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Coupling metabolomics and exome 
sequencing reveals graded effects of rare 
damaging heterozygous variants on gene 
function and human traits
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Michael Köttgen    5,6, Peter J. Oefner13, Felix Knauf14, Kai-Uwe Eckardt    9,14, 
Sarah C. Grünert12, Karol Estrada10, Ines Thiele15,16,17,18, Johannes Hertel    3,19  & 
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Genetic studies of the metabolome can uncover enzymatic and transport 
processes shaping human metabolism. Using rare variant aggregation testing 
based on whole-exome sequencing data to detect genes associated with 
levels of 1,294 plasma and 1,396 urine metabolites, we discovered 235 gene–
metabolite associations, many previously unreported. Complementary 
approaches (genetic, computational (in silico gene knockouts in whole-body 
models of human metabolism) and one experimental proof of principle) 
provided orthogonal evidence that studies of rare, damaging variants in the 
heterozygous state permit inferences concordant with those from inborn 
errors of metabolism. Allelic series of functional variants in transporters 
responsible for transcellular sulfate reabsorption (SLC13A1, SLC26A1) 
exhibited graded effects on plasma sulfate and human height and pinpointed 
alleles associated with increased odds of diverse musculoskeletal traits 
and diseases in the population. This integrative approach can identify new 
players in incompletely characterized human metabolic reactions and reveal 
metabolic readouts informative of human traits and diseases.

A complex interplay of thousands of enzymes and transport proteins 
is involved in maintaining physiological levels of intermediates and 
end products of metabolism. Disturbances of their function can result 
in severe diseases, such as those caused by inborn errors of metabo-
lism (IEMs), or predispose to common metabolic diseases such as type 
2 diabetes or gout. While the study of rare, early-onset, autosomal 
recessive IEMs has uncovered many metabolite-related genes, such 
studies are limited by the very low number of persons homozygous for 

the causative variants. Conversely, genome-wide association studies 
(GWASs) in large populations have revealed thousands of common 
genetic variants associated with altered metabolite levels1–13, but these 
variants’ functional effects are often unknown, and their modest effect 
sizes limit their direct clinical impact.

Gene-based aggregation testing of rare, putatively damaging 
variants in population studies can address this challenge. Previously, 
such studies have focused almost exclusively on the circulating 
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linkage permits the systematic study of the aggregated and individual 
effects of rare, damaging, metabolite-associated variants on a wide 
variety of traits and diseases.

Here, we set out to perform gene-based rare variant aggregation 
testing to discover genes associated with metabolite levels and to 
characterize their genetic architecture with respect to the identified 
variants and across plasma and urine. We validate identified genes and 
variants and the range of their effects through complementary genetic 
approaches, with a new computational method based on WBMs22,23 
and through proof-of-principle experimental studies, and identify 
traits and diseases for which these metabolites represent molecular 
readouts.

Results
As summarized in Fig. 1, rare, putatively damaging variants were 
identified in 16,525 genes based on WES data from 4,737 GCKD study 
participants (mean age of 60 years, 40% women; Supplementary 
Table 1). Metabolites were determined by nontargeted mass spec-
trometry and covered a wide variety of superpathways (Metabolon 
HD4 platform; Supplementary Table 2). Exome-wide burden tests 
for the association between each gene and the levels of each of 1,294 
plasma and 1,396 urine metabolites (781 overlapping) were carried 
out using two complementary ‘masks’ that differed in the selection 
of qualifying variants (QVs; Methods) for gene-based aggregation. 
While the ‘LoF_mis’ mask contained a median of eight QVs per gene 
predicted to be either high-confidence loss-of-function (LoF) vari-
ants or deleterious missense or in-frame nonsynonymous variants, 
the ‘HI_mis’ mask contained a median of 16 QVs per gene predicted 

metabolome14–20. We have shown recently that GWASs of paired plasma 
and urine metabolomes do not only reveal many more associations 
but also enable specific insights into renal metabolite handling2. We 
therefore aimed to perform gene-based testing of the aggregate effect 
of rare variants on the levels of 1,294 plasma and 1,396 urine metabo-
lites quantified from 4,737 participants in the German Chronic Kidney 
Disease (GCKD) study with whole-exome sequencing (WES) data to 
identify metabolism-related genes and to understand whether the 
underlying rare, almost exclusively heterozygous variants permit 
inferences complementary to the ones obtained from the study of IEMs.

Patients with IEMs typically show severe symptoms that originate 
from accumulation or depletion of metabolites, while heterozygous 
carriers of the causative variants often show milder changes of the same 
or related metabolic phenotypes21. We hypothesized that sex-specific 
analysis of metabolite-associated, X chromosomal genes as well as 
knowledge-based, computational modeling based on sex-specific 
organ-resolved whole-body models (WBMs22; Methods) of human 
metabolism can inform on whether heterozygous damaging vari-
ants capture the metabolic effects of their unobserved homozygous 
counterparts. WBMs enable the investigation of homozygous gene 
defects through deterministic in silico knockout modeling. The result-
ing virtual IEMs reflect observed IEMs22–25. We further hypothesized 
that metabolite-associated rare variants identified in the GCKD study 
would show associations with related human traits and diseases in 
very large population studies and that the genetic effects would be 
proportional to their effects on metabolite levels if the implicated 
metabolites are molecular readouts of disease-relevant processes. 
The large UK Biobank (UKB) with WES data and extensive health record 
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N = 4,713
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Gene-based association analysis: aggregation of rare, putatively damaging variants with burden tests
Selection of qualifying variants (QVs), 2 masks: MAF < 1%, functional criteria
16,525 genes with >3 QVs
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Fig. 1 | Overview of the study design. Schematic representation of the gene-based rare variant aggregation study with plasma and urine metabolite levels using 
WES data of 4,737 participants from the GCKD study and their follow-up analyses. MAF, minor allele frequency; PC, principal component; PheWAS, phenome-wide 
association study.
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as high-impact consequence (transcript ablation or amplification, 
splice acceptor or donor, stop-gain, frameshift, start or stop lost) or 
as deleterious missense variants using additional prediction scores 
(Methods). Both masks assume a LoF mechanism but account for dif-
ferent genetic architectures.

Discovery of 192 significant gene–metabolite associations
We identified 192 significant gene–metabolite pairs across both plasma 
(P value < 5.04 × 10−9) and urine (P value < 4.46 × 10−9), where 43 asso-
ciations were detected in both (192 + 43 associations overall; Fig. 2a 
and Supplementary Table 3). These involved 73 unique genes and 179 
metabolites, with a comparable number of genes and metabolites iden-
tified in plasma and urine. There were 22 and 17 genes with significant 
associations exclusively in plasma and in urine, respectively. While 
the majority of associations was detected with both masks, the more 
inclusive ‘HI_mis’ mask yielded more mask-specific associations than 
the ‘LoF_mis’ mask (Fig. 2b). Amino acids and lipids were the dominating 
pathways among the associated metabolites (Supplementary Fig. 1). 
The higher proportion of implicated lipids in plasma than in urine is 
consistent with the absence of glomerular filtration of many lipids 
(Fig. 2b). Associations detected in both plasma and urine generally 
affected the levels of the implicated metabolite in the same direction 
(Fig. 2a). Sensitivity analyses evaluating additional masks and methods 
for aggregation testing (LoF only, sequence kernel association test 
(SKAT) and SKAT- optimal unified test (SKAT-O)) as well as sex-stratified 
and kidney function-stratified analyses supported the robustness of 
the main findings (Supplementary Results, Extended Data Figs. 1–3 
and Supplementary Tables 4 and 5).

Previous independent studies of associations between 
sequencing-based rare variants and metabolite levels obtained using 
comparable technology have focused on plasma and serum14,15,19,20. 
Comparison of the 128 discovered gene–plasma metabolite asso-
ciations in this study with previous studies14,15,19,20 showed that 69%  
(88 of 128) were not reported previously, although 93% (82 of 88) of  
the new findings involved metabolites analyzed before (Supplemen-
tary Table 6; detailed description in the Supplementary Methods  
and the Supplementary Results).

The 73 unique metabolite-associated genes were strongly over-
represented among genes known to be causative for IEMs (odds 
ratio = 10.6, P value = 1.9 × 10−14; Supplementary Methods), with 28 
(38%) of them currently known to harbor causative mutations (Sup-
plementary Table 6). The QVs detected in our study of middle-aged 
and older adults were almost exclusively observed in the heterozygous 
state (Supplementary Data 1). Detailed annotation of QVs in the two 
masks (Supplementary Table 7) showed that 63 unique QVs in 15 genes 
and 73 unique QVs in 17 genes were listed in ClinVar as ‘pathogenic’ 
or ‘pathogenic or likely pathogenic’ for a corresponding monogenic 
disease. These observations support the notion that gene-based 
aggregation of rare, heterozygous, putatively damaging variants 
effectively identifies gene–metabolite relationships implicated in 
human diseases.

Validation through independent, complementary approaches
Independent replication of our findings is complicated by differences 
in QVs, metabolite quantification methods and different analytical 
choices across studies. We therefore validated our findings using four 
complementary approaches: first, the large UKB permitted analysis 
of the same rare QVs using the same analytical choices (Methods), 
as in our study for two overlapping metabolites, and showed very 
similar effect sizes for gene–metabolite associations (Fig. 3a). Second, 
the UKB proteomics data26 contain information on circulating levels 
of the encoded proteins of 17 genes implicated in our study. Burden 
tests aggregating protein-truncating and rare damaging variants 
revealed associations with lower levels of 15 of these proteins (in cis,  
P value < 1 × 10−5; Fig. 3b)27, potentially explained by nonsense-mediated 
decay. Third, comparison of our findings to those from a previous 
study of the plasma metabolome15 showed highly correlated effect 
sizes with those from our study, both on the variant level and the 
aggregated level (Spearman correlation coefficient > 0.8; Fig. 3c,d 
and Supplementary Table 8).

Lastly, we performed a proof-of-concept experimental valida-
tion study for an implicated gene–metabolite relationship. The B0AT1 
transporter, encoded by SLC6A19, is responsible for the uptake of 
neutral amino acids across the apical membrane of intestinal and 
kidney epithelial cells28. In addition to associations with the levels of 
the known substrates asparagine, histidine and tryptophan, we also 
detected associations with methionine sulfone, not yet reported as 
a substrate. Transport studies in CHO cells overexpressing human 
SLC6A19 and its co-chaperone collectrin (CLTRN) in comparison to 
the control indeed confirmed methionine sulfone to be a substrate of 
the transporter in vitro, in a similar concentration range as its known 
substrate isoleucine (Fig. 4a and the Methods). Specificity was shown 
by complete inhibition of transport activity upon application of the 
SLC6A19 inhibitor cinromide29 (Fig. 4b). Together, these four com-
plementary lines of evidence all support the validity of the detected 
associations.

Prioritization and characteristics of driver variants
We next performed a forward selection procedure15 to assess the con-
tribution of individual QVs to their gene-based association signals 
(Methods). Plots that visualize the association P value based on the 
successive aggregation of the most influential QVs (Supplementary 
Data 2) revealed noteworthy differences across genes and metabolites, 
with examples detailed in the Supplementary Results.

