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Abstract
Key message: In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due 
to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors.
Abstract: Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic 
selection purposes. A common quality control procedure in these groups is to compare empirical genotype frequencies against 
those predicted by Mendelian segregation, where SNPs detected to have segregation distortion are discarded. However, 
current tests for segregation distortion are insufficient in that they do not account for double reduction and preferential pair-
ing, two meiotic processes in polyploids that naturally change gamete frequencies, leading these tests to detect segregation 
distortion too often. Current tests also do not account for genotype uncertainty, again leading these tests to detect segrega-
tion distortion too often. Here, we incorporate double reduction, preferential pairing, and genotype uncertainty in likelihood 
ratio and Bayesian tests for segregation distortion. Our methods are implemented in a user-friendly R package, menbayes. 
We demonstrate the superiority of our methods to those currently used in the literature on both simulations and real data.

Introduction

Polyploids, organisms containing more than two sets of 
chromosomes, play a dominant role in many sectors of agri-
culture (Udall and Wendel 2006). Consequently, numerous 
breeding programs are dedicated to the agricultural improve-
ment of polyploids (Ferrão et al. 2018; Shirasawa et al. 2017; 
Amadeu et al. 2021; Lau et al. 2022). In these programs, 
breeders frequently generate “F1 populations” of full sib-
lings for various tasks, such as QTL mapping (Amadeu et al. 
2021), linkage mapping (Bourke et al. 2018; Mollinari and 
Garcia 2019), and genomic selection (Ferrão et al. 2021), all 
of which are crucial for crop improvement.

In these F1 populations, offspring genotypes should 
roughly adhere to the laws of Mendelian segregation (Men-
del 1866). Hence, it is customary to use a chi-squared test to 
compare observed offspring genotype frequencies with those 

predicted by Mendelian segregation to identify problematic 
SNPs caused, for example, by sequencing errors, mapping 
biases, or amplification biases (Bourke et al. 2015; Cappai 
et al. 2020; Mollinari et al. 2020; Batista et al. 2021, e.g.). 
Such deviations are referred to as segregation distortion. 
However, there are two significant limitations to using the 
chi-squared test in these scenarios. First, many polyploids 
naturally undergo double reduction and (partial) preferen-
tial pairing (Voorrips and Maliepaard 2012), two meiotic 
processes that can lead to deviations from classical gam-
ete frequencies even for well-behaved SNPs. The resulting 
offspring genotype frequencies heavily depend on the type 
of polyploid (allo, auto, or segmental) (Doyle and Egan 
2010), necessitating tests for F1 populations that can adapt 
to these varying types. Second, the chi-squared test does 
not account for genotype uncertainty, a major concern in 
polyploid genetics (Gerard et al. 2018; Gerard and Ferrão 
2019) that can adversely impact many genomics methods.

In this paper, we develop a model for the genotype fre-
quencies of a biallelic locus in an F1 tetraploid population 
that allows for arbitrary levels of double reduction and pref-
erential pairing (Section Generalized gamete frequencies). 
This fills a gap in the literature, as most approaches only 
account for either double reduction or preferential pairing, 
but not both (Appendix S1). We harness this new model 
to develop likelihood ratio tests (LRTs) for segregation 
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distortion, optionally accounting for genotype uncertainty 
through genotype likelihoods (Li 2011) (Section Likelihood 
ratio tests for segregation distortion). To take advantage of 
the benefits of a Bayesian paradigm approach, we further 
develop Bayesian tests for segregation distortion (Sec-
tion Bayesian tests for segregation distortion). We dem-
onstrate our methods both on simulations (Sections Null 
simulations and Alternative simulations) and on a dataset 
of tetraploid blueberries (Section Blueberries).

Related work

In the context of modeling preferential pairing and double 
reduction, previous studies have primarily focused on 
estimation rather than testing. A comprehensive review of 
these studies is provided in Appendix S1. In this section, we 
focus on the related work that emphasizes testing.

Tests have been created to evaluate the related hypothesis 
of random mating. A likelihood ratio test for random mating 
was created in Appendix C of Gerard (2022), exact tests 
were explored in Matoka Nana (2023), and Bayesian tests 
were developed in Gerard (2023). Many of the approaches 
in those papers account for genotype uncertainty. Random 
mating is applicable to S1 populations (a generation of 
selfing) as all individuals have their gametes drawn from 
the same distribution and are randomly selected during 
fertilization. However, F1 populations violate the random 
mating hypothesis at loci where parental genotypes differ 
since the gametes from each parent are drawn from different 
distributions. Thus, these tests are not generally applicable 
in our scenario of F1 populations.

The work most closely related to ours, particularly in terms 
of testing, is likely the tests implemented by the polymapR 
software (Bourke et  al. 2018). This software offers tests 
for segregation distortion in tetraploids within its function 
checkF1(). The process involves analyzing each segregation 
pattern, which can be (i) polysomic in both parents, (ii) 
disomic in both parents, or (iii) polysomic in one and disomic 
in the other, followed by conducting a chi-squared test based 
on that specific segregation pattern. This test is performed 
using only the possible genotypes. For instance, if the potential 
offspring genotypes from parent genotypes are 0 and 1, but 
some offspring genotypes of 2 are observed, these genotypes 
are excluded from the chi-squared test. A separate one-sided 
binomial test is conducted for “invalid” genotypes (considering 
the parental genotypes and their segregation patterns), with an 
expected proportion of invalid genotypes hard-coded at less 
than 3%. The product of the p-values from both the chi-squared 
and binomial tests is then calculated, and the maximum of 
these is used as the indicator of segregation distortion. This 
method resembles a minimum chi-squared test (Berkson 1980) 
where the authors explore the discrete parameter space of fully 
disomic and fully polysomic parents, albeit using a somewhat 

ad-hoc criterion. Our approach, in contrast, is more principled 
and allows for a full exploration of the parameter space of 
gamete frequencies resulting from both double reduction and 
partial preferential pairing, rather than limiting to completely 
polysomic or completely disomic inheritance.

