shown in previous studies18,19. Specifically, SPRINTER 
tests if any clone inferred with different ploidy, that is, a ploidy differ-
ent to most other tumor cells, can be equally explained by the ploidy 
and CNAs of other clones, and, if so, the clone is discarded and the 
corresponding cells are assigned to other clones while correcting their 
ploidy (Supplementary Note 17).

Assigning S-phase cells to distinct clones. The fifth challenge 
addressed by SPRINTER is the assignment of S-phase cells to the cor-
responding clone, as well as the inference of CNAs for these cells. While 
S-phase cells are expected to have the same set of CNAs as the G0/G1/
G2-phase cells present in the same clone, CNAs cannot be directly 
inferred from their observed RDRs because RDRs are affected by both 
CNAs and replication fluctuations in S-phase cells, as described above. 
Furthermore, different S-phase cells can be affected by substantially 
different RDR fluctuations induced by replication. For example, RDR 
fluctuations are frequent across the entire genome in cells that are in 
mid-S phase, and these cells display the largest separation between the 
RDRs of early and late bins (Extended Data Fig. 3). Conversely, cells that 
are in early- or late-S phase might only display focal RDR fluctuations, 
which can be mistakenly identified as potential CNAs (Extended Data 
Fig. 3 and Supplementary Figs. 11–13). Consequently, every S-phase 
cell must be treated differently for CNA analysis.

To enable the accurate assignment of S-phase cells to clones, 
SPRINTER introduces a Bayesian, maximum-a-posteriori probability 
method with two steps applied to each S-phase cell independently. 
First, SPRINTER corrects replication-induced fluctuations by normal-
izing the RDRs of groups of bins within the same segment that have 
been previously inferred to have the same underlying replication state 
(that is, not separated by breakpoints inferred in SPRINTER’s second 
step) around the median RDR of the segment (Extended Data Fig. 4 
and Supplementary Fig. 7). Next, SPRINTER obtains the likelihood that 
each cell belongs to every clone by calculating the probability that the 
replication-corrected RDRs are generated by the copy numbers of the 
clone. Based on this, it thus assigns the cell to the clone that maximizes 
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the posterior probability, calculated using the likelihood and a prior 
probability that depends on the clone’s size measured from the cor-
responding number of G0/G1/G2-phase cells. Further details are given 
in Supplementary Note 18.

In addition to clone assignments, SPRINTER also infers the CNAs of 
the identified S-phase cells using the same HMM algorithm described 
in SPRINTER’s previous step but using the replication-corrected RDRs 
and additionally fixing the ploidy to be the same as the assigned clone. 
Moreover, SPRINTER uses the assigned clone to correct small, rare 
CNAs that exclusively occur in genomic regions with only early or late 
replication timing and other small CNAs in S-phase cells (Supplemen-
tary Note 19), allowing SPRINTER to accurately recover most CNAs in 
both S- and non-S-phase cells (Supplementary Fig. 21).

Identifying G2-phase cells in distinct clones. The sixth and last chal-
lenge addressed by SPRINTER is the identification of G2-phase cells in 
each inferred clone. Although G2-phase cells cannot be distinguished 
from G0/G1-phase cells solely based on RDRs (Supplementary Note 
15), G2-phase cells are expected to yield higher total read counts than 
G1-phase cells due to increased DNA content, especially for 
tagmentation-based technologies such as DLP+ (ref. 17) (Supplemen-
tary Fig. 8). Based on this, SPRINTER introduces an importance sam-
pling method to estimate the fraction μ of G2-phase cells in each clone 
by deconvolving the distributions of total read counts generated by 
either G0/G1- or G2-phase cells using a negative binomial mixture 
model. Additionally, the method integrates information from the 
identified S-phase cells—because G2-phase cells are also expected to 
yield higher read counts than S-phase cells on average (Supplementary 
Fig. 8), we constrain the inference of μ such that the resulting G2-phase 
cells have an expected read count higher than the expected read count 
of S-phase cells. As such, the probability of each cell being in G0/G1 or 
G2 phase is computed by using the likelihoods of the fitted model and 
a uniform prior, and G2-phase cells are defined as those with a probabil-
ity below a certain threshold of being in G0/G1 phase (<0.3 by default). 
Further details are given in Supplementary Note 20.