The inclusion of effectively neutral variants among the QVs may 
dilute their joint signal. We thus prioritized the variants with the 
strongest individual contributions that resulted in the lowest pos-
sible association P value when aggregated for burden testing15 as 
‘driver variants’ (Methods). For each significant association signal, 
we identified at least two and up to 48 driver variants (median of 
13; Supplementary Data 2 and Supplementary Tables 3 and 7). The 
proteins encoded by the vast majority of identified genes are directly 
involved in the generation, turnover or transport of the associated 

Fig. 2 | Overview of the 192 identified gene–metabolite associations 
across plasma and urine and their corresponding pathways. a, Significant 
associations with plasma metabolites are shown on the outermost band 
(red; shading reflects effect direction), with genes ordered by chromosomal 
location across the genome. Associations with urine metabolites are shown 
on the middle band (blue; shading reflects effect direction). Gene–metabolite 
associations are based on rare variant aggregation testing from both masks. The 
ones labeled in gray were already reported in previous rare variant studies14–20,24, 
whereas the ones labeled in black are considered new. White spaces indicate that 
no significant association was detected in a given matrix. For all associations 
detected in both matrices, effect directions are consistent. The inner band 
represents the superpathway of the associated metabolite. GPE, glycero-3-
phosphoethanolamine; GPI, glycosylphosphatidylinositol; DC, dicarboxylic 

acid. b, The UpSet plot shows the number of identified gene–metabolite 
associations by mask and matrix, color coded by the respective metabolite 
superpathway. Right, horizontal bar plot represents the total number of 
associations identified by mask and matrix. The proportion of lipids is markedly 
higher among associations detected with plasma metabolites as compared  
with urine. Top left, vertical bar plot shows the number of shared associations  
by mask and matrix, while the sets among which the associations are shared  
are indicated below each column. While the majority of associations are 
detected by both masks, especially the less-stringent HI_mis mask provides 
many mask-specific findings in both plasma and urine. The group of metabolites 
detected in both plasma and urine is dominated by amino acids. Part. charact., 
partially characterized.
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metabolite(s). It is therefore a reasonable assumption that truly func-
tional variants are those with the strongest individual contributions 
to the association signal with the implicated metabolite. Indeed, the 
minimum association P value based on only driver variants was often 
many orders of magnitude lower than the one obtained from all QVs, 
as exemplified by DPYD and plasma uracil (Supplementary Data 2).  
As expected, the proportion of splice, stop-gain and frameshift 
variants was higher among driver QVs, whereas nondriver QVs con-
tained a greater proportion of missense variants (Fisher’s exact test,  

P value = 1.3 × 10−6; Extended Data Fig. 4a). The median effect of driver 
variants on metabolite levels increased from missense over start/stop 
lost, frameshift and stop-gain variants to variants predicted to affect 
splicing (Extended Data Fig. 4b). The median effect of drivers also 
increased with lower minor allele count and differed substantially 
from the one of nondrivers in each minor allele count bin (Extended 
Data Fig. 4c).

Lastly, evaluation of the convergence of rare and common vari-
ant association signals showed that the associations of rare and 

C
is

protein
associations

−2.0 −1.5 −1.0 −0.5 0

KYNU
ACY1
ACY3

CNDP1
KYAT1

NIT2
MRI1
ASS1
UPB1

SULT2A1
ACADSB

FTCD
OPLAH

ACADM
TYMP

E�ect size (SE)

50

100

−log10 (P value)H
AL

PAH

0 0.4 0.8 1.2

Histidine
(UKB)

Histidine
(GCKD)

Phenylalanine
(UKB)

Phenylalanine
(GCKD)

E�ect size (SE)

400

800

1,200

1,600

–log10 (P value)

cMAF
0.010

0.015

0.020

P value in INTERVAL <5 × 10−8 <1 × 10−5 <1 × 10−3

<0.05 >0.05

−2

0

2

−2 0 2 4

E�ect size on variant level in GCKD

E�
ec

ts
iz

e
on

 v
ar

ia
nt

 le
ve

l i
n

IN
TE

RV
AL

Spearman
correlation = 0.81

Lines Identity line Linear regression line

−2

−1

0

1

2

−2 −1 0 1 2

E�ect size on gene level in GCKD

E�
ec

ts
iz

e
on

ge
ne

 le
ve

li
n

IN
TE

RV
AL

Mask in Bomba et al.

LOF

MLOF

CODING

Spearman
correlation = 0.82

a b

c d

Fig. 3 | Independent validation of findings using orthogonal approaches. 
a, Gene-based testing of significantly associated, available plasma metabolites 
among ≥261,661 UKB participants (y axis) using the same mask and only including 
QVs available in both the GCKD study and the UKB provided very similar effect 
sizes in the two studies (x axis). Bars represent corresponding standard errors 
(SE), symbol color reflects the −log10 (P value), and the size depicts the cumulative 
minor allele frequency of all QVs within a gene. In the UKB, gene-based burden 
tests were performed as implemented in REGENIE (Methods). cMAF, cumulative 
MAF. b, Plasma levels of the proteins encoded by 17 of the 73 significant, 
metabolite-associated genes were measured in the UKB (N ≥ 44,108)27. Among 
the available gene-level summary statistics27, 15 genes showed cis associations 
with plasma protein levels with an association P value < 1 × 10−5 based on a 
‘ptvraredmg’ mask, which is similar to the masks used in the GCKD study. Genes 
are shown on the y axis. Effect sizes and the corresponding standard errors of the 
cis associations with plasma protein levels based on these summary statistics27 
are displayed on the x axis. Symbol color reflects the −log10 (P value). For all 
cis associations, the direction of effect sizes was negative, consistent with LoF 
variants resulting in lower plasma protein levels. c, Single-variant effect sizes on 
levels of a given plasma metabolite in the GCKD study (x axis) were very similar 
to those in the INTERVAL study (Bomba et al.15) (y axis) for all QVs involved in 

significant gene–metabolite associations in the GCKD study that were also 
available in the INTERVAL study and showed an association P value < 0.1 in both 
studies. Horizontal bars indicate standard errors of effect sizes in the GCKD 
study (not available for the INTERVAL summary statistics). The depicted 200 
associations involved 35 unique genes and 75 unique metabolites. Symbol 
color indicates the INTERVAL association P value. Gray lines represent identity 
(dotted) and the linear regression line (dashed). The strong correlation of effect 
sizes supports reproducibility. d, Summary statistics for 89 of 128 plasma gene–
metabolite associations were available in the INTERVAL study (Bomba et al.). 
Effect sizes of gene–metabolite associations on the aggregated level in the GCKD 
study (x axis) were very similar to those in the INTERVAL study (y axis; Methods 
and Supplementary Table 8), despite differences in masks and aggregation unit. 
Horizontal error bars indicate the standard errors of effect sizes in the GCKD 
study. Standard errors were not available in the summary statistics from Bomba 
et al. Symbol shape indicates the corresponding mask used by Bomba et al.  
(LOF, high-confidence LoF variants; MLOF, LoF and missense variants combined; 
CODING, all rare exonic variants, splice sites and variants residing in untranslated 
regions). Color reflects the association P value in the INTERVAL study. Gray lines 
represent the identity (dotted) and the linear regression line (dashed).
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common variants in the same region with a given metabolite were 
independent (Supplementary Results, Supplementary Table 9 and 
Extended Data Fig. 5).

Heterozygous variants inform about dose–response effects
The identification of known IEM-causing variants such as in CTH, PAH, 
SLC6A19 and SLC7A9 (Supplementary Table 7) in the heterozygous 
state supports the notion that heterozygous QVs are functional alleles 
that lead to more extreme metabolic changes when present homozy-
gously. For three genes with a homozygous QV present in more than one 
individual in our study, homozygous individuals tended to have more 
extreme metabolite levels than heterozygous ones (Extended Data 
Fig. 6), supporting a dose–response effect. Moreover, we had previ-
ously confirmed experimentally that heterozygous sulfate-associated 
QVs in SLC26A1 detected by aggregate variant testing are indeed LoF 
alleles and that the encoded protein is an important player in human 
sulfate homeostasis30. However, experimental studies of each of the 
2,077 QVs and 73 genes detected here are infeasible, and IEMs are so rare 
that no homozygous person for a given gene may have been observed 
yet. We therefore used three orthogonal approaches: examination of 
hemizygosity, in silico knockout modeling and investigation of variants 
prioritized through allelic series, to evaluate whether the observed 
metabolite-associated heterozygous variants captured similar infor-
mation about a gene’s function as might be derived from homozygous 
damaging variants in the respective gene.

X chromosomal genes as a readout of variant homozygosity
Genes in the non-pseudo-autosomal region of the X chromosome offer 
an opportunity to study differences between heterozygous women 
and effectively homozygous (that is, hemizygous) men. We therefore 
investigated sex differences for the two X chromosomal genes identi-
fied in our screen, TMLHE and RGN (Supplementary Table 10).

Indeed, male carriers of QVs in TMLHE showed clearly higher urine 
levels of N6,N6,N6-trimethyllysine, the substrate of the encoded enzyme 
trimethyllysine dioxygenase, than female carriers as well as markedly 
lower levels of its product hydroxy-N6,N6,N6-trimethyllysine, especially 
when focusing on driver variants (Fig. 5 and Supplementary Table 10). 
In plasma, male QV carriers showed 1.15 s.d. lower levels of plasma 
hydroxy-N6,N6,N6-trimethyllysine than noncarriers (P value = 6 × 10−44), 
whereas female QV carriers only showed 0.45 s.d. lower metabolite 
levels than noncarriers (P value = 3 × 10−4). A similar tendency was 
observed for RGN and urine levels of the unnamed metabolite X-23436. 
Levels were higher among both male and female carriers (Supplemen-
tary Table 10), suggesting that X-23436 is a metabolite upstream of the 
reaction catalyzed by the encoded regucalcin. Data from the GTEx 
Project31 show no sex differences in gene expression across tissues. 
Hence, sex-differential effects on metabolite levels likely represent a 
dose–response effect resulting from heterozygosity versus hemizy-
gosity of the involved QVs.

Virtual IEMs mirror the effects of heterozygous variants
We next investigated the implicated genes’ LoF by generating virtual 
IEMs for 24 genes that covered 60 gene–metabolite pairs via in silico 
knockout modeling (Methods and Extended Data Fig. 7). We compared 
the maximal secretion flux of the implicated metabolite into blood 
and/or urine between the wild-type WBM and the gene-knockout 
WBM. Initially, the direction of the observed gene–metabolite asso-
ciations was correctly predicted by virtual IEMs with an accuracy of 
73.3% in the male WBM and 76.7% in the female WBM, which is sig-
nificantly better than chance (Fisher’s exact test, P value = 3.3 × 10−3 
(male), P value = 1.5 × 10−4 (female); Supplementary Table 11). After 
model curation informed by the observed gene–metabolite asso-
ciations, which included the addition of metabolites (for exam-
ple, 8-methoxykynurenate) and pathways as well as alteration of 
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constraints (for example, diet; details in the Supplementary Results 
and Supplementary Table 12), the number of modeled gene–metabo-
lite associations increased to 67, and accuracy increased to 79.1% 

(male, P value = 2.1 × 10−5) and 83.58% (female, P value = 2.9 × 10−7). 
These findings underline the predictive nature of the virtual IEMs 
for the aggregated effects of heterozygous damaging variants and 
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Top, plots represent covariate-adjusted urine levels of N6,N6,N6-trimethyllysine  
after inverse normal transformation (INT; y axis) among male (left) and  
female (right) noncarriers and carriers of QVs in TMLHE based on the HI_mis  
mask (x axis). Symbol color and shape indicate a variant’s driver status and  
consequence, respectively. The boxes range from the 25th percentile to the  
75th percentile of metabolite levels, the median is indicated by a line, and 
whiskers end at the last observed value within 1.5 × (interquartile range) of the 
box. Among men hemizygous for a QV in TMLHE, the levels of the substrate  
N6,N6,N6-trimethyllysine were markedly higher than in heterozygous women,  
reflecting more severe impairment of the encoded enzyme’s function in  
hemizygous men. P values correspond to the sex-specific burden tests based on  

driver variants, with P values based on all QVs in parentheses (Supplementary  
Table 10 and the Supplementary Methods). Metabolites’ formulas were taken  
from https://commons.wikimedia.org/. Bottom, plots represent urine levels  
of covariate-adjusted hydroxy-N6,N6,N6-trimethyllysine after inverse normal  
transformation (y axis) across male (left) and female (right) noncarriers and  
carriers of QVs in TMLHE based on the HI_mis mask (x axis). Because hydroxy-
N6,N6,N6-trimethyllysine is the product of trimethyllysine dioxygenase, the 
enzyme encoded by TMLHE, LoF QVs lead to decreased metabolite levels more 
strongly among men than among women. Effect sizes in men and women  
were significantly different (P value = 3 × 10−4; Supplementary Methods).  
A schematic depiction of the well-studied reaction catalyzed by trimethyllysine 
dioxygenase51 and of its substrate N6,N6,N6-trimethyllysine and product hydroxy-
N6,N6,N6-trimethyllysine is included. Multi-hetero, multi-heterozygous.
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highlight opportunities to further improve WBMs by curation of the 
underlying knowledge base.