Bourke et  al. (2018) also account for genotype 
uncertainty by using posterior probabilities as inputs but do 
so in an ad-hoc way. They sum the posterior probability of 
each genotype over the individuals to get a total count for 
each genotype, they then round counts below some preset 
threshold down to zero, and renormalize the resulting count 
vector to sum to the sample size of the offspring. They then 
apply the same approach as in the known genotype case to 
this estimated vector of counts.

We will show in the Section Null simulations that our 
approach has advantages to that of Bourke et al. (2018).

Materials and methods

Generalized gamete frequencies

We begin by describing the hypothesis of no segregation 
distortion. We assume that we are working with a single 
biallelic locus, and we are concerned with the genotype 
frequencies of an F1 population of polyploids at this locus. 
Though our manuscript focuses on tetraploids, we will write 
out equations for an arbitrary (even) ploidy level, K, when 
they are appropriate and correct for arbitrary ploidies. If 
desired, one can set K = 4 throughout the following. Let 
q = (q0, q1,… , qK) be the genotype frequencies of a K-ploid 
F1 population, where qk is the proportion of offspring 
expected to have genotype k. Each parent provides a gamete 
to each offspring, and the “gamete frequencies” of parent 
j ∈ {1, 2} will be denoted by pj = (pj0, pj1,… , pj,K∕2) . That 
is, pjk is the proportion of parent j’s gametes expected to 
have genotype k. Because each offspring genotype is the 
sum of the two (independent) parental gamete genotypes, 
we can write q as a discrete linear convolution of p1 and p2,

In tetraploids, the subject of our paper, this corresponds to

Not all values of pj are possible, and models for segregation 
correspond to models for the pj ’s based on each parental 
genotype. Let �j ∈ {0, 1,… ,K} be the genotype for parent 

(1)qk =

min(k,K∕2)∑

i=max(0,k−K∕2)

p1ip2,k−i.

(2)

q0 = p10p20,

q1 = p10p21 + p11p20,

q2 = p10p22 + p11p21 + p12p20,

q3 = p11p22 + p12p21, and

q4 = p12p22.
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j. For true autopolyploids that exhibit strict bivalent pair-
ing, the pjk ’s are hypergeometric probabilities (Muller 1914; 
Serang et al. 2012),

However, polyploids often exhibit some quadrivalent 
pairing, which can lead to the meiotic process of “double 
reduction”, the co-migration of sister chromatids segments 
into the same gamete (Mather 1935; Stift et al. 2010). Double 
reduction alters the gamete frequencies for polyploids. 
The characterization of these gamete frequencies was 
described in Fisher and Mather (1943) for autotetraploids 
and autohexaploids, before being generalized to arbitrary 
ploidy levels in Huang et al. (2019).

Additionally, many polyploids exhibit partial (or full) 
preferential pairing, where homologues preferentially (or 
exclusively) form bivalents during meiosis. Those that 
exhibit full disomic inheritance are called “allopolyploids” 
(Doyle and Egan 2010; Parisod et al. 2010), while those 
that exhibit partial preferential pairing are called “segmental 
allopolyploids” (Stebbins 1947) among other terms (Bourke 
et al. 2017). No model yet exists to incorporate both double 
reduction and preferential pairing at biallelic loci, though 
Stift et al. (2008) produced a model that incorporates both 

(3)pjk =

(
�j

k

)(
K − �j

K∕2 − k

)

(
K

K∕2

) .

of these processes in tetraploids when each chromosome is 
distinguishable.

For one of our contributions, in Appendix S2, we 
developed a model that incorporates both double reduction 
and preferential pairing in the gamete frequencies of 
tetraploids. These frequencies are tabulated in Table 1 in 
terms of three parameters: the probability of quadrivalent 
formation, � , the probability of double reduction given 
quadrivalent formation, � , and the probability that 
chromosomes with the same alleles will pair given bivalent 
formation, � . We further show that this three-parameter 
model can be reduced to a model with two parameters 
(Table 2): the double reduction rate, � , and the preferential 
pairing parameter, � , where a value of � = 1∕3 indicates 
strict polysomic inheritance and values of � = 0 or 1 indicate 
strict disomic inheritance. Our model is nicely connected 
with others in the literature. Our model is derived from 
that of Stift et al. (2008), reduced to biallelic loci, when 
the parameters of that model are reinterpreted. Furthermore, 
when � = 1∕3 this model reduces to that of Fisher and 
Mather (1943) (Appendix S3).

The benefit of our model is that it can account for a 
wider range of possible gamete frequencies than models 
that incorporate double reduction alone. That is, some well-
behaved SNPs (with some amount of preferential pairing) 
cannot have their genotype frequencies modeled appropri-
ately with double reduction alone. To see this, consider that 
for � = 2 , p0 = p2 , we can order the gamete frequencies 

Table 1  At a single locus for a tetraploid, the distribution of the number, x, of alternative alleles sent to an offspring by a parent with dosage � = 
0, 1, 2, 3, or 4

The probability of quadrivalent formation is � , � is the probability of double reduction given quadrivalent formation, and � is the probability that 
chromosome pairing occurs along shared alleles given bivalent formation
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Table 2  At a single locus for a tetraploid, the distribution of the number, x, of alternative alleles sent to an offspring by a parent with dosage � = 
0, 1, 2, 3, or 4

The double reduction rate is � and the preferential pairing parameter is � . No preferential pairing corresponds to � = 1∕3
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by their value of p1 = 1 − p0 − p2 . When accounting for 
double reduction alone, the range of gamete frequencies 
when � = 2 goes from p = (2, 5, 2)∕9 ≈ (0.22, 0.56, 0.22) 
(for � = 1∕6 ) to p = (1, 4, 1)∕6 ≈ (0.17, 0.67, 0.17) (for 
� = 0 ). When accounting for both double reduction and 
preferential pairing, the range of gamete frequencies goes 
from p = (1, 2, 1)∕4 (for � = 0 and � = 0 ) to p = (0, 1, 0) 
(for � = 1 and � = 0 ). Thus, values of 1∕2 < p1 < 5∕9 and 
2∕3 < p1 ≤ 1 cannot be accounted for by double reduction 
alone but can be accounted for when including preferential 
pairing.

