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The formin protein Diaph3 is an actin nucleator that regu-
lates numerous cytoskeleton-dependent cellular processes
through the activation of actin polymerization. Expression and
activity of Diaph3 is tightly regulated: lack of Diaph3 results in
developmental defects and embryonic lethality in mice, while
overexpression of Diaph3 causes auditory neuropathy. It is
known that Diaph3 homophilic interactions include the
intramolecular interaction of its Dia-inhibitory domain (DID)-
diaphanous autoregulatory domain (DAD) domains and the
intermolecular interactions of DD-DD domains or FH2-FH2
domains. However, the physiological significance of these in-
teractions in Diaph3 protein stability and activity is not fully
understood. In this study, we show that FH2-FH2 interaction
promotes Diaph3 activity, while DID-DAD and DD-DD in-
teractions inhibit Diaph3 activity through distinct mechanisms.
DID-DAD interaction is responsible for the autoinhibition of
Diaph3 protein, which is disrupted by binding of Rho GTPases.
Interestingly, we find that DID-DAD interaction stabilizes the
expression of each DID or DAD domain against proteasomal-
mediated degradation. Disruption of DID-DAD interaction by
RhoA binding or M1041A mutation causes increased Diaph3
activity and accelerated degradation of the activated Diaph3
protein. Further, the activated Diaph3 is ubiquitinated at
K1142/1143/1144 lysine residues by the E3 ligase Stub1.
Expression of Stub1 is causally related to the stability and ac-
tivity of Diaph3. Knockdown of Stub1 in mouse cochlea results
in hair cell stereocilia defects, neuronal degeneration, and
hearing loss, resembling the phenotypes of mice overexpressing
Diaph3. Thus, our study reports a novel regulatory mechanism
of Diaph3 protein expression and activity whereby the active
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but not inactive Diaph3 is readily degraded to prevent excessive
actin polymerization.

Formin homology proteins (formins) are a highly conserved
family of cytoskeletal regulatory proteins. Formin activity is
required in vivo for a diverse array of cellular functions such as
stress fiber formation, cytokinetic ring formation, cell-cell
junction assembly, induction of cell polarity, and activation of
the MAL/serum response factor (SRF) signaling pathway (1–5).
At the core of all these activities is the ability of formins to
regulate actin cytoskeletal dynamics. Formins can be subdivided
into families based on their associated regulatory domains. The
diaphanous-related formins (DRFs) are distinguished by the
presence of two interacting regulatory domains, an N-terminal
GTPase binding domain and a C-terminal diaphanous autor-
egulatory domain (DAD) (6, 7). One of the best characterized
DRFs is the mammalian homolog of diaphanous, Diaph3.

Auditory neuropathy is a rare form of deafness character-
ized by a missing or abnormal auditory brainstem response,
but retaining the function of outer hair cells. Autosomal
dominant nonsyndromic auditory neuropathy (AUNA1) was
caused by a mutation in the 50UTR region of the DIAPH3. The
c-172g > A mutation in the 50UTR region of DIAPH3 resulted
in a significant (approximately 1.5-fold) increase in protein
expression; in addition, c-172g > A mutation was sufficient to
drive the overexpression of luciferase reporter genes (8, 9).
Transgenic mice that overexpressed Diaph3 displayed altered
inner hair cell stereocilia and reduced auditory brainstem re-
sponses, resembling the human auditory neuropathy pheno-
type (10). These findings suggest that DIAPH3 overexpression
or overactivation results in auditory neuropathy associated
with abnormalities in hair cell stereocilia. In contrast, mice
deficient in Diaph3 resulted in developmental defects but
apparently did not affect hearing acuity (11). Thus, the
expression and activity of Diaph3 is tightly and precisely
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regulated in physiological states, as either Diaph3 over-
expression (hyperactivity) or deficiency (hypoactivity) may
exhibit pathological consequences.