Personalized WBMs capture observed metabolic changes
Virtual IEMs as described above only allow for qualitative prediction. 
To additionally study an equivalent to observed effect sizes, we intro-
duced a second modeling strategy (Extended Data Fig. 7) as proof 
of principle, focusing on the gene KYNU. We successfully generated 
569 microbiome-personalized32 WBMs (Methods) and calculated the 
effect size of in silico KYNU knockout on metabolite excretion into urine 
against the natural variation induced by the personalized microbiomes 
(Supplementary Table 13). Eighteen of 257 metabolites had a modeling 
P value < 0.05/257, implicating them as potential biomarkers of the cor-
responding IEM kynureninase deficiency (Supplementary Table 14). The 
in silico effects of these 18 biomarkers, mostly belonging to tryptophan 
metabolism and the nicotinamide adenine dinucleotide (NAD)+ de novo 
synthesis pathway, were significantly correlated with their observed 
counterparts (Supplementary Fig. 2a). Whereas two of the three metab-
olites with particularly large effects in both in silico modeling and the 
GCKD study, xanthurenate and 3-hydroxykynurenine, are known bio-
markers of kynureninase deficiency33, 8-methoxykynurenate was not. 
We therefore measured absolute levels of these metabolites in urine 
samples from a homozygous patient with kynureninase deficiency and 
her parents34 (Supplementary Methods) and confirmed that, in addi-
tion to xanthurenate and 3-hydroxykynurenine, 8-methoxykynurenate 
also constituted a biomarker of this IEM (Fig. 6a and Extended Data 
Fig. 8), consistent with the association statistics from aggregate tests 
of heterozygous variants from the GCKD study. A similar observation 
was made with regard to the gene PAH (Fig. 6b, Supplementary Fig. 2b 
and Supplementary Results). Thus, in silico knockout modeling of two 
proof-of-principle examples faithfully captured metabolic changes 
observed for heterozygous variants detected in population studies 
and for the corresponding recessively inherited IEMs.

Metabolites represent intermediate readouts of human traits
Allelic series describe a dose–response relationship, in which increas-
ingly deleterious mutations in a gene result in increasingly larger effects 
on a trait or a disease. We hypothesized that genetic effects on metabo-
lite levels should manifest as allelic series if the metabolite represents 
a molecular readout of an underlying (patho-)physiological process. 
As proof of principle, we investigated plasma sulfate because of solid 
evidence for causal gene–metabolite relationships: first, QVs in SLC13A1 
showed a significant aggregate effect on lower plasma sulfate levels 
(P value = 3 × 10−18, lowest possible P value = 2 × 10−25). The observed 
association is well supported by experimental studies establishing 
that the encoded Na+–sulfate cotransporter NaS1 (SLC13A1) reabsorbs 
filtered sulfate at the apical membrane of kidney tubular epithelial 
cells35. Second, we had previously confirmed experimentally that 
plasma sulfate-associated QVs in SLC26A1 are LoF alleles that lead to 
reduced sulfate transport30, consistent with the aggregate effect of 

driver variants in SLC26A1 reaching a P value of 2 × 10−11 for association 
with plasma sulfate (Extended Data Fig. 9). The encoded sulfate trans-
porter SAT1 localizes to basolateral membranes of tubular epithelial 
cells and works in series with NaS1 to mediate transcellular sulfate 
reabsorption (Fig. 7a)36,37.

Based on a growth retardation phenotype in Slc13a1-knockout 
mice38 and an association between SLC13A1 and lower sitting height in 
the UKB (P value = 3 × 10−8; Supplementary Tables 15 and 39), we investi-
gated relations of six functional driver QVs in SLC13A1 and SLC26A1 with 
anthropometric measurements in the UKB (Methods). Supplementary 
Table 16 contains traits with which at least two QVs showed nominally 
significant associations (P value < 0.05). The genetic effect sizes on 
plasma sulfate levels in the GCKD study and both sitting and standing 
heights in the UKB were correlated (Pearson correlation coefficients 
of 0.57 and 0.70, respectively; Fig. 7b). These observations support a 
causal relationship between transcellular sulfate reabsorption and 
human height and designate plasma sulfate as an intermediate readout. 
Additionally, we observed significantly lower standing height among 
carriers of driver variants in SLC13A1 and SLC26A1 than among non-
carriers in a subsample of the GCKD study (N = 3,239) with measured 
height. The aggregated effect size of driver variants in SLC13A1 was 
−0.54 (corresponding to −5.17 cm when height was not inverse normal 
transformed, P value = 1.6 × 10−3; Supplementary Fig. 3a). For SLC26A1, 
we obtained even a stronger effect size of −0.73 (corresponding to 
−6.68 cm, P value = 1.7 × 10−6; Supplementary Fig. 3b).

The first patient homozygous for a LoF stop-gain mutation in 
SLC13A1, p.Arg12*, has just been described39. Aside from sitting height 
>2 s.d. below the normal range, the patient featured multiple skeletal 
abnormalities. Experimental transport studies40 as well as the patient’s 
fractional sulfate excretion of almost 100%39 establish this variant as 
a complete LoF, resulting in renal sulfate wasting. In this study, we 
found that, compared with noncarriers of p.Arg12*, heterozygous car-
riers showed 0.95 s.d. lower plasma sulfate levels (GCKD, 22 carriers, P 
value = 9.9 × 10−10) and 0.08 s.d. lower sitting height (UKB, 2,480 carri-
ers, P value = 2.2 × 10−7). Plasma sulfate measurements from heterozy-
gous carriers therefore are indicative of more extreme phenotypic 
changes in homozygous carriers.

Variants altering sulfate uptake and musculoskeletal traits
Rare LoF variants in SLC13A1 and SLC26A1 have been linked to indi-
vidual musculoskeletal phenotypes through IEMs and GWASs30,41–43. 
We further investigated the association between the same six func-
tional, sulfate-associated QVs in SLC13A1 and SLC26A1 and muscu-
loskeletal disorders, fractures and injuries in the UKB, for which at 
least two carriers with and without disease were present (Methods). 
There were 116 nominally significant (P value < 0.05) associations with 
clinical traits and diseases, 113 of which were associated with increased 
odds of disease (Fig. 7c). For instance, the odds of various fractures 
ranged up to 30.7 (closed fracture of the neck, P value = 2.1 × 10−8, 
NaS1 p.Trp48*; Supplementary Table 17). While the increased odds 

Fig. 6 | Altered metabolite levels are a readout of impaired KYNU and PAH 
function: converging evidence from three approaches. a,b, Three panels 
are shown for 8-methoxykynurenate levels associated with KYNU (a) and for 
phenylalanine levels associated with PAH (b) that visualize evidence from 
three complementary approaches. Left, covariate-adjusted inverse normal-
transformed levels of the metabolite (y axis) among noncarriers (N = 4,589 and 
4,562) and carriers (N = 25 and 151) of QVs in in the respective gene (x axis). Units 
correspond to standard deviations. The boxes range from the 25th percentile 
to the 75th percentile of metabolite levels, the median is indicated by a line, and 
whiskers end at the last observed value within 1.5 × (interquartile range) of the 
box. Middle, distribution of the ln-transformed secretion flux of the metabolite 
in mmol per day into urine (y axis) from minimum-norm quadratic programming 
(QP) simulations based on 569 and 567 microbiome-personalized WBMs  
without and with simulated knockout of KYNU and PAH, respectively (x axis).  

a, Right, multiple-reaction monitoring (m/z 220.0 → 174.1) chromatograms of the 
diluted urine of a child with a homozygous loss of KYNU function34 (patient), the 
heterozygous mother and the healthy father (maternal uniparental isodisomy). 
The signal at 12.5 min representing 8-methoxykynurenate is strongly enhanced 
in the patient sample. Chromatograms are normalized to urine creatinine 
concentrations; y axes are normalized to the intensity of the signal in the 
patient’s chromatograms. b, Right, UV–visible chromatograms (570 nm) of 
amino acids (post-column derivatization with ninhydrin) in serum samples of 
a child with a homozygous loss of PAH function (c.1199+1G>C), the compound 
heterozygous father who additionally carries a mild mutation (c.1180G>C) 
and the heterozygous mother. The signal at 85.5 min represents phenylalanine 
(Phe). The signal at 106 min is the internal standard (IS). The reference range 
for phenylalanine concentrations in children is 38–137 µmol l−1 and in adults is 
26–91 µmol l−1.
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support a relationship between LoF variants in sulfate transporters 
and predisposition to several musculoskeletal disorders, the power 
to detect decreased odds was limited because of the rareness of the 
QVs and many of the disorders.

UKB participants who carried more than one copy of any of the 
six QVs were investigated more closely. The rare allele, resulting in the 
p.Arg272Cys substitution in NaS1, was observed in nine heterozygous 
carriers in the GCKD study and prioritized because of its location in a 
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splice region, its high impact on plasma sulfate levels and its particu-
larly large effect on human height (Fig. 7b). In the UKB, we found 294 
heterozygous carriers of p.Arg272Cys, four persons who carried both 
p.Arg272Cys in NaS1 and p.Leu348Pro in SAT1 and a single person 
homozygous for p.Arg272Cys. Age- and sex-specific z scores for human 
height showed a clear dose–response effect (Fig. 8a and the Methods). 
The stronger effects among the four individuals heterozygous for LoF 
variants in each of the two transcellular sulfate reabsorption proteins 
as compared with heterozygous carriers of p.Arg272Cys only support 
additive effects across the pathway for human growth. Carrier status 
for NaS1 p.Arg272Cys was associated with increased odds of several 
musculoskeletal diseases such as back pain and intervertebral disk 
disorders as well as fractures (Fig. 8b). Homozygous persons were 
also identified for NaS1 p.Arg12* and SAT1 p.Leu348Pro, with similar 
findings (Extended Data Fig. 10). Together, these findings provide 
strong support that genetic variants that proxy lower transcellular 
sulfate reabsorption are associated with human height and several 
musculoskeletal traits and diseases. Prioritizing variants with strong 

effects in allelic series for subsequent investigation in larger studies, 
even if the biomarker association rests on only a few heterozygous 
alleles, can therefore be an effective strategy to gain insights into the 
impact of rare damaging variants on human health.