scDNA-seq
We performed scDNA-seq on all cells from the HCT116 ground truth 
dataset and the NSCLC case using the DLP+ protocol as previously 
described17,19. Given that only snap-frozen patient tissue was available for 
this study, all HCT116 single cells and patient tissue samples underwent 
single nuclei isolation before DLP+ library preparation and sequencing. 
The details of the protocol are described in Supplementary Note 21.

Ground truth dataset of cell cycle-sorted cells
We generated a ground truth scDNA-seq dataset of 4,410 diploid and 
4,434 tetraploid cells in known cell cycle phases sequenced using 
the DLP+ protocol. To avoid cross-contamination between cell cycle 
phases, known to be a common occurrence when using standard 
FACS techniques28, we used an improved approach based on previous 
studies31, which used two independent signals during FACS. The first is 
EdU, which is incorporated into actively replicating DNA and has been 
shown to accurately and comprehensively capture S-phase cells31, and 
the second is DNA Hoechst 33342 dye, which is used to measure DNA 
content (Supplementary Fig. 9). To apply this approach, we chose the 
colorectal cancer cell line HCT116 as it provided an isogenic system 
that had already been analyzed in previous longitudinal studies46 and 
enabled the generation of both diploid and tetraploid ground truth 
datasets46. Related details are given in Supplementary Note 22.

Bioinformatics analysis of single-cell data
The generated datasets were aligned to the human reference genome 
hg19 and processed using standard scDNA-seq pipelines, obtaining 
a single-cell pseudobulk BAM file for each sample, for which all cells 
have been sequenced together (see details in Supplementary Note 23). 

SPRINTER was applied independently to each pseudobulk BAM file 
generated for the ground truth datasets and the NSCLC samples using 
default parameters (Supplementary Note 24). Moreover, SPRINTER was 
applied to the previous TNBC and HGSC datasets using the available 
read counts19. On the ground truth datasets, the previous methods 
for inferring S-phase cells, CCC and MAPD, were applied using and 
extending the available implementations17,28 (Supplementary Note 24).

Phylogenetic and metastatic seeding analysis
We reconstructed the tumor phylogeny for the clones inferred by 
SPRINTER in the NSCLC dataset using both SNVs and CNAs. In par-
ticular, SNVs and related driver mutations were identified using a 
pseudobulk approach17–19 and standard tools (Supplementary Note 
25). While existing methods can reconstruct tumor phylogenies from 
single-cell SNVs50, these methods cannot be directly applied to SPRINT-
ER’s clones due to the presence of subclonal SNVs, that is, SNVs that are 
only present in a subset of the cells within the same clone. Moreover, 
while methods to reconstruct tumor phylogenies from clone-specific 
CNAs51 also exist, these methods do not integrate both SNVs and CNAs 
in the reconstruction of tumor phylogenies. Therefore, we devised 
a three-step approach to overcome these challenges by integrating 
and extending existing methods—(1) the presence of SNVs in each 
clone was inferred using pseudobulk approaches17,18 per clone and 
probabilistic models of SNV cellular frequency49, (2) SNV evolution was 
reconstructed using the HUNTRESS algorithm50 and (3) CNA evolution 
was reconstructed using the MEDICC2 algorithm51, fixing the same 
topology as the SNV phylogeny reconstructed in the previous step (Sup-
plementary Notes 26–28). Based on this phylogeny, the MACHINA algo-
rithm48 was applied to infer metastatic migration patterns and identify 
seeding clones, which were also used to calculate the seeding genetic 
distances based on both SNVs and CNAs (Supplementary Note 29).