The FH1 and FH2 (FH12) domains of Diaph3 promote actin
polymerization, where the FH1 domain first binds to profilin
which recruits G-actin, and then the dimeric FH2-FH2 domain
formed by Diaph3 intermolecular interaction will catalyze the
polymerization of G-actin to F-actin (12). Due to the patho-
logical consequences of altered Diaph3 activities, there are
several intracellular inhibitory pathways to contain aberrant
Diaph3 activity. In Diaph3, the DAD domain of C terminus
and Dia-inhibitory domain (DID) domain of N terminus
interact to form intramolecular interaction (autoinhibition), a
process regulated by Rho GTPase (13, 14). After the formation
of autoinhibitory interaction, the FH12 domain of C terminus
is blocked and the actin polymerization activity is inhibited. In
addition, the DD-DD domains of N terminus form intermo-
lecular interaction, which may also inhibit its actin polymeri-
zation activity (13, 15). W630A mutation had been reported to
abolish intermolecular interaction of the FH2-FH2 domain,
resulting in loss of Diaph3 function (16). In contrast, the
M1041A mutation abolishes DID-DAD autoinhibition,
causing uncontrolled overactivation of Diaph3 (17). As these
intramolecular and intermolecular interactions are critical for
the regulation of Diaph3 activity, identifying mechanisms and
consequences for spatiotemporal regulations of these intra-
molecular and intermolecular interactions may present novel
therapeutic targets for treatment of deafness caused by Diaph3
mutations.

In this study, we found that FH12-FH12 interaction pro-
moted Diaph3 activity, while DID-DAD and DD-DD in-
teractions inhibited Diaph3 activity through distinct
mechanisms. Importantly, our study reveals a novel negative
feedback regulatory mechanism of Diaph3 protein stability and
activity whereby the active but not autoinhibited (inactive)
Diaph3 is readily ubiquitinated by the E3 ubiquitin ligase Stub1
and degraded to prevent excessive actin polymerization.
Results

Diaph3 activity is regulated by its intramolecular and
intermolecular interactions

Diaph3 protein is autoinhibited and regulated by the Rho
GTPase (12). To study the organization of the Diaph3 regu-
latory domain in more detail, we constructed Diaph3 plasmids
with different truncations and investigated its intramolecular
and intermolecular interactions (Fig. 1A). Activities of the
truncated Diaph3 constructs were first evaluated by a dual
luciferase reporting system (SRF-RE luciferase). In the cyto-
plasm, myocardin-related transcription factor (MRTF; also
known as MAL) forms a stable complex with G-actin via the
RPEL domain, which is present at its N terminus. These re-
gions also include nuclear localization signals. Activation of
upstream of MRTF-SRF is regulated by Rho signaling.
Stimulation of Rho-GTPases promotes the polymerization of
G-actin into F-actin, releases MRTF from G-actin, exposes
nuclear localization signals. Free and activated MRTFs
2 J. Biol. Chem. (2024) 300(10) 107813
translocate to the nucleus, bind to the SRF and promote the
transcription of target genes (Fig. 1B). This SRF reporter is
induced via the actin/MAL/SRF pathway in response to
changes in actin polymerization dynamics and serves as a rapid
and quantitative measure of Diaph3 activity (18, 19). Consist
with previous results (20, 21), the reporter assay confirms that
the FH1-FH2 (FH12) domains were responsible for the actin
polymerization activity (Fig. 1C).

We then further evaluated the interactions and conse-
quences of FH12-FH12, DID-DAD, and DD-DD domain in-
teractions on Diaph3 activity. A dimer appeared to be the
functional state of formin FH12 domains and was required to
promote actin nucleation and elongation (20, 21). We per-
formed coimmunoprecipitation experiments to confirm the
FH12-FH12 interaction. As expected, Flag-tagged FH12 was
able to coimmunoprecipitate hemagglutinin-tagged WT FH12
but not FH12-W630A (Fig. 1D), a mutation reported to
disrupt FH12 dimerization (16). FH12-HA interacted with
Diaph3-Flag but not Diaph3-DFH12-Flag, which indicates that
other domains of Diaph3 cannot interact with FH12 (Fig. 1D).
W630A mutation in a full-length Diaph3, C terminus, and
FH12 constructs significantly inhibited Diaph3 activity
(Fig. 1E), suggesting that intermolecular interaction of the
FH12-FH12 domains is critical for Diaph3 activity.