Relation of metabolite-associated genes to clinical traits
A query of associations between the identified 2,077 QVs and 73 genes 
with thousands of quantitative and binary health outcomes using data 
from ~450,000 UKB participants (Supplementary Methods) revealed 
multiple biologically plausible significant and suggestive associations 
for genes (Supplementary Table 15) and QVs (Supplementary Table 18) 
but also less-studied relationships (Supplementary Results). The genes 
SLC47A1, SLC6A19, SLC7A9 and SLC22A7 were associated with one or 
more measures of kidney function and encode transport proteins highly 
expressed in the kidney44–46. Their localization at the apical44–46 versus 
basolateral membrane of tubular epithelial kidney cells47 corresponded 
to the matrix (urine versus plasma) in which they left corresponding 
metabolic fingerprints. This observation illustrates that rare genetic 
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Fig. 7 | Impact of functional QVs in SLC13A1 and SLC26A1 on height, 
musculoskeletal traits and fractures supports the role of plasma sulfate as an 
intermediate readout. a, Schematic representation of the sulfate reabsorption 
mechanism involving NaS1 encoded by SLC13A1 at the apical membrane and 
SAT1 encoded by SLC26A1 at the basolateral membrane of epithelial cells. Figure 
created with https://www.biorender.com. b, Scatterplot shows the relation 
between the effect sizes of six QVs on plasma sulfate levels in the GCKD study 
(x axis) and on standing height in the UKB (N ≥ 466,907) (y axis). Effect sizes 
correspond to single-variant association tests under additive modeling with 
inverse normal-transformed traits. Symbol color and shape indicate the gene 
(shades of red, SLC13A1; shades of blue, SLC26A1) and consequence of the QV. 
Symbol size represents the association P value with respect to height. The black 
line is the linear regression line through the data points. Variant effect sizes for 

plasma sulfate levels are clearly correlated with the ones for standing height 
(Pearson correlation r = 0.70, allelic series). c, The volcano plot shows odds 
ratios (x axis) and −log10 (P values) (y axis) for associations of the six QVs with 
musculoskeletal diseases and fractures in the UKB (N ≥ 468,279), based on a Firth 
regression (Methods and Supplementary Table 17). Only clinical traits for which 
at least two carriers were identified among both individuals with and without 
disease are included in the plot. Symbol color indicates the QV and whether the 
corresponding P value was nominally significant (P value < 0.05). Symbol size 
corresponds to the number of QV carriers with disease. While both increased and 
decreased odds of disease were observed when associations were not significant, 
increased odds for musculoskeletal diseases and fractures dominated for 
significant associations.
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variants associated with clinical markers of organ function can leave 
specific signatures in organ-adjacent biofluids that reflect their roles 
in cellular exchange processes.

Discussion
We performed a comprehensive screen of the aggregate effect of rare, 
putatively damaging variants on the levels of 1,294 plasma and 1,396 
urine metabolites from paired specimens of 4,737 persons. The major-
ity of the 192 identified gene–metabolite relationships have not been 
reported yet14–20,24 and include plasma- and urine-exclusive associations 
that reflect organ function. The findings were validated through pri-
mary data analysis for metabolites available in the UKB, investigation 
of previously published summary statistics from sequencing-based 
genetic studies of the plasma metabolome, integration of orthogonal 
plasma proteomics data and proof-of-concept experimental studies 
that confirmed a new metabolite association with the transport protein 
encoded by SLC6A19.

We show, via several genetic, computational and experimen-
tal approaches that the rare, almost exclusively heterozygous 
metabolite-associated variants in our study capture similar informa-
tion about a gene’s function as can be obtained from the study of rare 
IEMs but are observed much more frequently and permit insights 
into graded effects of impaired gene function. First, 38% of identi-
fied genes in our study are known to harbor causative mutations for 
autosomal recessively inherited IEMs that often exhibit concordant 
but more extreme changes in the implicated metabolite, as exempli-
fied by elevated urine levels of cystine in cystinuria (MIM 220100, 
SLC7A9) or tryptophan in Hartnup disease (MIM 234500, SLC6A19). 

Second, men exhibited significantly larger effects of rare QVs in 
non-pseudo-autosomal X chromosomal genes on metabolite levels 
than women. This observation is consistent with male hemizygosity 
as an approximation of female homozygosity for a given variant and 
with the known greater penetrance and severity of X-linked disorders 
in men than in women48.

Third, in silico knockout in a virtual metabolic human, that is, full 
loss of gene function, was predictive for observed metabolic changes 
associated with variant heterozygosity. Predicted changes on metabo-
lite levels upon in silico gene knockout were also reflected in absolute 
metabolite quantification of patients with IEM homozygous for a LoF 
mutation in the respective genes, KYNU34 and PAH. Thus, determinis-
tic, knowledge-based in silico modeling generated context for better 
biological interpretation also of heterozygous variants, while genetic 
screens of metabolite levels in population studies permit the identifi-
cation of knowledge gaps and errors in WBMs. Our modeling pipeline 
for generating virtual IEMs, which we make publicly available to sub-
stantiate evidence from rare variant aggregation tests, will constitute 
a valuable resource in particular to scrutinize genes for which an IEM 
has yet to be observed.

Fourth, the presence of different causal QVs affecting a given meta-
bolic reaction or pathway enabled the investigation of allelic series. 
The resulting dose–response relationships proxy a range of target 
inhibition, which represents desirable information for drug develop-
ment and is relevant because enzymes and transporters are attractive 
drug targets. Plasma sulfate-associated functional QVs in SLC13A1 and 
SLC26A1 showed a clear dose–response effect between the degree 
of genetically inferred impaired transcellular sulfate reabsorption 
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and lower human height. This observation is biologically plausible, 
because defects in genes linked to sulfate biology often result in per-
turbed skeletal growth and development49. In particular, constitutive 
knockouts of Slc13a1 and Slc26a1 in mice do not only cause hyposul-
fatemia and renal sulfate wasting38,50 but also general growth retarda-
tion in Slc13a1-knockout mice38. Interestingly, the missense variant 
p.Thr185Met in SAT1 exhibited the largest effect on sulfate. We have 
previously shown experimentally a dominant negative mechanism 
of this variant30, providing another mechanism of how heterozygous 
variants may promote insights into an effectively full loss of gene func-
tion. Moreover, our findings for the p.Arg272Cys variant in NaS1 show 
that even very few, heterozygous copies of a metabolite-prioritized QV 
can give rise to the detection of homozygous individuals and hitherto 
unreported disease associations in subsequent larger studies. These 
observations suggest that the importance of impaired transcellular 
epithelial sulfate transport for musculoskeletal diseases, fractures and 
injuries deserves additional study and should be further substantiated 
through conditional or mediation analyses if plasma sulfate levels 
become available in the UKB.

Potential limitations of our study include a focus on participants of 
European ancestry with moderately reduced kidney function, potential 
violations of assumptions underlying burden tests, in silico predic-
tion of QV pathogenicity and of whole-body modeling and the use of 
semi-quantitative rather than absolute metabolite levels. Arguments 
mitigating each of these concerns are detailed in the Supplementary 
Discussion.

In conclusion, exome-wide population studies of rare, putative 
LoF variants can reveal potentially causal relationships with metabo-
lites and highlight metabolic biomarkers informative of the degree 
of impaired gene function that can translate into graded associations 
with human traits.
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Methods
Study design and participants
The GCKD study is an ongoing prospective cohort study of 5,217 par-
ticipants with moderate chronic kidney disease who were enrolled 
from 2010 to 2012 and are under regular nephrologist care. Inclusion 
criteria were an age between 18 and 74 years and an eGFR between 
30 and 60 ml min−1 per 1.73 m2 or an eGFR >60 ml min−1 per 1.73 m2 
with a UACR >300 mg per g or with a urinary protein-to-creatinine 
ratio >500 mg per g52. Biomaterials, including blood and urine, 
were collected at the baseline visit, processed and shipped frozen 
to a central biobank for storage at −80 °C53. Details on the study 
design and participant characteristics have been published52,54. 
The GCKD study was registered in the national registry for clinical 
studies (DRKS 00003971) and approved by local ethics committees 
of the participating institutions52. All participants provided written 
informed consent.

Whole-exome sequencing and quality control
Genomic DNA was extracted from whole blood and underwent 
paired-end 100-bp WES at Human Longevity, using the IDT xGen 
version 1 capture kit on the Illumina NovaSeq 6000 platform. More 
than 97% of consensus coding sequence (CCDS) release 22 (ref. 55) 
had at least 10-fold coverage. The average coverage of the CCDS was 
141-fold read depth. Exomes were processed from their unaligned 
FASTQ state in a custom-built cloud compute platform using the 
Illumina DRAGEN Bio-IT Platform Germline Pipeline version 3.0.7 at 
AstraZeneca’s Centre for Genomics Research, including alignment 
of reads to the GRCh38 reference genome (https://ftp.ncbi.nlm.nih.
gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/) 
and variant calling56.

Sample-level quality control included removal of samples from 
participants who withdrew consent, duplicated samples, those with an 
estimated VerifyBamID contamination level >4%57, samples with incon-
sistency between reported and genetically predicted sex, samples 
not having chromosomes XX or XY, samples having <94.5% of CCDS 
release 22 bases covered with ≥10-fold coverage55, related samples 
with kinship >0.884 (KING, kinship version 2.2.3)58 and samples with 
a missing call rate >0.03. Furthermore, only samples with available 
high-quality DNA microarray genotype data and without outlying 
values (>8 s.d.) along any of the first ten genetic principle components 
from a principal component analysis59 were kept, for a final sample 
size of 4,779 samples.

Variant-level quality control was performed similar to that in 
ref. 56, excluding variants with coverage <10, heterozygous variants 
with a one-sided binomial exact test P value <1 × 10−6 for Hardy–
Weinberg equilibrium, variants with a genotype quality score <30, 
single-nucleotide variants with a Fisher’s strand bias score (FS) >60 
and insertions and deletions with an FS >200, variants with a mapping 
quality score <40, those with a quality score <30, variants with a read 
position rank-sum score <−2, those with a mapping quality rank-sum 
score <−8, variants that did not pass the DRAGEN calling algorithm 
filters, heterozygous genotype called variants based on an alternative 
allele read ratio <0.2 or >0.8 and variants with a missing call rate >10% 
among all remaining samples. This resulted in 1,038,062 variants across 
the autosomes and the X chromosome.

Variant and gene annotation
Variants from WES were annotated using the Variant Effect Predictor 
(VEP) version 101 (ref. 60) with standard settings, including the canoni-
cal transcript, gene symbol and variant frequencies from gnomAD 
version 2.1 (https://gnomad.broadinstitute.org/). VEP plugins were 
used to add the REVEL (version 2020-5)61 and CADD (version 3.0)62 
scores and to downgrade LoF variants using LOFTEE (version 2020-
8)63. Furthermore, we added multiple in silico prediction scores using 
dbNSFP version 4.1a64.

For interpretation, genes were annotated for their potential func-
tion as enzymes using UniProt (https://www.uniprot.org/)65 and as 
transporters using data from Gyimesi and Hediger66.

Metabolite identification and quantification
Metabolite levels were quantified from stored plasma and spot urine as 
published by Schlosser et al.2. In brief, nontargeted mass spectrometry 
analysis was conducted at Metabolon. Metabolites were identified by 
automated comparison of the ion features in the experimental sam-
ple to a reference library of chemical standards. Known metabolites 
reported in this study were identified with the highest confidence 
level of identification of the Metabolomics Standards Initiative67,68, 
unless marked with an asterisk. Unnamed biochemicals of unknown 
structural identity were identified by virtue of their recurrent nature. 
For peak quantification, the area under the curve was used, followed 
by normalization to account for interday instrument variation.

Data cleaning of quantified metabolites
Data cleaning, quality control, filtering and normalization of quantified 
metabolites in plasma and urine in the GCKD study were performed 
using an in-house pipeline2. Samples and metabolites were evaluated 
for duplicates; missing and outlying values and metabolites with low 
variance were excluded. Levels of urine metabolites were normal-
ized using the probabilistic quotient69 derived from 309 endogenous 
metabolites with <1% missing values to account for differences in urine 
dilution. After removing metabolites with <300 individuals with WES 
data, the remaining 1,294 plasma and 1,396 urine metabolites (Supple-
mentary Table 2) were inverse normal transformed before gene-based 
aggregation testing. Therefore, effect sizes based on effects of aggre-
gated rare variants on the semi-quantitative metabolite measurements 
have 1 s.d. as a unit.

Additional variables
Serum and urine creatinine were measured using an IDMS-traceable 
enzymatic assay (Creatinine Plus, Roche). Serum and urine albumin 
levels were measured using the Tina-quant assay (Roche–Hitachi Diag-
nostics). GFR was estimated with the CKD-EPI formula70 from serum 
creatinine. UACR was calculated using urinary albumin and creatinine 
measurements. Full information on WES data, covariates and metabo-
lites was available for 4,713 persons regarding plasma metabolites 
and for 4,619 persons regarding urine metabolites. Genetic principal 
components were derived based on principal component analysis on 
the basis of genotype data using flashpca71.