In Fig. 1, we graphically represent the gamete frequen-
cies under these different models for meiosis via a ternary 
plot (Hamilton and Ferry 2018). There, we see that a model 
that does not account for double reduction and preferential 
pairing only allows for gamete frequencies at the blue dots, 
while a model that accounts for double reduction and not 
preferential pairing only allows for gamete frequencies at 
the blue dots and green lines. Our new model that allows 
for both double reduction and preferential pairing allows for 
gamete frequencies at the blue dots, and green and orange 
lines, which is a much larger possible space of gamete 
frequencies.

In Sections Likelihood ratio tests for segregation distor-
tion and Bayesian tests for segregation distortion, we will 
use our new model to construct tests for segregation distor-
tion in F1 populations of tetraploids. There, we will assume 
that the two parents share a common double reduction rate 
( � ), but each has their own preferential pairing parameter ( �1 
and �2 ). It would be incorrect to fix �1 to equal �2 due to the 
interpretation of this parameter in term of pairing frequen-
cies based on allele compositions (see Section Discussion).

Concerning our new model for gamete frequencies, 
unfortunately neither the two-parameter nor the three-
parameter model are identified when the double reduction rate 
and the preferential pairing parameter are together. That is, 
the models are not identified when a parent is duplex ( � = 2 ). 
One can see this, for example, by noting that, when � = 2 , 
� = 1∕6 and � = 1∕3 results in the same gamete frequencies 
as � = 0 and � = 1∕9 . Since � only appears in duplex parents 
(Table 2), this means that one cannot estimate � (or � when 
� = 2 ) using just a single biallelic locus (without further 
assumptions). However, our model indicates that one need 
not worry about preferential pairing at loci where � = 1 or 
3 and can, conceivably, use these loci to estimate the double 
reduction rate, � . However, we will see that such estimates, 
using just a single biallelic locus, are biased and highly 
variable (Section Null simulations). We note that though the 
model is unidentified when � = 2 , this is not a major issue for 
our purpose of hypothesis testing. The unidentifiability affects 
the number of degrees of freedom calculation for the LRTs of 
Section Likelihood ratio tests for segregation distortion and 
merely affects the prior distribution over the null parameter 
space for our Bayesian tests in Section Bayesian tests for 
segregation distortion.

Likelihood ratio tests for segregation distortion

Our goal in this section is to construct LRTs to compare the 
following two hypotheses.

• H0 : pj is defined by Table 2 via parameters � and �j , and q 
is defined by (2).

• HA : Not H0

We can graphically represent these two hypotheses via the 
ternary plot (Hamilton and Ferry 2018) in Fig. 1. The null 
hypothesis is that the gamete frequencies lie on the blue 
dots or the green or orange lines. One possible scenario of 
the alternative hypothesis is that the gamete frequencies 
lie anywhere else on the 2-simplex. More generally, the 
alternative hypothesis states that the genotype frequencies are 
anywhere on the 4-simplex that are not consistent with F1 
genotype frequencies under double reduction and preferential 
pairing.

Fig. 1  Ternary plot (Hamilton and Ferry 2018) of the gamete fre-
quencies (p

0
, p

1
, p

2
) of a tetraploid under different hypotheses of 

meiosis. The parent’s genotype is denoted by � ∈ {0, 1, 2, 3, 4} . The 
blue dots are the gamete frequencies of a true autotetraploid with no 
double reduction and no preferential pairing ( � = 0 and � = 1∕3 ). 
The green lines are the gamete frequencies of a true autotetraploid 
with possible double reduction up to the maximum under the com-
plete equational segregation model (Huang et al. 2019) ( � ∈ [0, 1∕6] 
and � = 1∕3 ). The orange line contains the gamete frequencies, when 
� = 2 , under arbitrary levels of double reduction and preferential 
pairing ( � ∈ [0, 1∕6] and � ∈ [0, 1])
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When considering H0 , we will denote the functional 
dependence of q on � , �1 , �2 , �1 , and �2 by q(�, �1, �2,�1,�2) 
if using the two-parameter model (Table 2). If using the three-
parameter model (Table 1), we will denote this dependence 
by q(�, �, �1, �2,�1,�2) . We construct these tests in three sce-
narios: one where the genotypes are known, one where paren-
tal genotypes are known but offspring genotype uncertainty is 
represented through genotype likelihoods (Li 2011), and one 
where all individuals have genotype uncertainty represented 
through genotype likelihoods.

We begin with the case when the genotypes are 
known. Let xk be the number of individuals with 
genotype k ∈ {0, 1,… ,K} , which we collect into the 
vector x = (x0, x1,… , xK) . We denote the sample size by 
n =

∑K

k=0
xk . Then, given genotype frequencies q , we have 

that x follows a multinomial distribution,

The maximum likelihood estimate of q under the alternative 
is q̂A = x∕n . We maximize the likelihood function, 
f (x|q(�, �, �1, �2,�1,�2)) ,  ove r  0 ≤ �, �1, �2 ≤ 1 and 
0 ≤ � ≤ c , where c is the maximum rate of double reduction. 
By default, we set c = 1∕6 , the maximum under the complete 
equational segregation model (Mather 1935). We do this 
maximization using gradient ascent (Byrd et al. 1995) to 
obtain q̂0 . We then obtain the likelihood ratio statistic

and compare � to an appropriate �2 distribution to obtain a 
p-value.