Identifying clone-specific ART
SPRINTER’s results were leveraged to identify clone-specific ART for 
the tumor clones inferred in the NSCLC dataset with respect to the 
reference replication timing classifications obtained from normal cells, 
included as an additional feature in the SPRINTER algorithm. Specifi-
cally, SPRINTER analyzes each clone independently and, based on previ-
ous replication timing approaches28,38, uses high and low average RTP 
values per clone (calculated as described above but using the segments 
induced by the inferred CNAs) to identify early- or late-replicating bins, 
respectively, similar to SPRINTER’s first step. As such, ART is identified 
in genomic regions inferred with early or late replication timing, but 
which were classified as the opposite from the reference replication 
timing classifications obtained from normal cells only (see details in 
Supplementary Note 30).

To support the inferred ART classifications, two analyses were 
performed integrating matched bulk RNA sequencing data previously 
generated for regions of the same primary tumor52. This is because 
late-to-early and early-to-late ART are known to generally be asso-
ciated with increased and decreased gene expression compared to 
normal tissue without ART, respectively38,39. First, a gene set variation 
analysis68 was performed using GSEApy69 with the inferred replication 
timing classifications, revealing enrichment scores that support the 
inferred ART. To show that these results are specific to this patient, 
we also showed that arbitrary scores are obtained from this analysis 
when using gene expression data from 915 tumor samples from 347 
other TRACERx patients (Supplementary Fig. 43). Second, for a sub-
set of ART specifically affecting genes known to be involved in cancer 
proliferation or metastatic potential, we performed a differential gene 
expression analysis using the same method as in previous TRACERx 
studies52 based on DESeq2 (ref. 70). We compared the gene expression 
measured in the samples with a related ART event to the expression 
measured in different sets of other samples not expected to have the 
same ART event. Related details are given in Supplementary Note 31.
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Analysis of ctDNA
Four blood samples were collected, and ctDNA was processed in pre-
vious studies32,33 for patient CRUKP9145. Tracked SNVs were matched 
to SPRINTER’s identified single-cell clones using the reconstructed 
phylogeny, and, for each clone with tracked SNVs, a ctDNA shedding 
index at the primary tumor time point was calculated by either (1) 
subtracting the frequency of the SNVs (that is, cancer cell fractions) 
as measured by bulk or single-cell sequencing in the primary tumor 
from the frequency of the same SNVs measured in ctDNA samples by 
the ECLIPSE algorithm33 or (2) subtracting the clone proportion (that 
is, the proportion of cells uniquely assigned to the clone) as measured 
in either bulk or single-cell sequencing in the primary tumor from the 
measured ctDNA clone proportion (measured by subtracting the SNV 
frequencies of different clones according to the ancestral relationships 
defined by the reconstructed phylogeny, as described in previous 
studies14,48,49). Further details are given in Supplementary Note 32.

Rates of clone-specific genomic variants in individual cells
In the TNBC and HGSC datasets, the single-cell rates of clone-specific 
SNVs, SVs and CNAs in individual cells were calculated using the variants 
identified in previous studies19 by normalizing the number of variants per 
cell by the total number of clonal (that is, present in all cells in the clone) 
or clone-unique variants for SNVs or SVs/CNAs, respectively. Moreover, 
all clones in either the TNBC or HGSC datasets have been partitioned 
into two groups of high or low proliferation based on the median of the 
inferred S fractions. Further details are given in Supplementary Note 33.