Rare variant aggregation testing on metabolite levels
We performed burden tests to combine the effects of rare, putatively 
damaging variants within a gene on metabolite levels assuming a LoF 
mechanism that results in concordant effect directions on metabolite 
levels72. The selection of high-quality QVs into masks based on their 
frequency and annotated properties is a state-of-the-art approach 
in variant aggregation studies73. Annotations from VEP version 101 
(ref. 60) were used to select QVs within each gene for aggregation in 
burden tests. Because genetic architectures of damaging variants 
vary across genes, two complementary masks for the selection of 
QVs were defined. Both masks were restricted to contain only rare 
variants in canonical transcripts with MAF <1%. All variants that were 
predicted to be either high-confidence LoF variants or missense vari-
ants with a MetaSVM score >0 or in-frame nonsynonymous variants 
with a fathmm-XF-coding score >0.5 were aggregated into the first 
mask, termed LoF_mis. The second mask, termed HI_mis, contained 
all variants that were predicted either to have a high-impact conse-
quence defined by VEP (transcript ablation, splice acceptor variant, 
splice donor variant, stop-gain variant, frameshift variant, start/
stop lost variant, and transcript amplification) or to be missense 
variants with a REVEL score >0.5, a CADD PHRED score >20 or an 
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M-CAP score >0.025. Only genes with an HGNC symbol that were not 
read-throughs and that contained more than three QVs in at least 
one of the masks were kept for testing, resulting in 16,525 analyzed 
genes. Burden tests were carried out as implemented in the seqMeta 
R package version 1.6.7 (ref. 74), adjusting for age, sex, ln(eGFR) and 
the first three genetic principal components as well as serum albu-
min for plasma metabolites and ln(UACR) for urinary metabolites, 
respectively2. Genotypes were coded as the number of copies of the 
rare allele (0, 1, 2) on the autosomes and also on the X chromosome 
for women. For men, genotypes in the non-pseudo-autosomal region 
of the X chromosome were coded as (0, 2). Statistical significance was 
defined as nominal significance corrected for the number of tested 
genes and principal components that explained more than 95% of 
the metabolites’ variance (0.05/16,525/600 = 5.04 × 10−9 in plasma, 
0.05/16,525/679 = 4.46 × 10−9 in urine). For significant gene–metabo-
lite associations, single-variant association tests between each QV in 
the respective mask and the corresponding metabolite levels were 
performed under additive modeling, adjusting for the same covari-
ates using the seqMeta R package version 1.6.7 (ref. 74). Sensitivity 
analyses that evaluated all significant gene–metabolite pairs with 
regard to additional gene-based tests as well as across strata of sex 
and kidney function are summarized in the Supplementary Methods 
and Supplementary Tables 4 and 5.

Assessment of QV contributions and driver variants
The investigation of the genetic architecture underlying gene–metabo-
lite associations and the prioritization of QVs according to their contri-
bution to the gene-based association signal were performed using the 
forward selection procedure from Bomba et al.15. First, for each QV v, 
the P value Pv is calculated by performing the burden test aggregating 
all QVs other than v. Second, for each QV v, the difference Δv between 
Pv and the total P value of the burden test including all QVs is calcu-
lated. Subsequently, QVs are ranked by the magnitude of Δv. QVs not 
contributing to the gene signal or even having an opposite effect can 
provide a negative Δv. Finally, burden tests are performed by adding 
the ranked QVs one after the other until the lowest P value is reached, 
starting with the greatest Δv. This identified a set of QVs that contained 
only variants that contributed most to the gene–metabolite association 
signal (that is, led to a stronger association signal) and did not contain 
variants that introduced noise (that is, neutral variants or those with a 
small or even opposite effect on metabolite levels). The resulting set 
of selected variants that led to the lowest possible association P value 
was designated ‘driver variants’ for the respective gene–metabolite 
association. Driver variants within a gene might differ for different 
associated metabolites.

Relation of QVs in SLC13A1 and SLC26A1 to musculoskeletal 
traits
WES and biomedical data of the UKB were used to investigate allelic 
series of functional QVs in SLC13A1 and SLC26A1 with hypothesized 
related clinical traits and diseases. We focused on SLC13A1 driver vari-
ants with experimental validation or that likely result in a severe con-
sequence (stop-gain, splicing) to select truly functional QVs. Among 
these, the stop-gain variant encoding p.Arg12*, for which a complete 
LoF has experimentally been validated40, the stop-gain substitution 
p.Trp48*, for which associations with decreased serum sulfate levels42 
and skeletal phenotypes41 were reported, and the missense variant 
encoding p.Arg272Cys, located in a splice region, were available in the 
UKB. For SLC26A1, we selected driver QVs for which reduced sulfate 
transport activity had previously been shown30, of which p.Leu384Pro, 
p.Ser358Leu and p.Thr185Met were available in the UKB. All 6 QVs 
passed the ‘90pct10dp’ QC filter, defined as at least 90% of all genotypes 
for a given variant, independent of variant allele zygosity, had a read 
depth of at least 10 (https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/ 
UKB_WES_AnalysisBestPractices.pdf).

Analyses were performed on the UKB Research Analysis Platform. 
Participants with all ancestries were included into the analysis but 
excluding strongly related individuals, defined as those that were 
excluded from the kinship inference process and those with ten or 
more third-degree relatives. After individual-level filtering, 468,292 
individuals remained for analyses. Of these, ten participants were 
homozygous for one of the six QVs and 7,280 persons were heterozy-
gous for at least one of the QVs. For these homozygous or heterozygous 
persons, we determined age- and sex-specific z scores of their quantita-
tive anthropometric measurements, enabling interpretation of their 
measurements compared with noncarriers of the same age and sex. 
Age- and sex-specific distributions were inverse normal transformed 
before calculating z scores.

The association between each of the six functional QVs with medi-
cal diagnoses defined by International Classification of Diseases ver-
sion 10 (ICD-10) codes based on UKB field 41202 (primary or main 
diagnosis codes across hospital inpatient records) was investigated. 
We selected musculoskeletal diseases (ICD-10 codes starting with ‘M’) 
and fractures and injuries (ICD-10 codes starting with ‘S’ and containing 
‘fracture’, ‘dislocation’ or ‘sprain’ terms). To avoid unreliable estimates, 
traits were restricted to those with at least two rare variant carriers 
among both individuals with and without disease. The association was 
examined using Fisher’s exact test under dominant modeling and Firth 
regression under additive modeling (‘brglm2’ R package75). We included 
sex, age at recruitment, sex × age and the first 20 genetic principal 
components (UKB field 22009) as covariates in the regression model. 
The association with quantitative anthropometric traits was assessed 
after inverse normal transformation via linear regression, additive 
genotype modeling and adjusting for the same covariates.

Gene-based tests for metabolite associations in the UK Biobank
We performed gene-based tests for significantly associated metabo-
lites available in the UKB to validate our findings using the same settings 
for analysis as those in our study. Because metabolite levels in the UKB 
were quantified by Nightingale Health’s metabolic biomarker platform 
focusing on lipids, only two (histidine and phenylalanine) of the 122 
significantly associated plasma metabolites were available.

Histidine and phenylalanine values (UKB data fields 23463 and 
23468) were inverse normal transformed. Sample and variant QC was 
performed, and covariates were included as described in the previous 
paragraph. A total of 260,000 individuals were available for analysis. 
Association analysis for the two identified gene–metabolite pairs, 
histidine and HAL as well as phenylalanine and PAH, was performed 
based on burden tests as implemented in REGENIE version 3.3 in two 
steps using the HI_mis mask, selecting only QVs that were present in the 
GCKD study to ensure reproducibility of rare variant effects between 
the studies.

Setup of the whole-body model and mapping
The sex-specific and organ-resolved WBM covers 13,543 unique meta-
bolic reactions and 4,140 unique metabolites based on the generic 
genome-scale reconstruction of human metabolism, Recon3D23, and 
adequate physiological and coupling constraints22,24.

Of all observed significant gene–metabolite pairs from the GCKD 
study, 51 genes and 69 metabolites could be mapped onto Recon3D. 
For 36 of 51 genes, their associated metabolites could be mapped, 
resulting in 69 unique gene–metabolite pairs. To investigate perturba-
tions in gene G, we first identified all reactions RG = {rG1 ,… , rGn } of the 
corresponding encoded enzymes or transporters in the WBM76. We 
included those genes (27 of 36) in the generation of virtual IEMs that 
were exclusively causal for a non-empty set of reactions (that is, for a 
gene G, associated with reactions RG = {rG1 ,… , rGn }, there did not exist 
a gene H that was associated with any reaction of RG) and metabolites 
with urinary excretion reactions, leading to the exclusion of SLC22A7 
and SULT2A1.
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In silico knockout modeling via linear programming
Knockout simulations were based on maximizing the flux of the excre-
tion or demand reaction of the metabolite of interest M under different 
conditions in a steady state setting (Sv = 0), where S is the stoichio-
metric matrix (rows, metabolites; columns, reactions), and v is the 
flux vector through each reaction, adhering to specific constraints 
(vl ≤ v ≤ vu)22,77:

max
vvv

cccTvvv,

subject toSvSvSv = 000,

vvvlll ≤ vvv ≤ vvvuuu.

(1)

For simulating a wild-type model for gene G, we solved the linear 
programming (LP) problem stated in equation (1), choosing the linear 
objective as the sum of all corresponding fluxes of reactions in RG:

SG ∶= max
n
∑
k=1

vGk ,

subject toSvSvSv = 000,

vvvlll ≤ vvv ≤ vvvuuu.

(2)

First, we checked whether SG > 10−6, a criterion implemented in the 
function checkIEM_WBM of the PSCM toolbox for deciding whether the 
corresponding reactions could carry any flux22,78. All reactions except 
the TMLHE-associated reactions passed this criterion.

Next, we maximized the flux of two key reactions: the urine excre-
tion reaction (for example, EXM [u]) and the created unbounded 
demand reaction (for example, DMM [bc]), designed to reflect accumu-
lation in the blood compartment. First, we unbounded the upper bound 
of the urine excretion reaction. Next, we maximized the corresponding 
fluxes of metabolite M as the LP problem stated in equation (1) under 
the additional constraint that ∑n

k=1vGk = SG, providing the maximal urine 
excretion and the maximal flux into blood given the constraint setting. 
Finally, to simulate the complete LoF, we blocked all reactions in all 
organs catalyzed by gene G by setting vG1 = … = vGn = 0.  We derived 
maximum fluxes as in the wild-type model. Subsequently, we tested 
whether the knockout resulted in an increase, a decrease or no change 
in EXM [u] and DMM [bc] for each mapped gene–metabolite pair that 
was significant in the GCKD cohort.

From the initial 36 genes mapped onto Recon3D, 24 genes and 
their mapped metabolites fulfilled all criteria (exclusively causal, 
reactions of the genes carry flux, urinary excretion reaction present), 
leading to 60 modeled gene–metabolite pairs. After curation of the 
male and female models, 26 genes (TMLHE and KYAT1 added) and 67 
gene–metabolite pairs could be computed (Supplementary Methods).

LP simulations were carried out in Windows 10 using MATLAB 
2021a (MathWorks) as the simulation environment, ILOG CPLEX 
version 12.9 (IBM) as the LP solver, the COBRA Toolbox version 3.4  
(ref. 78) and the PSCM toolbox22.

Microbiome personalization of whole-body models
Microbiome-personalized WBMs were generated by creating commu-
nity models based on the genome-scale reconstructions of microbes 
in the AGORA1 resource79,80. Models have been shown to accurately 
reflect aspects of the fecal host metabolome80,81. Briefly, from microbe 
identification and relative abundance data of a metagenomic sample, 
genome-scale reconstructions of the identified microbes are joined 
together and connected via a lumen compartment, where they can 
exchange metabolites to form a microbial community82,83. Each micro-
bial community model is then integrated in the WBM by connecting the 
microbiota lumen compartment to the large intestinal lumen of the 
WBM. Microbial community models (n = 616) were based on publicly 
available metagenomics data from Yachida et al.32 and then embedded 
into the male WBM to form 616 personalized WBMs.