Calculating the null distribution of this test is rather 
difficult, as the parameters under the null might lie on or 
near the boundary of the parameter space, which requires 
special considerations (Self and Liang 1987; Mitchell et al. 
2019; Leung and Sturma 2024). Thus, we applied the data-
dependent degrees of freedom strategy of Susko (2013), 
which we describe now. The number of parameters under 
the null is equivalent to the dimension of the null parameter 
space, which can be visualized in Fig. 1. If �1,�2 ∈ {0, 4} , 
then the number of parameters under the null is 0, because 
the parameter space is 0 dimensional (a single dot) in 
Fig.  1. If � ∈ {1, 2, 3} , then the number of parameters 
under the null is 1 if the parameters are estimated in the 
interior of the parameter space, because the parameter space 
is 1 dimensional (a single line) in Fig. 1. The number of 
parameters under the null is 0 if they are estimated on the 
boundary of the parameter space (at the ends of the lines 
in Fig. 1). To calculate the number of parameters under 
the alternative, we note that, if the null were true, some 
offspring genotypes would be impossible. The test returns 
a p-value of 0 if any of these “impossible” genotypes are 

(4)f (x|q) = n!

x0!⋯ xK!
q
x0
0
⋯ q

xK
K
.

(5)𝜆 = −2(log f (x|q̂0) − log f (x|q̂A)),

observed; otherwise, the number of parameters under the 
alternative is the number of theoretically possible genotypes 
minus 1. The number of degrees of freedom for the chi-
squared distribution is the difference between the number 
of parameters under the alternative and under the null. This 
strategy is guaranteed to asymptotically control type I error 
but might be asymptotically conservative (Susko 2013).

We now consider the LRT when parental genotypes are 
known, but offspring use genotype likelihoods (Li 2011). Let 
gik be the genotype likelihood for individual i = 1, 2,… , n for 
genotype k = 0, 1,… ,K . That is, gik is the probability of the 
data (sequencing, microarray, or otherwise) for individual i 
given that the genotype for that individual is k. Then, given 
these genotype likelihoods, we have the likelihood for these 
data is

The maximum likelihood estimate of q under the alternative 
can be found by the EM algorithm of Li (2011), which we 
denote by q̂A . We maximize f (G|q(�, �, �1, �2,�1,�2)) over 
0 ≤ �, �1, �2 ≤ 1 and 0 ≤ � ≤ c , using gradient ascent (Byrd 
et al. 1995), to obtain q̂0 . We obtain a p-value by comparing 
the likelihood ratio statistic,

to an appropriate �2 distribution to obtain a p-value.
To obtain the number of degrees of freedom of this 

test, we again take the approach of Susko (2013). The 
number of parameters under the null is the same as in the 
known genotype case. The number of parameters under the 
alternative is 4 minus the number of the qk ’s that are both 
theoretically 0 under the null and are estimated to be 0 under 
the alternative. The number of degrees of freedom of the test 
is the difference between the number of parameters under the 
alternative and the null. Again, this strategy is guaranteed 
to asymptotically control from type I error but might be 
asymptotically conservative (Susko 2013).

We now consider the case when both parents and offspring 
use genotype likelihoods. Let a = (a0, a1,… , aK) be the 
genotype likelihoods for parent 1, and let b = (b0, b1,… , bK) 
be the genotype likelihoods for parent 2. We perform the 
LRT by first maximizing the following likelihood over the 
parent genotypes

We then run the LRT as if the estimated parent genotypes 
were the known true parent genotypes.

(6)f (G|q) =
n∏

i=1

K∑

k=0

gikqk.

(7)𝜆 = −2(log f (G|q̂0) − log f (G|q̂A)),

(8)a
�1
b
�2
f (G|q(�, �, �1, �2,�1,�2)).
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Bayesian tests for segregation distortion

To take advantage of the many benefits of Bayesian analysis, 
we developed Bayesian tests for segregation distortion. In 
particular to our case, Bayesian tests can more easily adapt 
to non-identifiable models, as this just alters the prior 
distribution over a parameter space. But, there are other 
advantages, such as ease of interpretability and consistency 
under the null (O’Hagan 1994, Section 7.52). The Bayesian 
testing paradigm consists of calculating a Bayes factor (BF) 
defined as the ratio of marginal likelihoods under the two 
hypotheses:

where �0(⋅) is the prior under the null, �1(⋅) is the prior under 
the alternative, and f (data|q) is one of the likelihoods we 
consider, either equation (4) or (6). When parent genotypes 
are not known, we estimate the parent genotypes using 
maximum likelihood, as in Section Likelihood ratio tests 
for segregation distortion, and use likelihood (6) as if the 
parent genotypes were known.

For the null, we need to specify priors over � , the 
probability of quadrivalent formation, � , the probability of 
double reduction given quadrivalent formation, and �j , the 
probability of a AA:aa pairing given bivalent formation in 
parent j = 1, 2 . Our default selection is as follows,

The upper bound on � was chosen based on the maximum 
rate of double reduction, provided by the complete 
equational segregation model of meiosis (Mather 1935; 
Huang et al. 2019). The prior on the �j ’s was created so 
that the mean would be 1/3, the value under tetrasomic 
inheritance (Appendix S3), and so that it would have the 
same variance as a uniform prior.

Under the alternative, we set the default prior 
for q to be Dirichlet with concentration parameters 
15∕2 = (1, 1, 1, 1, 1)∕2 . This was chosen based on empirical 
performance of the simulations in Section Results. A “natural” 
prior for q might seem to be a uniform distribution over the 
4-simplex, which would correspond to a Dirichlet distribution 
with concentration parameters 15 . However, Bayesian priors 
for proportions often use concentration parameters less than 
1, e.g., in the context of Hardy-Weinberg testing (Bernardo 

(9)

BF =
Pr(data|H0)

Pr(data|H1)

=
∫ f (data|q(�, �, �1, �2,�1,�2))�0(�, �, �1, �2,�1,�2)d�d�d�1d�2

∫ f (data|q)�1(q)dq
,

(10)� ∼ Unif (0, 1),

(11)� ∼ Unif (0, 1∕6), and

(12)�1, �2 ∼ Beta (5∕9, 10∕9).

and Tomazella 2010; Puig et  al. 2017). This is also the 
Jeffreys prior for the multinomial distribution (Tuyl 2017), 
and so has theoretical justification as being, in a certain sense, 
uninformative.