Genomic alterations enriched in high-proliferation clones
In the TNBC and HGSC datasets, a hypothesis-testing approach has 
been used to identify amplifications of known oncogenes, deletions 
of known tumor suppressor genes and driver mutations enriched in 
high-proliferation clones. Specifically, for each of these identified 
events, a one-sided Mann–Whitney U test has been performed com-
paring SPRINTER’s inferred S fractions for clones without the event to 
the S fraction for clones harboring the event, and enriched events have 
been selected after applying a multiple-hypothesis correction using the 
Benjamini–Hochberg method. Finally, a gene set enrichment analysis71 
has been performed for the selected amplifications with GSEApy69. 
Related details are given in Supplementary Note 34.

Investigating changes in the relative length of cell cycle phases
SPRINTER’s estimated S and G2 fractions can provide information about 
changes in the relative length of different cell cycle phases that might 
occur in cancer59. While increased or decreased S fractions are gener-
ally expected to yield increased or decreased G2 fractions, respectively 
(because the presence of more/less S-phase cells generally determines 
if more/less cells enter G2 phase), an increase or decrease in the G2 
fraction without a corresponding variation in the S fraction could indi-
cate a change in G2 phase length relative to the length of S phase. We 
quantified these changes using the fraction of G2-phase cells over the 
fraction of S-phase cells (G2/S ratio), with a higher G2/S ratio consistent 
with a possible prolonged G2 phase relative to the length of the S phase.

Statistics and reproducibility
All statistical analyses and tests in Results were performed in Python 
(v3.10.13) using Scipy72 (v1.11.4) and are described in the correspond-
ing sections or figure legends. The target number of cells sequenced 
per sample was chosen based on previous studies18. The number of 
samples has been chosen based on previous bulk analyses of the same 
tumor14 and tissue availability, but no statistical methods were used to 
predetermine the number of samples.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw scDNA-seq data generated in this study from the ground truth 
datasets have been deposited at the National Center for Biotechnol-
ogy Information (NCBI) Sequence Read Archive (SRA) under acces-
sion code PRJNA1158752. Raw scDNA-seq data generated in this study 
from the patient enrolled in the TRACERx and PEACE studies have 
been deposited at the European Genome–Phenome Archive (EGA) 
under accession code EGAD00001015411. Access is controlled by the 
TRACERx and PEACE data access committees, who assess whether 
the proposed research is allowed given patient consent and ethical 
approvals, as well as the scientific purpose. Details on how to apply 
for access are available on EGA. The processed data for the figures and 
analyses performed in this study are available in Zenodo at https://
doi.org/10.5281/zenodo.13754278 (ref. 73). The processed data and 
related genomic variants from the previous TNBC and HGSC datasets 
are available in Zenodo at https://doi.org/10.5281/zenodo.6998936 
(ref. 74) and https://doi.org/10.5281/zenodo.7718917 (ref. 75) as part 
of previous studies19. Raw scDNA-seq data generated in a previous 
study28 from phase-sorted lymphoblastoid cells are available in SRA 
under accession code PRJNA770772.

Code availability
SPRINTER is available on GitHub at https://github.com/zaccaria-lab/
sprinter, and it is distributed through Bioconda76. A reproducible cap-
sule of SPRINTER with data from this study is available on CodeOcean 
https://doi.org/10.24433/CO.4888914.v1.
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Extended Data Fig. 1 | S-phase cells display a clear difference in read depth 
ratios (RDRs) between early and late genomic regions in contrast to  
G1/G2-phase cells. Average RDRs (y axis) were measured by SPRINTER in 50 kb 
genomic bins with early (magenta) or late (green) replication timing across 

autosomes in the genome (x axis) in either the diploid (a and b) or tetraploid  
(c and d) ground truth datasets and across either G1/G2- (a and c) or mid-S-phase 
(b and d) cells (500 cells in each group).
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Extended Data Fig. 2 | Early and late genomic regions are distributed across 
the genome and within chromosomes, displaying clear differences in read 
depth ratios (RDRs) between early and late genomic regions in S-phase cells 
in contrast to G1/G2-phase cells. RDRs (y axis) were measured by SPRINTER in 
50 kb genomic bins with early (magenta) or late (green) replication timing across 