We next examined DID-DAD intramolecular interaction
and found that Flag-tagged DID was able to coimmunopreci-
pitate hemagglutinin-tagged WT DAD but not DAD-M1041A
(Fig. 1F), a mutation reported to abolish Diaph3 autoinhibition
(17) and caused overactivation of Diaph3 (Fig. 1G). In addition,
the interaction of Diaph3-C (DAD-containing) and Diaph3-N
(DID-containing) inhibited the actin polymerization activity of
the Diaph3-C, while the M1041A mutation abolished auto-
inhibition and restored activity of the Diaph3-C (Fig. 1H).
These results suggested that the intramolecular interaction of
DID-DAD (autoinhibition) inhibited the activity of Diaph3,
consistent with previous reports (15, 17, 22, 23).

A dimerization domain (DD domain) was sufficient to cause
dimerization of N-terminal Diaph3 fragments (15). Lastly, we
performed native PAGE experiments to confirm the DD-DD
interaction. The results show that the full-length Diaph3
formed an oligomer and the N-terminal domain formed a
dimer. However, no dimer was formed after the deletion of DD
domain in N terminus, deletion of the DD domain did not
affect Diaph3 oligomer formation (Fig. S1A). Thus, dimeriza-
tion of N-terminal Diaph3 fragments was DD domain-
dependent. Interestingly, deletion of the DD domain from
the full-length Diaph3 also significantly increased its activity,
suggesting that intermolecular interaction of the DD-DD do-
mains inhibited the activity of the Diaph3 (Fig. S1B). As both
interactions of DID-DAD and DD-DD domains inhibited
Diaph3 activity, we suspect that deletion of the DD domain
may contribute to Diaph3 activity by inhibiting DID-DAD
intramolecular interaction (autoinhibition). However, unlike
the M1041A mutation, deletion of the DD domain in Diaph3
failed to interact with DAD, suggesting that deletion of the DD
domain did not affect intramolecular interaction of the DID-
DAD domains (Fig. S1C). These results suggested that DD-
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Figure 1. Diaph3 activity is regulated by its intramolecular and intermolecular interactions. A, schematic diagram of Diaph3 domains and constructs.
B, schematic diagram of actin polymerization activity assayed by the SRF-RE luciferase reporter system. C, SRF activity of the truncated Diaph3 constructs
transfected in HEK293T cells. D, intermolecular interaction of the FH12-FH12 domains was inhibited by the W630A mutation. E, intermolecular interaction of
the FH12-FH12 domains was required for Diaph3 activity. F, intramolecular DID-DAD domain interaction (autoinhibition) was disrupted by the M1041A
mutation. G, mutation of M1041A in full-length Diaph3 significantly increased SRF activity. H, interaction of Diaph3-C and Diaph3-N inhibited the SRF activity
of Diaph3-C. I, actin polymerization activity of Diaph3 protein induced by binding to the active Rho GTPase is mediated by intermolecular FH12 interactions,
but inhibited by both intramolecular DID-DAD interactions and intermolecular DD-DD interactions. Mean ± SEM. ns, not significant, ***p < 0.001 by un-
paired Student’s t test. DAD, diaphanous autoregulatory domain; DD, dimerization domain; DID, Dia-inhibitory domain; SRF, serum response factor.
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DD interaction inhibits Diaph3 activity independent of DID-
DAD autoinhibition.