All of these priors are adjustable by the user if they have 
additional prior knowledge on the meiotic process they study. 
E.g., if it is known that only some preferential pairing occurs, 
then the user could adjust the priors over �1 and �2 to be more 
concentrated around 1/3. In Appendix S4, we also demonstrate 
that our methods are relatively robust to prior selection.

Under the alternative, when genotypes are known, the 
marginal likelihood is the Dirichlet-multinomial (Mosimann 
1962), which can be easily calculated. For all other models 
and likelihoods, we have to resort to simulation to estimate 
the marginal likelihoods. We implemented these models, using 
all three likelihoods and both the null and alternative priors, 
in Stan (Stan Development Team 2024a, b). We estimated 
marginal likelihoods (and therefore Bayes factors) via bridge 
sampling (Meng and Wong 1996; Gronau et al. 2020).

Results

Null simulations

To evaluate our methods, we ran simulations when the 
null of no segregation distortion was true. We varied the 
following parameters:

• T h e  p a r e n t  g e n o t y p e s , 
(�1,�2) ∈ {(0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}.

• The sample size, n ∈ {20, 200}.
• The double reduction rate, � ∈ {0, 1∕12, 1∕6}.
• T h e  p r e f e r e n t i a l  p a i r i n g  p a r a m e t e r s , 

�1, �2 ∈
{

5

3

�

1−�
,
1

3
, 1 −

10

3

�

1−�

}
 . We only varied the 

preferential pairing parameter �j when �j = 2 . When 
� = 1∕6 , the bounds on the preferential pairing parameter 
constrains �1 = �2 = 1∕3 (Theorem S2).

• The read-depth, {10,∞} , where a read-depth of ∞ 
corresponds to the known genotype case.

Each replication, we simulated offspring genotypes using 
the model of Table 2. When genotypes were not known 
(a read-depth of 10), we further simulated offspring read-
counts using the model of Gerard et al. (2018) under no 
allele bias, an overdispersion level of 0.01, and a sequencing 
error rate of 0.01. We then used the method of Gerard 
et al. (2018) to estimate offspring genotypes and obtain 
genotype likelihoods. Each replication, we fit the standard 
chi-squared test for segregation distortion (which compares 
the observed offspring genotypes against the theoretical 
genotype frequencies under no double reduction and no 
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preferential pairing, (Muller 1914)), the polymapR test 
from Section Related work (Bourke et al. 2018), our new 
LRT from Section Likelihood ratio tests for segregation 
distortion, and our new Bayesian test from Section Bayesian 
tests for segregation distortion. For each unique combination 
of parameter values, we ran 200 replications.

Quantile-quantile plots against the uniform distribution of 
the p-values from the LRT of Section Likelihood ratio tests 
for segregation distortion, the standard chi-squared test, and 
the polymapR test of Section Related work (Bourke et al. 
2018) are presented in Figures S1–S6. Since the null is true, 
the p-values should lie at or above the y = x line to control 
type I error. Our new LRT is able to control type I error 
in all scenarios, often being unbiased and only sometimes 
being conservative (Figures S1–S2). In contrast, the chi-
squared test does not control type I error when there is any 
double reduction or preferential pairing and fails to control 
type I error in almost all scenarios where there is genotype 
uncertainty (Figures S3–S4). The polymapR test fails to 
control type I error in some scenarios when genotypes 
are known, particularly when there is preferential pairing 
(Figure S5). When genotypes are not known, the polymapR 
test appears to control for type I error at small samples sizes 
for many scenarios (likely due to low power) but fails to 
control for type I error in most scenarios at larger sample 
sizes (Figure S6).

Box plots of the log Bayes factors from the Bayesian test of 
Section Bayesian tests for segregation distortion are presented 
in Figures S7–S8. Since the null is true, the log Bayes factors 
should be mostly positive, which is what we see. The only 
exception to this is in the case of true allopolyploids where 
the offspring exhibit “fixed heterozygosity” (Cornille et al. 
2016), where the log Bayes factors are generally negative. 
This is likely because of the influence of our prior selection, 
which is not very informative toward allopolyploidy. Indeed, 
it is only under this scenario that prior specification appears 
to be vital (Appendix S4, Figures S9–S12), where priors that 
are informative toward allopolyploidy perform better. Though, 
in an applied setting, a researcher is likely aware that their 
organism might be a true allopolyploid, in which case they 
should use priors that are highly informative for allopolyploidy. 
One benefit of a Bayesian approach is that researchers can 
tailor their analyses based on their prior knowledge.

Our methods return estimates of the double reduction rate 
and preferential pairing parameters. However, when one of the 
parents is duplex, the double reduction rate and preferential 
pairing parameters are not identified (Section Generalized 
gamete frequencies). Since the preferential pairing parameter 
only appears when a parent is duplex (Table 2), this means 
that it is impossible to estimate the preferential pairing 
parameter using just a single biallelic locus (without further 
assumptions). It is conceivably possible to estimate the double 
reduction rate when at least one parent is simplex and neither 

parent is duplex. However, these estimates are biased and have 
high variance (Figure S13). Our results thus indicate that, 
though it is important to account for double reduction and 
preferential pairing when testing for segregation distortion, the 
estimates of these parameters using just a single biallelic locus 
are highly unreliable and should not be used in real practical 
work.

Alternative simulations

To evaluate our methods, we ran simulations when the 
alternative was true. We set the true genotype frequencies to 
be one of the following 14 quantities

or sampled uniformly from the 4-simplex. We tested for 
segregation distortion after estimating �1 and �2 by maximum 
likelihood. We varied the sample size n ∈ {20, 200} and the 
read-depth {10,∞} , where a read-depth of ∞ corresponds 
to the known genotype case. Each replication, we simulated 
offspring genotypes assuming the appropriate q from a 
multinomial distribution. Our procedure for using genotype 
likelihoods, and the methods we fit each replication, were 
the same as in Section Null simulations. For each unique 
combination of parameter values, we ran 200 replications.