In silico knockout modeling using quadratic programming
While maintaining the same conditions as outlined in equation (1), 
rather than maximizing a linear objective, we minimized a quadratic 
objective for each personalized WBM:

min
vvv

1
2
vvvTQvQvQv,

subject toSvSvSv = 000,

vvvlll ≤ vvv ≤ vvvuuu.

(3)

Here, Q is a diagonal matrix, with 10−6 on its diagonal, a value rec-
ommended in the COBRA Toolbox78. Because of convexity attributes, 
equation (3) allows for calculation of a unique flux distribution. For 
each solution v*, we obtained the corresponding urine excretion reac-
tions of the measured and mapped metabolites. For knockout simula-
tions, the associated reactions of gene G were set to zero 
(vG1 = … = vGn = 0). Then, equation (3) was solved if possible. An optimal 
quadratic programming (QP) solution could be computed for 582 
wild-type models, 590 KYNU-knockout WBMs and 588 PAH-knockout 
WBMs, which led to 569 paired QP–KYNU solutions and 567 paired 
QP–PAH solutions. We analyzed urine secretion fluxes for 257 metabo-
lites covered in the GCKD urine metabolome data and 272 metabolites 
covered in the GCKD plasma metabolome data that had non-zero flux 
values. For KYNU, the urine compartment was analyzed, as biomarker 
quantification for the corresponding IEM is done in urine. Analogously 
for PAH, the blood metabolome data were analyzed as the clinically 
relevant compartment. The QP simulations were carried out using the 
high-performance computing facility, called the Brain-Cluster, of the 
University of Greifs-wald, employing MATLAB 2019b (MathWorks), 
ILOG CPLEX version 12.10 (IBM) as the quadratic programming solver 
and the COBRA Toolbox version 3.4 (ref. 78).

Statistical analysis of the in silico simulation results
The Fisher–Freeman–Halton test was used to determine significance 
when comparing the in vivo and in silico signs from LP modeling. Sta-
tistical analysis of the QP solutions was conducted based on the paired 
wild-type and knockout fluxes via fixed-effect linear regression for panel 
data84. We used ln(urine secretion flux) as the response variable, the 
knockout status as the sole predictor (wild type versus knockout) and 
the personalized microbiome as a fixed effect. Significance thresholds 
were set to 0.05/257 (KYNU) and 0.05/272 (PAH). Importantly, the entire 
variance in the regression models had two sources: (1) the knockout and 
(2) the microbiome personalization. Significance testing of the in silico 
regression coefficient of the knockout variable therefore delivers a test 
of whether the knockout explains substantial amounts of variance in 
comparison to the variance induced by randomly sampled microbiome 
communities. The in silico regression coefficients were then correlated 
with the burden-derived observed regression coefficients of gene–
metabolite associations from the GCKD study, and significance was 
determined using the standard test for Pearson correlations.

Experiments on transport activity of SLC6A19
Generation of cells. Human SLC6A19 (NM_001003841.3 → NP_0010
03841.1) and human CLTRN (TMEM27) (NM_020665.6 → NP_065716.1) 
cDNA was synthesized at Life Technologies Gene Art and cloned into 
a T-REx inducible expression vector. Both vectors were transfected 
into CHO T-REx cells and selected with neomycin and hygromycin. 
Mock cells were made by transfecting with only the TMEM27 vector 
and selection using hygromycin. Stable pools were then selected by 
measuring doxycycline-inducible uptake of neutral amino acids (for 
example, isoleucine) by measuring changes in membrane potential 
using the FLIPR Tetra system. The selected stable cell pools were then 
serially diluted to generate single-cell clones, which were subsequently 
selected based on function using the FLIPR assay and hSLC6A19 and 
hTMEM27 expression using qPCR.
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FLIPR membrane potential assay. CHO T-REx cells stably express-
ing doxycycline-inducible hSLC6A19 and hTMEM27 were seeded in a 
384-well plate and incubated overnight with 1 µg ml−1 doxycycline. The 
next day, cells were washed and then incubated with Tyrode’s buffer 
(sodium free) with FMP-Blue-Dye, which is a membrane potential 
dye, for 60 min. The cells were then incubated with standard Tyrode’s 
buffer (130 mM NaCl) with and without cinromide for 10 min before 
incubation with standard Tyrode’s buffer alone or with eight increas-
ing concentrations of methionine sulfone and isoleucine, both with 
maximum concentrations of 30 mM. The FLIPR Tetra system was used 
to read FMP-Blue-Dye fluorescence as a measurement of membrane 
depolarization as a result of substrate-driven electrogenic net influx 
of Na+. Data were analyzed and represented in two ways: (1) for data 
comparison with the mock cell line, transport activity was presented 
as fold over non-substrate-driven signal with the formula (fluorescence 
signal − median of fluorescence signal with no substrate)/(median of 
fluorescence signal with no substrate); and (2) for data comparison with 
cinromide, transport activity was presented as a percent of maximum 
substrate-driven fluorescence signal with the formula 100 × (fluo-
rescence signal − median of fluorescence signal with no substrate)/
(median of fluorescence signal with substrate).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics of all significant gene–metabolite associations 
based on burden tests using two masks as well as all involved QVs with 
annotations are available in Supplementary Tables 3 and 7, respectively. 
Genotype, metabolite, protein and phenotype data were obtained from 
the UKB (https://www.ukbiobank.ac.uk/) and the GCKD study (https://
www.gckd.org/). This research has been conducted using the UKB 
resource under application number 64806. The following external data 
resources were used: the GRCh38 reference genome (https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_
GRCh38/), alignment of reads; the GTEx Project (https://gtexportal.
org/home/), investigation of gene expression and QTLs across tissues; 
the AstraZeneca PheWAS Portal (https://azphewas.com/), search for 
gene- and variant-level associations of detected genes and QVs; the 
OMIM catalog (https://www.omim.org/), query for monogenic dis-
orders and traits related to identified genes; the Genomics England 
PanelApp (https://panelapp.genomicsengland.co.uk/panels/467/ 
version 4.0), search for known IEMs related to the detected genes; the 
Open Targets Platform (https://platform.opentargets.org/), search 
for drug target status and the corresponding indication for identified 
genes; the ClinVar archive (https://www.ncbi.nlm.nih.gov/clinvar/), 
query for clinical significance and the corresponding trait or disease 
of detected QVs; microbiome abundance data (https://static-content.
springer.com/esm/art%3A10.1038%2Fs41591-019-0458-7/MediaOb-
jects/41591_2019_458_MOESM3_ESM.xlsx) and the AGORA resource 
of genome-scale microbial reconstructions (https://github.com/Vir-
tualMetabolicHuman/AGORA/), creating in silico microbiome models; 
organ-resolved, sex-specific whole-body metabolic reconstructions for 
the male and female WBM Harvey_1_04b and Harvetta_1_04c (https://
www.digitalmetabolictwin.org/copy-of-reconstructions), creating 
(personalized) WBMs; the Virtual Metabolic Human database (https://
vmh.life/), identifying reactions carried out by corresponding proteins.

Code availability
Analyses were performed using publicly available software: for vari-
ant and gene annotation, VEP version 101 (https://www.ensembl.org/
info/docs/tools/vep/index.html) with plugins REVEL version 2020-5, 
CADD version 3.0, LOFTEE version 2020-8, dbNSFP version 4.1a; for rare 
variant aggregation testing (burden test), seqMeta R package version 

1.6.7 (https://rdrr.io/cran/seqMeta/); for GWAS of common variants 
and metabolites to compare with rare variant results, REGENIE version 
2.2.4 (https://rgcgithub.github.io/regenie/); for Firth regression, the 
brglm2 R package (https://cran.r-project.org/web/packages/brglm2/
index.html); for gene-based testing in the UKB, REGENIE version 3.3; 
for creating in silico microbiome models and whole-body modeling, 
COBRA Toolbox version 3.4 (https://opencobra.github.io/cobratool-
box/stable/index.html); for in silico whole-body LP modeling, the stoi-
chiometrically constrained modeling (PSCM) toolbox (https://github.
com/opencobra/cobratoolbox/tree/master/src/analysis/wholeBody/
PSCMToolbox); source codes for personalized whole-body modeling, 
constraint settings, creating microbiome community models, person-
alized WBMs, performing curation steps and simulations for in silico LP 
and QP modeling (https://github.com/SysPsyHertel/CodeBase/tree/
main/Scripts_Scherer_WBM); for comparing in silico gene knockouts 
with linear regressions for panel data, the plm R package version 2.6-4 
(https://cran.r-project.org/web/packages/plm); for general coding, 
R (versions 3.6.3 and 4.0.5) was used. Detailed information on used 
software is also provided in the respective sections of the Methods.
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Extended Data Fig. 1 | Comparison of gene-metabolite associations based on 
the main analysis masks LoF_mis/HI_mis with a LoF only mask in the GCKD 
study. (a) Effect size of gene-metabolite associations using burden tests based 
on the LoF_mis/HI_mis masks (y-axis) vs. those based on the LoF mask (x-axis) 
(Supplementary Table 4). Error bars represent the standard errors of the  
effect sizes. Symbol shape indicates the corresponding mask. Color reflects  
the comparison P-value between effect sizes based on the test statistic  
Z (see Supplementary Methods), indicating that the effect sizes between the 
LoF_mis/HI_mis and the LoF mask differ significantly (P-value < 0.05/178 adjusted 

for the number of associations available based on the LoF mask) just for one 
association of DPYD with uracil. Gray symbols reflect the 57 gene-metabolite 
pairs for which no gene-based test could be performed based on the LoF mask. 
Gray lines represent the identity (dotted) and the linear regression line (dashed).  
(b) -log10(P-value) of gene-metabolite associations using burden tests based 
on the LoF_mis/HI_mis masks (y-axis) vs. those based on the LoF mask (x-axis). 
Symbol shape indicates the corresponding mask. Color reflects the availability 
of gene-metabolite pairs based on the LoF mask. The gray dotted line represents 
the identity line.
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Extended Data Fig. 2 | Comparison of P-values of significant gene-metabolite 
associations between burden and SKAT tests in the GCKD study. The -log10 
(P-value) of gene-metabolite associations based on the burden test (x-axis) vs. 
those based on the SKAT test (y-axis) (Supplementary Table 4). Symbol shape 

indicates the corresponding mask. Color reflects the effect size provided by the 
burden test. Gray lines represent the identity (dotted) and the linear regression 
line (dashed).
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Extended Data Fig. 3 | Comparison of effect sizes across strata of eGFR and 
sex in the GCKD study. (a) Effect size of gene-metabolite associations among 
individuals with eGFR >45 mL/min/1.73 m2 (N = 2,528, x-axis) vs. those with 
eGFR <=45 mL/min/1.73 m2 (N = 2,185, y-axis) (Supplementary Table 5). Error 
bars represent the standard errors of the effect sizes. Symbol shape indicates 
the corresponding matrix. Color reflects the comparison P-value between 
both strata, indicating that effect sizes between individuals with high and low 
eGFR did not significantly differ for any gene-metabolite association, defined 
as P-value < 0.05/128 for plasma and P-value < 0.05/107 for urine. Gray lines 
represent the identity (dotted) and the linear regression line (dashed).  