autosomes in the genome (x axis in top) or in example chromosomes (bottom) 
for different examples of individual cells that belong to either the diploid (a and 
b) or tetraploid (c and d) ground truth datasets and are either in the G1/G2 (a and 
c) or S (b and d) phase of the cell cycle.
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Extended Data Fig. 3 | Cells at different stages of S phase display different 
replication-induced fluctuations of RDR. Average RDRs (y axis) were 
measured by SPRINTER in 50 kb genomic bins with either early (magenta) or 
late (green) replication timing across autosomes in the genome (x axis) for (a) 
180 early-S-phase cells, (b) 916 mid-S-phase cells and (c) 901 late-S-phase cells 
in the generated tetraploid ground truth dataset that were identified as S phase 

by SPRINTER. As expected, cells at different stages of S phase exhibit clearly 
different replication fluctuations in RDRs: in early-S phase only early-replicating 
bins shift to higher values of RDR, in mid-S phase all the early bins have 
completed replication and have distinctly higher values of RDR than late bins, 
and in late-S phase, late bins also start replicating and some of these bins increase 
their values of RDR.
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Extended Data Fig. 4 | SPRINTER’s replication-aware framework enables 
the differentiation of RDR fluctuations due to either replication or 
CNAs. a, Average RDRs (y axis) were measured by SPRINTER in 50 kb genomic 
bins with either early (magenta) or late (green) replication timing across 
autosomes in the genome (x axis) for 73 mid-S-phase cells in the generated 
tetraploid ground truth dataset assigned to the same clone by SPRINTER. b, A 
replication timing profile (RTP, y axis) is calculated by SPRINTER for each bin (x 
axis) for the same cells by correcting RDRs for CNAs based on the copy-number 

segments inferred by SPRINTER, preserving clear fluctuations between bins with 
different replication timing (with magenta early regions having higher RDRs 
than green late regions on average). c, Replication-corrected RDRs (y axis) are 
computed by SPRINTER for each bin (x axis) for the same cells by correcting RDRs 
for replication fluctuations, such that the remaining fluctuations are likely due 
to CNAs and are not influenced by replication (in each segment there is no clear 
difference between bins with different replication timing).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | SPRINTER’s results for cells sequenced from five 
primary tumor samples and five metastases from patient CRUKP9145 with 
NSCLC. Baseline copy numbers (heatmap colors) were inferred by SPRINTER 
on 7312 cancer cells assigned to clones by SPRINTER (rows, excluding normal 
cells and cells classified as outliers) sequenced from 10 distinct tumor samples 
(left bar), including (a) 4265 cells from five primary tumor samples obtained at 
surgery and (b) 3047 cells from five metastases sampled at autopsy, across ~1 Mb 

genomic bins (columns) with SPRINTER-inferred clones (middle bar) and with 
S- and G2-phase cells assigned to each corresponding clone (light gray for G1 
phase, dark gray for S phase and black for G2 phase in right bar). The anatomical 
locations of the samples (colored circles) for (a) primary tumor regions and (b) 
metastases are displayed in corresponding body maps. The figure is created with 
BioRender.com.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Analysis of growth rates of metastases measured 
using serial clinical imaging for patient CRUKP9145. Individual metastases 
were identified on computed tomography (CT) and magnetic resonance (MR) 
imaging scans performed during routine clinical management and collected as 
part of TRACERx. a, The volume of each metastasis (y axis, circle) was measured 
on serial scans (vertical dashed black lines) allowing changes in volume to be 
tracked over time (x axis). b, For each interval between two consecutive time 
points, the growth rate (log(mm3/day)) was calculated for each metastasis using 