We provide plots of stated type I error versus power for 
the three methods in Figures S14–S17. Typically (though 
not always), the chi-squared test is more powerful than 
polymapR, which is more powerful than the likelihood 
ratio test. However, only the likelihood ratio test actually 
controls for type I error, and so we see from this plot that 
one of the costs of accurately controlling type I error is a 
loss of power. Though, interestingly, the likelihood ratio 
test has higher power than polymapR (and even the chi-
squared test) in some scenarios.

Box plots for the log Bayes factors are presented in Fig-
ure S18. The Bayes factors are generally negative, espe-
cially for larger sample sizes, indicating support for the 
alternative. Though, the Bayes test does not indicate strong 
support for the alternative when there are three genotypes 
that each have a true genotype frequency of 1/3. These 
are also low-power scenarios for the likelihood ratio test 

(13)

q ∈ {(1∕5, 1∕5, 1∕5, 1∕5, 1∕5), (1∕4, 1∕4, 1∕4, 1∕4, 0),

(4∕10, 3∕10, 2∕10, 1∕10, 0),

(1∕10, 2∕10, 3∕10, 4∕10, 0), (1∕3, 1∕3, 1∕3, 0, 0),

(0, 1∕3, 1∕3, 1∕3, 0),

(3∕6, 2∕6, 1∕6, 0, 0), (0, 3∕6, 2∕6, 1∕6, 0),

(1∕6, 2∕6, 3∕6, 0, 0),

(0, 1∕6, 2∕6, 3∕6, 0), (3∕4, 1∕4, 0, 0, 0),

(1∕4, 3∕4, 0, 0, 0),

(0, 3∕4, 1∕4, 0, 0), (0, 1∕4, 3∕4, 0, 0)},
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(Figures S14–S17). Our Bayes test is relatively robust to 
prior specification (Appendix S4).

Since the chi-squared and polymapR tests do not 
control type I error, unlike our LRT, the power curves in 
Figures S14–S17 are not directly comparable. We have 
also yet to perform a direct comparison of the frequentist 
tests with the Bayesian test. However, it is theoretically 
possible to calibrate p-values or Bayes factors to control 
type I error by adjusting the rejection thresholds. The 
performance of the methods would depend on the 
composition of the null and alternative scenarios, but we 
can gain an intuitive summary of the performance of the 
various methods using the null and alternative scenarios 
that we have studied. We thus combined all 9000 of the 
null (Section Null simulations) and 3000 of the alternative 
(Section Alternative simulations) simulation scenarios that 
we explored in this paper and generated ROC curves (only 
at realistic levels of type I error) in Fig. 2. We see there at 
that the likelihood ratio test is the best (or near the best) 
performing method at all read-depths and sample sizes. 
The Bayes test is the second best at larger sample sizes. 
Additionally, Figure S24 confirms that these results remain 
robust when the alternative scenarios are subsampled to 
realistic levels of segregation distortion (4%, based on the 
blueberry data in Section Blueberries). Specifically, for 
each ROC curve in Figure S24, we randomly sampled 375 
of the 3000 alternative scenarios while retaining all 9000 
null scenarios. The ROC curves are highly stable across 
random seeds (results not shown).

Blueberries

We applied our methods on a dataset of F1 tetraploid 
blueberries (Vaccinium corymbosum) (2n = 4x = 48) 
from Cappai et al. (2020). The data we considered initially 
consisted of 21513 SNPs for the n = 240 offspring and 
the two parents. We obtained genotype likelihoods using 
the method of Gerard et al. (2018) with the proportional 
normal prior (Gerard and Ferrão 2019). Markers were then 
filtered to remove monomorphic SNPs, defined as those 
whose maximum genotype frequency was estimated to be 
greater than 0.95 (20251 remaining SNPs). We then filtered 
SNPs to keep only loci belonging to the 12 main linkage 
groups (19524 remaining SNPs). We then ran our LRT 
(Section Likelihood ratio tests for segregation distortion), 
our Bayesian test (Section Bayesian tests for segregation 
distortion), the standard chi-squared test, and the polymapR 
test for each SNP.

The Bayesian, LRT, and polymapR tests generally agree 
on the amount of segregation distortion in the data. At a 
Bonferroni adjusted significance level of 0.05, the LRT and 
polymapR indicated a segregation distortion rate of 4.4% 
and 2.6%, respectively. The Bayesian test had 1.6% of SNPs 
with a log Bayes factor less than -16 (see Wakefield 2010; 
Gerard 2023, for threshold recommendations for Bayes 
factors). In contrast, the chi-squared test using posterior 
mode genotypes indicated 72.8% of SNPs are in segregation 
distortion, using a Bonferroni corrected significance level 
of 0.05.

The likelihood ratio and Bayes tests have more 
concordance on which SNPs indicate segregation 
distortion (Figure S19). It is enlightening to see which 
SNPs polymapR and our new methods disagree about. In 

Fig. 2  ROC curve at realistic 
levels of type I error rate. The 
type I error rate (false positive 
rate) on the X-axis is plotted 
against power (true positive 
rate) on the Y-axis for vari-
ous methods (color) across all 
simulation scenarios: 9000 null 
and 3000 alternative cases per 
ROC curve. This is a general 
overview for the simulation per-
formance of the various meth-
ods. The likelihood ratio test is 
generally the best performer, 
and the Bayes test is second best 
for large sample sizes
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Figure S20, we provide genotype plots (Gerard et al. 2018) 
of five SNPs where polymapR indicates no segregation 
distortion while the LRT indicates extreme segregation 
distortion. In Figure S21, we provide genotype plots of 
five SNPs where polymapR indicates extreme segregation 
distortion while the LRT indicates no segregation distortion. 
The p-values of the various tests for these SNPs are provided 
in Table S1.