(b) The effect size of gene-metabolite associations among men (N = 2,837, x-axis) 
and women (N = 1,876, y-axis). Error bars represent the standard errors of the 
effect sizes. Symbol shape indicates the corresponding matrix. Color reflects 
the comparison P-value between both strata. Gene-metabolite associations with 
effect sizes that significantly differ between men and women (P-value < 0.05/128 
for plasma or <0.05/107 for urine) are labeled and are exclusively observed for 
the X-chromosomal TMLHE gene, where hemizygous men show more extreme 
metabolite levels than heterozygous women. Gray lines represent the identity 
(dotted) and the linear regression line (dashed).
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Extended Data Fig. 4 | Driver variants show a more severe impact on 
metabolite levels compared with non-drivers in terms of consequence and 
effect size. (a) The bar plot represents the absolute frequency (y-axis) of each 
of the QVs’ consequences with their proportions noted next to them, separately 
for driver and non-driver variants (x-axis). Whereas driver variants contain more 
splicing, stop-gain and frameshift variants, the proportion of missense variants 
is higher among non-driver variants (Fisher’s exact test: P-value = 1.3e-6). (b) 
The swarm plot shows differences in absolute effect sizes for QVs (y-axis) across 
the five different consequence classes (x-axis). The color reflects the variant 
status (driver versus non-driver variant). Horizontal lines represent the median 
of the absolute effect sizes separately for driver and non-driver variants. The 
median effect of driver variants on metabolite levels increases when ordering 

the consequence classes with respect to severity (missense, start/stop-lost, 
frameshift, stop-gain, splicing). (c) The swarm plot shows differences in absolute 
effect sizes for QVs (y-axis) across groups of variants by minor allele count (MAC) 
bins (x-axis). Color reflects variant status (driver versus non-driver). Horizontal 
lines represent the median of the absolute effect sizes separately for driver and 
non-driver variants. The median effect of driver variants on metabolite levels 
increases with decreasing MAC bin, supporting that ultra-rare variants tend to 
have larger effects than those observed more frequently. In case one gene was 
significantly associated with levels of more than one metabolite, only the QVs 
from the strongest gene-metabolite associations are included (for only one 
matrix and only one mask) in each panel, to prevent counting variants multiple 
times, resulting in 1,885 QVs that were included in each panel.
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Extended Data Fig. 5 | Comparison and integration of rare and common 
variant association signals with metabolite levels within the same locus. 
(a) The scatter plot shows the absolute effect size (y-axis) of association signals 
with metabolite levels based on aggregating rare variants within a gene using 
burden tests and based on the common variant with the lowest significant 
individual association P-value within the same locus (±500 kb around the gene) 
under additive modeling (Supplementary Methods), across different cumulative 
minor allele frequencies (cMAF, for aggregated rare variants) and minor allele 
frequencies (MAF, for common variants) (x-axis). Colors indicate whether the 
corresponding association signal is based on shared rare or common variants or 
whether it is unique to the rare variant screen. The shape represents the matrix 

of the corresponding metabolite. The absolute effect size tends to increase with 
decreasing MAF/cMAF. (b) Effect size of 157 gene-metabolite associations with 
conditioning on associated common variants within the gene region (x-axis) vs. 
without conditioning on common variants (y-axis) (Supplementary Table 9). 
Error bars represent the standard errors of the effect sizes. Symbol shape 
indicates the corresponding matrix. Color reflects the comparison P-value 
between both analyses, indicating that effect sizes between (un)conditional 
analyses did not significantly differ for any gene-metabolite association, defined 
as P-value < 0.05/157. Gray lines represent the identity (dotted) and the linear 
regression line (dashed).
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Extended Data Fig. 6 | Metabolite levels by QV carrier status for significantly 
associated genes with more than one homozygous carrier. Urine metabolite 
levels after inverse normal transformation and covariate-adjustment are shown 
on the y-axis, among non-carriers and heterozygous and homozygous carriers of 
QVs in the HI_mis mask on the x-axis. Symbol color and shape indicate a variant’s 
carrier status and consequence, respectively. Carriers of multiple heterozygous 

QVs are denoted by an asterisk. Boxes range from the 25th to the 75th percentile of 
metabolite levels, the median is indicated by a line, and whiskers end at the last 
observed value within 1.5*(interquartile range) away from the box. The median 
levels of ribonate (N = 4,618) (a), glycocholate (N = 3,753) (b), and (N(1) + N(8))−
acetylspermidine (N = 4,619) (c) are all more extreme for the homozygous than 
the heterozygous carriers, reflecting a dose-response effect.
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Extended Data Fig. 7 | Illustration of microbiome-personalized whole-body
models of in silico knockout modeling. (a) Generation of whole-body models
(WBMs) of human metabolism: Generic reconstructions of human metabolism of 
Recon3D are used and pruned by organ-specific data and anatomical
information, to form differentiated, organ-specific male and female models of 
human metabolism. The models are derived from Thiele et al. 2020, PMID:
32463598. (b) Identify gene-reaction relations: For each GeneG, it is essential to 
identify every reaction carried out by the corresponding enzyme/transporter
across all organs. The corresponding reactions are used for 
gene-knockout modeling in the linear programming (LP) and quadratic
programming (QP) knockout methodologies. (c) Generation of 
microbiome-personalized whole-body models: Utilizing abundance-data of 
metagenomic samples, personalized gut microbiome community models are
generated via combining the individually present genome-scale reconstructions
of microbes in a common lumen compartment. The lumen compartment is then
integrated with the whole-body model, thereby creating an individualized
host-microbiome model. (d) LP gene-knockout modeling: The system of mass
balance equations at steady state, as defined by the stoichiometric matrix S and S
constraints for each flux, forms a convex space of possible solutions for a vector v
of fluxes of a WBM. The sum of fluxes of reactions inRG (expressed as G

) is maximized, and this maximal value is subsequently

imposed as a constraint in the wild-type model. Setting all fluxes corresponding
to the reactions inRG to zero forms the knockout model. The maximum flux of a G

biomarker vGM is computed in both models and compared with each other. M (e) QP
gene-knockout modeling: Each microbiome-personalized whole-body model
spans up its individual wild-type solution space under steady state and constraint
settings. The solution of the quadratic objective of the flux vector under steady
state and constraints for each reaction of the WBM forms the wild-type solution
for Harvey/Harvetta, denoted as . Setting each flux of 
reaction inRG to zero and repeating the procedure yields the QP solution afterG

knockout, . The unique QP solutions across all samples allows for screening
for differences within each reaction of the WBM to find possible biomarkers, and
for the computation of effect sizes for each reaction. The visualization of generic
reconstructions of Recon3D of Extended Data Fig. 7 was generated using a 
screenshot of ReconMap3 (https://www.vmh.life/#reconmap) and further edited
with Inkscape (https://inkscape.org/). The 3D visualizations in Extended Data
Fig. 7 and Extended Data Fig. 7 were produced using Python (https://www.
python.org/), while the 2D images with the coordinate systems were created
using LaTeX (https://www.latex-project.org/).The remaining subfigures, along 
with the final composition of the complete figure, were created using BioRender.
com, integrating all previously mentioned elements. Figure created with
BioRender.com.
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Extended Data Fig. 8 | Elevated urine levels of 3-hydroxykynurenine and 
xanthurenate are a readout of impaired KYNU function: converging evidence 
from three approaches. Three panels are shown for 3-hydroxykynurenine 
(a) and xanthurenate (b) each: the left panel represents inverse-normal 
transformed, covariate-adjusted urine levels of the respective metabolite (y-axis) 
among non-carriers and carriers of QVs in KYNU (x-axis). Units correspond 
to standard deviations. The boxes range from the 25th to the 75th percentile of 
metabolite levels, the median is indicated by a line, and whiskers end at the last 
observed value within 1.5*(interquartile range) away from the box. The middle 
panel represents the distribution of the ln-transformed urinary secretion flux 
of the respective metabolite in mmol/day into urine (y-axis) from min-norm 

simulations based on solutions of 569 microbiome-personalized whole-body 
models without and with simulated knockout of KYNU (x-axis). The right panel 
shows multiple reaction monitoring (MRM, m/z 225.0 → 162.1, 206.0 → 160.1) 
chromatograms of the diluted urines of a child with a homozygous, autosomal-
recessively inherited loss of KYNU function (patient), the mother and the father. 
The signals at 3.9 min (3-hydroxykynurenine) and 9.5 min (xanthurenate) are 
strongly enhanced in the patient sample. Chromatograms are normalized to 
urine creatinine concentrations; y-axes are normalized to the intensity of the 
signals in the patient’s chromatograms. All three independent approaches arrive 
at the conclusion that elevated levels of 3-hydroxykynurenine and xanthurenate 
in urine are a readout of impaired KYNU function.
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successive aggregation of the most influential QVs in SLC26A1 with respect 
to the forward selection procedure (Bomba et al, PMID: 35568032, Methods) 
based on burden tests for the mask LoF_mis. The number of QVs aggregated 
for burden testing is shown on the x-axis. Symbol shape indicates the variant’s 
consequence. The symbol color and size reflect the effect size and the P-value 

of the variant based on its single-variant association test. The gray dashed lines 
represent the significance threshold (-log10(0.05)), the total -log10(P-value) of the 
aggregate variant test including all QVs in SLC26A1 for the mask LoF_mis, and the 
-log10(lowest P-value) that can be reached by aggregating only the driver variants 
from the forward selection procedure. Summary statistics shown on the right 
refer to the burden tests aggregating all QVs and only driver variants. For the 
latter, a clear association of SLC26A1 with plasma sulfate levels is observed.
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p.L348P

m
usculoskeletaltraits

fractures

1 3 10 30

M65.87 Other synovitis and tenosynovitis (Ankle and foot) (2)
M31.8 Other specified necrotising vasculopathies (2)

M81.09 Postmenopausal osteoporosis (Site unspecified) (2)
M21.27 Flexion deformity (Ankle and foot) (2)

M81.95 Osteoporosis, unspecified (Pelvic region and thigh) (2)
M46.9 Inflammatory spondylopathy, unspecified (2)

M48.56 Collapsed vertebra, not elsewhere classified (Lumbar region) (3)
M06.34 Rheumatoid nodule (Hand) (2)

M67.1 Other contracture of tendon (sheath) (2)
M81.98 Osteoporosis, unspecified (Other) (5)

M79.83 Other specified soft tissue disorders (Forearm) (2)
M96.1 Postlaminectomy syndrome, not elsewhere classified (2)

M51.0 Lumbar and other intervertebral disk disorders with myelopathy (10)
M16.7 Other secondary coxarthrosis (4)

M21.07 Valgus deformity, not elsewhere classified (Ankle and foot) (2)
M47.90 Spondylosis, unspecified (Multiple sites in spine) (3)

M62.8 Other specified disorders of muscle (2)
M70.46 Prepatellar bursitis−Lower Leg (2)

M72.27 Plantar fascial fibromatosis−Ankle/Foot (2)
M32.9 Systemic lupus erythematosus, unspecified (2)

M50.3 Other cervical disk degeneration (4)
M67.8 Other specified disorders of synovium and tendon (6)

M50.0 Cervical disk disorder with myelopathy (7)
M54.99 Dorsalgia, unspecified (Site unspecified) (11)

M51.1 Lumbar and other intervertebral disk disorders with radiculopathy (46)
M17.1 Other primary gonarthrosis (19)

S42.70 Multiple fractures of clavicle, scapula and humerus (closed) (2)
S52.70 Multiple fractures of forearm (closed) (2)
S52.51 Fracture of lower end of radius (open) (2)
S82.31 Fracture of lower end of tibia (open) (2)

S32.70 Multiple fractures of lumbar spine and pelvis (closed) (3)
S52.80 Fracture of other parts of forearm (closed) (2)

S52.5 Fracture of lower end of radius (8)

Odds ratio (95% CI)

2
3
4
5
6
7

−log10(P−value)

m
usculoskeletaltraits

fractures

1 3 10 30

M43.12 Spondylolisthesis (Cervical region) (2)
M84.04 Malunion of fracture (Hand) (2)

M41.86 Other forms of scoliosis (Lumbar region) (2)
M24.11 Other articular cartilage disorders (Shoulder region) (2)

M79.83 Other specified soft tissue disorders (Forearm) (3)
M77.91 Enthesopathy, unspecified (Shoulder region) (2)

M84.13 Nonunion of fracture [pseudarthrosis] (Forearm) (4)
M65.44 Radial styloid tenosynovitis [de Quervain] (Hand) (2)

M65.9 Synovitis and tenosynovitis, unspecified (3)
M65.14 Other infective (teno)synovitis (Hand) (2)