Together, we confirm that the intermolecular interactions of
FH12 domains are required for the actin polymerization ac-
tivity of Diaph3, and that the intramolecular interactions of
DID-DAD domains and intermolecular interactions of DD-DD
domains inhibit Diaph3 activity through distinct mechanisms
(Fig. 1I).

DID-DAD interaction-mediated autoinhibition promotes
Diaph3 protein stabilization

When DID and DAD domains were coexpressed to study
autoinhibition, it is interesting to observe that their protein
expression levels increased significantly compared with those
expressed alone (Fig. 2A). The mutual stabilization of the two
domains, however, was diminished by M1041A mutation
where DID and DAD-M1041A no longer interacted (Fig. 2A).
Similarly, coexpression of Diaph3-N promoted stabilization of
the Diaph3-C but not Diaph3-C-M1041A (Fig. 2B). Effects of
the mutual stabilization between DID-DAD appeared to be
stronger than that between Diaph3-N and Diaph3-C, indi-
cating that the shorter DID or DAD fragments were less stable
in general than the longer N- and C-terminal fragments. Based
on these results, we speculate that DID-DAD interaction may
facilitate both autoinhibition and stabilization of the Diaph3
protein. To explore whether the increase in protein stability
induced by autoinhibition was mediated via the proteasomal
pathway, we examined the effects of proteasomal inhibitor
J. Biol. Chem. (2024) 300(10) 107813 3
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MG132 and protein synthesis inhibitor cycloheximide (CHX)
on DID or DAD expressions. After MG132 treatment, the
protein levels of both DID and DAD increased when expressed
alone, resembling their mutual stabilization when coexpressed
(Fig. 2C). In contrast, MG132 treatment did not further in-
crease the protein expressions of DID and DAD when coex-
pressed, indicating that DID-DAD stabilization was indeed
mediated by the proteasomal pathway. The same results were
obtained when CHX was cotreated with MG132 (Fig. 2C). We
further examined the effect of M1041A mutation on the
expression of full-length Diaph3. As expected, M1041A mu-
tation resulted in reduced protein levels of Diaph3, compared
to the WT Diaph3 beginning at 24 h after transfection
(Fig. 2D). These results suggested that the intramolecular
interaction of DID and DAD in Diaph3 enhanced protein
stability via the proteasomal pathway.

RhoA GTPases regulate the activity of Diaph3 presumably
by competitive binding to the N-terminus of Diaph3 and
interruption of the DID-DAD autoinhibition (24). We first
predicted the structure of the mouse RhoA-Diaph3 complex
using AlphaFold3 (Fig. S2A). The model reveals that RhoA
interacts with Diaph3 through the GTPase binding region,
DID and DAD. Then we compared this predicted RhoA-
Diaph3 complex to the crystallographic structure of the
RhoC-mDiaN complex (Fig. S2B). The analysis shows simi-
larities between the structures, particularly in the interface
between RhoC and mDiaN. A sequence alignment of Diaph1,
Diaph2, and Diaph3 highlights key residues involved in the
interaction (Fig. S2C), and most residues (10 of 13) are iden-
tical between Diaph1 and Diaph3. The structure and sequence
alignment indicate the RhoA-Diaph3 interface is conserved
among Rho and Diaphanous families, and that RhoA activates
Diaph3 by binding to its N-terminal domains as previously
shown (15, 17, 23).

To examine if RhoA binding affects the stability of Diaph3,
we coexpressed the Diaph3-N and Diaph3-C with either WT,
constitutively active (CA, Q63L) or dominant negative (DN,
T19N) RhoA constructs (25). Diaph3-N coimmunoprecipi-
tated with RhoA-CA, but not RhoA-WT or RhoA-DN
(Fig. 2E); however, Diaph3-C failed to coprecipitate RhoA-CA
(Fig. 2F). Interestingly, interaction of RhoA-CA with Diaph3-N
appeared to reduce the expression of Diaph3-C (Fig. 2, G–I).
Therefore, it is likely that competitive binding of RhoA-CA to
the Diaph3-N impaired the stabilization of Diaph3-C when
coexpressed.