Generally, since polymapR does not account for double 
reduction, it detects segregation distortion in SNPs that seem 
to have high rates of double reduction. Examples of these 
are presented in the last five rows of Table S1. These are all 
simplex × nullplex markers that roughly exhibit the 13:10:1 
segregation ratios, one would expect at a double reduction 
rate of � = 1∕6 , and so our LRT and Bayes test correctly 
indicate that there is no evidence of segregation distortion 
here. However, at simplex × nullplex markers, polymapR 
(and the chi-squared test) assumes a 1:1 segregation ratio 
and so cannot accommodate offspring genotypes of 2 and 
segregation ratios beyond 1:1. This leads them to detect 
segregation distortion at these SNPs.

Conversely, polymapR is more lenient toward “invalid” 
genotypes, as it only runs its tests on the “valid” genotypes. 
This leads it to fail to detect segregation distortion at some 
SNPs where our LRT and Bayes test indicate that there 
is strong segregation distortion. A few examples of such 
SNPs are in the first five row in Table S1. At each of these, 
the tabulated posterior mode genotypes indicate that there 
are individuals with “invalid” genotypes. E.g., at SNP 
12_8929238, genotypes of 3 should be impossible at this 
simplex × nullplex marker, even with double reduction, and 
so our LRT and Bayes test indicate that there is segregation 
distortion here. However, polymapR’s “valid” genotypes 
(0 and 1) are at an observed ratio of 106:114, which is 
close enough to the expected 1:1 ratio that it provides a 
large p-value. The number of “invalid” genotypes is small 
enough to not be flagged by polymapR. Though, we would 
argue that observing about 11 “invalid” genotypes (for SNP 
12_8929238) should flag possible segregation distortion.

As mentioned in Section Null simulations, the estimates 
for the double reduction rate are biased and have high 
variance, and so should not be trusted. However, we can 
get a sense if our method is performing reasonably by 
plotting average double reduction rate estimates against the 
different locations along the linkage groups and seeing if 
the double reduction rate is generally larger near the ends 
of the chromosomes (Voorrips and Maliepaard 2012). We 
averaged the estimated double reduction rate of the first 10%, 
the middle 20%, and the last 10% of SNPs and plotted these 
averages (along with plus or minus two standard errors) 
in Figures S22 and S23. Figure S22 contains SNPs that 
are simplex for parent 1 and nullplex for parent 2, while 
Figure S23 contains SNPs that are nullplex for parent 1 and 

simplex for parent 2. This is so that we can gauge the double 
reduction estimates for the parents separately without any 
possible interference from preferential pairing or the other 
parent. We calculated Tukey adjusted p-values (Tukey 1949) 
comparing the first 10% of SNPs against the middle 20%, 
and the middle 20% against the last 10%. These p-values 
are posted above the error bars in Figures S22 and S23. 
We see that many linkage groups, particularly in parent 
1, show the middle 20% of SNPs having a lower average 
double reduction rate than the ends of the linkage groups 
(linkage groups 1, 2, 4, 20, and 22 in parent 1). In contrast, 
the only scenario where we have evidence of an end of a 
chromosome having lower double reduction rates than 
the middle is linkage group 22 in parent 2. Otherwise, we 
do not have strong evidence of different values of double 
reduction between the ends and the middle of the linkage 
groups. These results at least suggest that our method is 
picking up some signal of double reduction varying along 
the chromosome in a way consistent with biological theory.

Discussion

We developed new models for the gamete frequencies 
of tetraploids that incorporate both preferential pairing 
and double reduction. We used these models to develop 
likelihood ratio and Bayesian tests for segregation distortion 
in F1 populations that optionally account for genotype 
uncertainty. We demonstrated that our LRT controls type 
I error, where competing methods sometimes do not. 
Our Bayesian test had good performance in simulations, 
generally supporting the null when the null was true and 
supporting the alternative when the alternative was true. 
We demonstrated our methods on a real F1 population of 
tetraploid blueberries.

Tests for segregation distortion are generally only one 
part of the quality control pipeline of a study. Indeed, the 
polymapR package’s checkF1() function performs various 
checks, of which segregation distortion is one aspect, and 
aggregates these results into various quality scores. We 
imagine that our tests derived here could be similarly used 
as part of a quality control pipeline, where they can be a 
drop-in replacement for the standard chi-squared test.

Our paper has focused on testing for segregation 
distortion and not on estimating the meiotic parameters of 
our new model, the rate of the double reduction and the 
rate of preferential pairing. We make no claims that our 
maximum likelihood or Bayes estimates are any good. 
Indeed, our simulations indicate that the estimates of the 
double reduction rate have very high variance and bias even 
for a sample of size 200 (Figure S13), making them useless 
for practical application. This indicates that there is some 



 Theoretical and Applied Genetics (2025) 138:3030 Page 10 of 13

theoretical limit in the information at a single biallelic locus 
to accurately estimate these parameters. Indeed, because of 
the identifiability issues described in Section Generalized 
gamete frequencies, it is theoretically impossible to jointly 
estimate these parameters when a parent is duplex. However, 
we have shown in this paper that it is important to account 
for these parameters in the hypothesis test of segregation 
distortion, even if they cannot be estimated accurately.