M25.31 Other instability of joint (Shoulder region) (2)
M48.09 Spinal stenosis (Site unspecified) (2)
M19.96 Arthrosis, unspecified−Lower leg (3)

M16.7 Other secondary coxarthrosis (4)
M89.97 Disorder of bone, unspecified (Ankle and foot) (7)

M54.96 Dorsalgia, unspecified (Lumbar region) (7)
M87.95 Osteonecrosis, unspecified (Pelvic region and thigh) (3)

M70.4 Prepatellar bursitis (4)
M75.8 Other shoulder lesions (14)

M23.20 Derangement of meniscus due to old tear or injury (Multiple sites) (21)
M43.16 Spondylolisthesis (Lumbar region) (11)

M23.23 Derangement of meniscus due to old tear or injury (21)

S12.90 Fracture of neck, part unspecified (closed) (3)
S93.1 Dislocation of toe(s) (3)

S92.41 Fracture of great toe (open) (2)
S92.10 Fracture of talus (closed) (2)

S82.3 Fracture of lower end of tibia (3)
S13.4 Sprain and strain of cervical spine (3)

S63.6 Sprain and strain of finger(s) (4)
S82.21 Fracture of shaft of tibia (open) (3)

S52.01 Fracture of upper end of ulna (open) (2)
S43.1 Dislocation of acromioclavicular joint (2)

S42.2 Fracture of upper end of humerus (3)
S72.10 Pertrochanteric fracture (closed) (15)

Odds ratio (95% CI)

2

3

4

5

6

−log10(P−value)

het + NaS1 p.W48*
otherwise●

Extended Data Fig. 10 | Impact of different genotypes encoding NaS1 
p.Arg12* and SAT1 p.Leu348Pro on height and musculoskeletal traits and 
fractures. The boxplots on the left show differences in age- and sex-specific 
z-scores for standing height (y-axis, Methods) across individuals in the UKB 
heterozygous and homozygous for the NaS1 p.Arg12*-encoding allele (a) and 
for the SAT1 p.Leu348Pro-encoding allele (b) (x-axis). The boxes range from 
the 25th to the 75th percentile of z-scores, the median is indicated by a line, and 
whiskers end at the last observed value within 1.5*(interquartile range) away from 
the box. Heterozygous individuals carrying only NaS1 p.Arg12* (N = 2,460) and 
SAT1 p.Leu348Pro (N = 3,096), respectively, are depicted in the ‘het’ category. 
Individuals carrying a variant at two different DNA positions are shown in the 
category ‘het + X’ (N = 15 for NaS1 p.Arg12* and N = 20 for SAT1 p.Leu348Pro). 

For the NaS1 p.Arg12* stop-gain variant, multi-heterozygous individuals, who 
additionally carry the NaS1 p.Trp48* stop-gain variant, are indicated with 
differently shaped symbols, emphasizing that carrying two stop-gain variants 
in NaS1 seems to lead to a more severe phenotype. The forest plots on the right 
show associations between the NaS1 p.Arg12* (c) and SAT1 p.Leu348Pro (d) 
carrier status with musculoskeletal diseases and fractures from the UKB (N ≥ 
468,279), for which at least 2 carriers were identified among individuals with and 
without disease (y-axis). Number in parentheses indicate the number of carriers 
with a given disease. Odds ratios and their corresponding 95% confidence 
interval (x-axis) are based on Firth regression (Methods). The symbol color 
reflects the -log10(P-value). Only associations with P-value < 0.05 are shown.

http://www.nature.com/naturegenetics


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Anna Köttgen, Johannes Hertel

Last updated by author(s): Sep 27, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The data for the GCKD study was collected using the software Askimed (https://www.askimed.com/).

Data analysis - Software-tools for processing of whole-exome sequencing data: Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.0.7 at Astra Zeneca’s 
Centre for Genomics Research 
Software-tools for QC of whole-exome sequencing data: KING --kinship v2.2.3 
- Software-tools for variant and gene annotation: Variant Effect Predictor (VEP) v101 with plugins REVEL v2020-5, CADD v3.0, LoFtee v2020-8, 
dbNSFP v4.1a, gnomAD v 2.1 
- Software-tools for rare variant aggregation testing in the GCKD study: seqMeta R-package v1.6.7 
- Software-tools for GWAS of metabolites to compare with rare variant results: REGENIE v2.2.4 
- Software-tools for Firth regression: R-package "brglm2" 
- Software-tools for gene-based testing in the UKB: REGENIE v3.3 
- Software-tools for in silico whole-body modeling: COBRA Toolbox v3.4 (https://opencobra.github.io/cobratoolbox/stable/index.html), Matlab 
2019b and 2021a, Ilog Cplex v12.9 and v12.10, physiologically and stoichiometrically constrained modeling (PSCM) toolbox (https://
github.com/opencobra/cobratoolbox/tree/master/src/analysis/wholeBody/PSCMToolbox), R-package "plm" for regression of panel data. 
- Source codes for personalized whole-body modelling: https://github.com/SysPsyHertel/CodeBase/tree/main/Scripts_Scherer_WBM 
- Data bases, publicly available: Ensembl VEP tool, GTEx Project, Ensembl Biomart, AstraZeneca PheWAS Portal, OMIM catalog, Genomics 
England PanelApp v4.0, Open Targets Platform, ClinVar archive, Virtual Metabolic Human database 
- Miscellaneous: R v3.6.3 and v4.0.5 
References or website addresses are provided in the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data preparation, quality control, data modeling and statistical analyses of the data presented in this manuscript were performed at the Institute of Genetic 
Epidemiology, Medical Center - University of Freiburg, Freiburg (Germany) and at the Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 
Greifswald (Germany), unless otherwise mentioned in the Methods. 
The summary statistics of all significant gene-metabolite associations based on burden tests using two masks as well as all involved QVs with annotations are 
available in Supplementary Table 3 and Supplementary Tables 7a, b, respectively. Genotype, metabolite, protein and phenotype data were obtained from the UKB 
(https://www.ukbiobank.ac.uk/) and the GCKD study (https://www.gckd.org/). This research has been conducted using the UK Biobank Resource under Application 
Number 64806. 
The following external data sources were used: GRCh38 reference genome (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/
GCA_000001405.15_GRCh38/): alignment of reads; GTEx Project (https://gtexportal.org/home/): investigation of gene expression and QTLs across tissues; 
AstraZeneca PheWAS Portal (https://azphewas.com/): search for gene- and variant-level associations of detected genes and QVs; OMIM catalog (https://
www.omim.org/): query for monogenic disorders and traits related to identified genes; Genomics England PanelApp (https://panelapp.genomicsengland.co.uk/
panels/467/ version v4.0): search for known IEM related to the detected genes; Open Targets Platform (https://platform.opentargets.org/): search for drug target 
status and corresponding indication for identified genes; ClinVar archive (https://www.ncbi.nlm.nih.gov/clinvar/): query for clinical significance and corresponding 
trait/disease of detected QVs. Microbiome abundance data (https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-019-0458-7/
MediaObjects/41591_2019_458_MOESM3_ESM.xlsx) and the AGORA resource of genome-scale microbial reconstructions (https://github.com/
VirtualMetabolicHuman/AGORA/): Creating in silico microbiome models; Organ-resolved, sex-specific whole-body metabolic reconstructions, Harvey_1_04b and 
Harvetta_1_04c, which are updated versions of the current public models v1_03c (https://www.digitalmetabolictwin.org/copy-of-reconstructions): Creating 
(personalized) whole-body models; Virtual Metabolic Human database (https://vmh.life/): identifying reactions carried out by corresponding genes.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Persons of both sexes were included in all analyses. In the context of this study, biological sex was used.  X chromosomal 
genetic variants were included in all analyses.

Population characteristics Please see Supplementary Table 1: 
Characteristics of the GCKD study overall: N=4,737 
Mean age (SD), years: 60.26 (11.88) 
Female sex, % (n): 39.75% (1883) 
Mean BMI (SD), kg/m²: 29.8 (5.97) 
Mean systolic blood pressure (SD), mm Hg: 139.57 (20.38) 
Mean Hemoglobin A1c (SD), mmol/mol: 45.82 (11.29) 
Diabetes, % (n): 35.61% (1687) 
Mean eGFR (SD), ml/min/1.73m²: 49.42 (18.21) 
Median urinary albumin-to-creatinine ratio (IQR), mg/g: 49.28 (9.3-375.78) 
Mean albumin (SD), g/l: 38.33 (4.25)

Recruitment The GCKD study is an ongoing prospective observational cohort study of participants with CKD. Between 2010 and 2012, 
5,217 adult persons with CKD under regular care by nephrologists provided written informed consent and were enrolled into 
the study at nine participating study centers across Germany (see below). Participants were included if they met inclusion 
criteria, but - as in all epidemiological studies - it cannot be excluded that eligible persons with many or severe comorbidities 
were less likely to participate than other eligible participants. For this project, all participants with available plasma or urine 
collected at the baseline visit and with available whole-exome sequencing data were selected (N=4,737).

Ethics oversight The GCKD Study was registered in the national registry for clinical studies (DRKS 00003971) and approved by all local ethic 
committees of the nine participating centers (Universities or Medical Faculties of Aachen, Berlin, Erlangen, Freiburg, 
Hannover, Heidelberg, Jena, München, Würzburg).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We included all 4,737 GCKD participants with available plasma or urine metabolite quantification and with available whole-exome sequencing 
data. The entire sample was therefore utilized, and no selection was made.

Data exclusions Metabolites were excluded for high proportions of missingness (>93%). Samples were excluded if no high-quality whole-exome sequencing 
data was available. This is clearly described in the methods.

Replication Replication of gene-metabolite associations based on aggregating rare damaging variants is difficult because of the non-availability of the 
same rare damaging variant in an independent cohort. 
Therefore, we evaluated reproducibility of our findings by different means : 
- We compared our identified gene-metabolite associations to those from 8 published studies that focused on rare variant aggregation testing 
of metabolite levels. For one published study of the plasma metabolome (based on MS-quantification) that made summary statistics 
accessible we compared effect sizes on the variant- and gene-level. 
- For overlapping metabolites, we conducted gene-based tests in the UKB using the same variants and tests as in our study. 
- We investigated the role of our metabolite-associated genes in currently known inborn errors of metabolism (IEM). 
- We used whole-body models where in silico gene knockouts were modeled to validate our identified gene-metabolite pairs. 
- We performed a proof-of-concept experimental validation study for an implicated metabolite not yet shown to be involved in the encoded 
protein’s function. 
When information was available, each of these approaches supported the validity of findings. 

Randomization Not relevant to this study because this is an observational study.

Blinding Not relevant to this study because this is an observational study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Chinese Hamster Ovary (CHO) cells with Tetracycline-Regulated Expression (T-REx) system. Cell line obtained from and 
engineered at Axxam.

Authentication Cells were not authenticated.

Mycoplasma contamination Cell lines previously tested negative for mycoplasma. Cells in this experiment were not tested for mycoplasma.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration This study is an observational study (DRKS 00003971).

Study protocol The study protocol and design has been published (PMID: 21862458).
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Data collection Between 2010 and 2012, 5,217 adult persons with CKD under regular care by nephrologists provided written informed consent and 

were enrolled into the study at nine participating study centers across Germany (Aachen, Berlin, Erlangen, Freiburg, Hannover, 
Heidelberg, Jena, München, Würzburg). 
Data was collected during GCKD study visits by trained personnel in any of the nine study centers following a published pre-specified 
protocol and standard operating procedures, and captured with the software Askimed (https://www.askimed.com/). 
For this project, all participants with available plasma or urine collected at the baseline visit and with available whole-exome 
sequencing data were selected (N=4,737). 
The participants are currently followed for clinical outcomes for more than 10 years.

Outcomes The predefined outcomes of this study were metabolite levels in plasma and urine, which was defined before study initiation by the 
authors. Non-targeted MS analysis was performed at Metabolon, Inc., from plasma and urine samples collected at the study's 
baseline visit, as described in detail in the publication.
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