either CT scans for the extra-cranial metastases (solid lines) or MR imaging scans 
for the brain metastases (dashed lines). For the right adrenal metastasis, which 
was only detected on the final CT scan (day 139 after surgery), the growth rate 
was calculated by assigning it a volume below the limit of CT detection on the 
preceding CT scan (day 59 after surgery, unfilled circle). c, Axial CT images of the 
left adrenal metastasis (red arrow, days 50 and 139 after surgery) and MR images 
of the left frontal lobe metastasis (red arrow, days 70 and 112 after surgery) are 
displayed.
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Extended Data Fig. 7 | Clone-specific ART in the NSCLC dataset affects <10% 
of the genome on average as expected from previous studies. The fraction 
of clones affected by ART was calculated by combining the fractions of clones 
affected across all samples (y axis) based on SPRINTER’s clone-specific results 
in the NSCLC dataset for either late-to-early (positive values, dark magenta) or 
early-to-late (negative values, dark green) ART in 50 kb genomic bins along the 
genome (x axis, with autosomes separated by dashed lines). ART was inferred 

only in high-confidence cases (that is, only ART events that were present in 
most clones in >2 samples). Known cancer oncogenes in late-to-early genomic 
regions and known cancer tumor suppressor genes in early-to-late regions (from 
the COSMIC Cancer Gene Census) are annotated (black text and lines), also 
including tumor- and metastatic-clade-specific ART events affecting genes in the 
expression analysis (for example, PDL1, CDK12, NCOA2 and KRAS).
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a Early-to-late ART of PDL1 shared across all clones

b Late-to-early ART of PIK3CA shared across all clones

c Early-to-late ART of CDK12 unique to clones in the right phylogenetic branch

d Late-to-early ART of NCOA2 unique to clones in the left phylogenetic branch

e Late-to-early ART of KRAS unique to clones in the third metastatic clade
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Extended Data Fig. 8 | SPRINTER enables the identification of clone-specific 
ART supported by underlying read counts. SPRINTER identifies different ART 
events affecting different genes (annotated text) and present in distinct clones 
(a–e) that belong to different phylogenetic branches (left and right indicated by 
lilac and light blue rectangles) or different metastatic clades (colored triangles). 

SPRINTER identifies clone-specific late-to-early (dark magenta) and early-to-late 
(dark green) ART events in genomic regions across chromosomes (x axis) if they 
have calculated values of the replication timing profile per clone (clone-specific 
RTP, y axis) that are higher or lower, respectively, than expected.
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Extended Data Fig. 9 | SPRINTER estimates clone-specific S and G2 fractions 
in previous TNBC and HGSC datasets. For the TNBC and HGSC datasets (first 
row) with previously annotated genomic signatures (second row, with three 
signatures defined in the previous analysis of these datasets, that is, HRD, FBI 
and TD) and for each tumor in these datasets (third row), the distributions of 
the (middle) S fraction and (bottom) the fraction of actively replicating cells 

(S + G2 fraction, y axis) for SPRINTER’s inferred clones (x axis) were calculated 
by bootstrapping (per sample with 300 repeats) using the S- and G2-phase cells 
identified and assigned to clones by SPRINTER. Box plots show the median 
and the IQR, and the whiskers denote the lowest and highest values within 1.5 
times the IQR from the first and third quartiles, respectively. HRD, homologous 
recombination deficiency; FBI, fold-back inversions; TD, tandem duplications.
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Extended Data Fig. 10 | The G2/S ratio is significantly higher in breast cancer 
clones with HRD. The G2/S ratio (x axis) was calculated based on the G2 and S 
fractions inferred by SPRINTER in the clones (dots) with or without HRD ( y axis) 
in the TNBC (left) and HGSC (right) datasets, with P values as measured by a 
two-sided Mann–Whitney U test when considering (a) all 280 clones inferred 

by SPRINTER, (b) only the 137 clones with more than 80 cells and (c) only the 58 
clones with more than 200 cells. In all panels, box plots show the median and the 
IQR, and the whiskers denote the lowest and highest values within 1.5 times the 
IQR from the first and third quartiles, respectively.
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