Could we adapt our method to use multiple loci to 
estimate the rate of double reduction and the rate of 
preferential pairing? It is possible, but we do not think this 
would be the right approach to estimation. We will detail 
one possible scheme and then list its shortcomings. First, to 
not deal with the unidentifiability issues at parental duplex 
markers (Section Generalized gamete frequencies), we could 
separately estimate the double reduction rate at loci where at 
least one parent is simplex and neither parent is duplex. We 
could not just average these double reduction rate estimates 
since the double reduction rate is known to vary across the 
genome (Voorrips and Maliepaard 2012). However, if given 
a linkage map, we could then use some smoother to improve 
those estimates. Secondly, we could possibly identify the 
preferential pairing parameter at loci where the parents are 
duplex by fixing the double reduction rate to its smoothed 
estimate at that locus. This would produce estimates of 
the preferential pairing parameter at duplex loci. Since the 
preferential pairing parameter is likely fixed within a linkage 
group (though, see Bourke et al. 2017), we could possibly 
aggregate all preferential pairing parameter estimates within 
a linkage group to come up with an estimated preferential 
pairing rate. Unfortunately, this aggregation would not be 
simple, as the preferential pairing parameter � is defined 
in terms of � , and � is defined as the probability that the 
two chromosomes that share the same alleles will pair, but 
which chromosomes share the same alleles likely varies 
across the genome. Chromosomes 1 and 2 (and, therefore 3 
and 4) might share the same allele at one locus, but at other 
loci chromosomes 1 and 3 (and, therefore 2 and 4) share 
the same allele, and at yet other loci chromosomes 1 and 4 
(and, therefore 2 and 3) share the same allele. The estimated 
preferential pairing parameters would thus come from three 
different clusters, and we would have to develop a clustering 
approach to identify the preferential pairing rate (e.g., see 
Sun 2020).

Why do we think that such an approach would not work? 
It does not efficiently account for linkage. There is a lot 
of information (because of linkage) about the correlation 
between loci, but the above approach would only use 
this information in an ad-hoc way via some smoother. A 
much better approach would be to utilize that linkage 
information directly, e.g., by some hidden Markov model, 
as implemented in polymapR (Bourke et al. 2018) or 
MAPpolly (Mollinari et al. 2020). These softwares have 

quality control procedures to weed out poorly behaved SNPs 
before producing their linkage maps, and this is where we 
see our tests for segregation distortion excelling. These 
linkage mapping softwares rely on high-quality SNPs, and 
our new tests for segregation distortion can be used in this 
context to flag poorly behaved SNPs.

Though the model in Table  2 contains only two 
parameters, it is not always preferred to that of Table 1 
because the ranges of the parameters in the two-parameter 
model are dependent. This results from the well-known fact 
that, under various models, there is an upper bound on the 
rate of double reduction (Mather 1935; Huang et al. 2019). 
E.g., under the complete equational segregation model, 
the maximum value of the double reduction rate is 1/6 (so 
0 ≤ � ≤ � ≤ 1∕6 ). Suppose that the maximum rate is c, then 
we have by Theorem S2 that

The preferential pairing parameter, � , is interpreted as 
the frequency of bivalent pairing between chromosomes 
carrying certain alleles. Since individuals might have 
different alleles on different subgenomes, this has a 
few consequences for the broader applicability of our 
model. First, each parent may contain different alleles on 
different subgenomes, and so each parent should have their 
preferential pairing parameter modeled separately (either 
� or � ). Second, as offspring may have different alleles on 
different subgenomes, this model will not be persistent 
across more than one F1 population. Thus, it should not 
naively be used for simulating multiple generations.

Instead of taking a likelihood ratio approach in 
Section Likelihood ratio tests for segregation distortion, 
we could have used a chi-squared test statistic for the 
offspring genotypes against the estimated offspring 
genotype frequencies under our new model of meiosis. 
Let qk(�̂�, 𝜉1, 𝜉2,�1,�2) represent the estimated frequency 
of offspring genotype k ∈ 0, 1, 2, 3, 4 when there is no 
segregation distortion. The estimates �̂� , 𝜉1 , and 𝜉2 can be 
the maximum likelihood estimates as in Section Likelihood 
ratio tests for segregation distortion (Fisher 1928) or the 
minimum chi-squared estimates (Neyman 1949; Berkson 
1980). The chi-squared test statistic is:

To obtain the null distribution of this test statistic, we would 
again have to resort to the adaptive degrees of freedom 
approach of Susko (2013) since the parameters might lie 
on (or near) the boundary of the parameter space. Since the 
likelihood ratio and chi-squared tests are asymptotically 
equivalent (Lehmann and Romano 2006), and since a 

(14)
1

3

�

1 − �

1 − c

c
≤ � ≤ 1 −

2

3

�

1 − �

1 − c

c
.

(15)
4∑

k=0

[xk − nqk(�̂�, 𝜉1, 𝜉2,�1,�2)]
2

nqk(�̂�, 𝜉1, 𝜉2,�1,�2)
.
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likelihood approach can be easily adapted to account for 
genotype uncertainty while a chi-squared approach cannot 
be so easily adapted, we chose not to pursue this chi-squared 
approach.

In some applied scenarios, researchers might know 
the value of the double reduction rate or the value of the 
preferential pairing parameter. For example, if researchers 
know that all pairing is bivalent, then the double reduction 
rate could be fixed to 0. Additionally, if researchers know 
that an organism is a true allopolyploid, then they could 
run two tests (one with � = 0 and one with � = 1 ) and 
choose the larger of the two p-values as the evidence of 
segregation distortion. Our software implements all of 
our likelihood ratio and Bayes tests in the cases when (i) 
only the double reduction rate ( � ) is known, (ii) only the 
preferential pairing parameters ( �1 and �2 ) are known, and 
(iii) both the double reduction rate and the preferential 
pairing parameters are known.

The methods in this paper are entirely for tetraploids, so 
a reasonable question would be how feasible an extension 
to higher ploidies would be? If we only limited ourselves 
to accounting for double reduction, and not preferential 
pairing, then we could use the segregation model of 
Fisher and Mather (1943) and Huang et al. (2019) and 
develop likelihood ratio and Bayes tests for segregation 
distortion for arbitrary (even) ploidy levels. If we only 
limited ourselves to accounting for preferential pairing, 
and not double reduction (and so only allow for bivalent 
pairing), then we could use the “configuration” model 
of Gerard et al. (2018) and develop likelihood ratio and 
Bayes tests for segregation distortion for arbitrary (even) 
ploidy levels. Difficulty arises when we want to jointly 
account for double reduction and preferential pairing. 
Our tetraploid model is the first to do so at biallelic loci. 
Extending this to hexaploids and above is non-trivial, and 
the subject of future work.
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