Together, these results indicated that disruption of DID-
DAD interaction (autoinhibition) by M1041A mutation or
RhoA binding results in destabilization of the Diaph3 protein,
particularly at its C terminus, a potential negative feedback
mechanism to restrain the Diaph3 activity.
Flag, HA and actin. B, Diaph3-N stabilized the expression of Diaph3-C but not D
stability via proteasomal degradation pathways. Cells were treated with 10 mM
M1041A mutation promoted degradation of the full-length Diaph3. E, Rho
constitutively active; DN, dominant negative. F, C-terminal fragment of Diaph3 d
of HA-Flag-Myc and whole cell lysate for Flag, HA, Myc from HEK293T cells. G,
protein quantification of Diaph3-N-Flag and Diaph3-C-HA in panel G. Mean ± SD
autoregulatory domain; DID, Dia-inhibitory domain; HA, hemagglutinin.
E3 ubiquitin ligase Stub1 regulates the activity and
degradation of Diaph3-M1041A

In order to identify the E3 ubiquitin ligase mediating the
degradation of Diaph3 after disruption of autoinhibition (or
M1041A mutation), proteins associated with full-length WT
Diaph3-Flag or Diaph3-M1041A-Flag overexpressed in
HEK293T cells were coimmunoprecipitated by Flag antibody
and subjected to mass spectrometry (Fig. 3A). A total of five E3
ubiquitin ligases were identified to interact with Diaph3-
M1041A, including Stub1, Fbxo3, Anapc4, Trim27, and Skp1
(Fig. 3B, Table S1). Co-immunoprecipitation (Co-IP) experi-
ments validated that Stub1, Fbxo3, Anapc4, and Trim27, but
not Skp1, interacted directly with WT and M1041A Diaph3
(Fig. 3C, S3, A–D). Importantly, Diaph3-M1041A protein level
was significantly reduced after coexpression of Stub1, while the
other E3 ubiquitin ligases had little effects (Fig. 3, D and E, S3,
E–L). Consistently, overexpression of Stub1 also decreased the
actin polymerization activity of Diaph3-M1041A (Fig. 3F). To
further validate the regulation of Diaph3-M1041A by Stub1,
we cotransfected the Stub1-shRNA with Diaph3-M1041A into
HEK293T cells. Efficient knockdown of the endogenous Stub1
was validated by Western blot analysis (Fig. 3, G and H).
Importantly, Stub1 knockdown significantly increased the
expression of Diaph3-M1041A protein (Fig. 3, G and I). No
effect was observed on the actin polymerization activity of
Diaph3-M1041A after Stub1 knockdown (Fig. 3J), likely due to
saturation of the Diaph3-M1041A activity. To explore if other
E3 ligases may also contribute to degradation of Diaph3, E1
ligase inhibitor TAK-243 was treated alongside the Stub1
depletion. TAK-243 treatment promoted stabilization of
Diaph3-M1041A in the presence of Stub1; however, TAK-243
did not further increase the expression of Diaph3-M1041A
after Stub1 knockdown (Fig. 3, K and L).These results sug-
gested that Stub1 is the primary E3 ubiquitin ligase that me-
diates the degradation of the active Diaph3-M1041A protein.
Stub1 regulates the activity of WT Diaph3

We next explored if Stub1 also regulates the expression and
activity of the activated WT Diaph3. Physiologically, Diaph3
protein is autoinhibited by its DID-DAD interaction and
activated by binding to the active Rho GTPase. Although the
N-terminal fragment of Diaph3 interacted with RhoA-CA
(Fig. 2E), we failed to detect interaction between the full-
length Diaph3 and RhoA constructs, including RhoA-CA
(Fig. 4A). This is consistent with previous report that Diaph3
exhibits strong autoinhibitory interaction between its DID and
DAD domains, and the interruption of this interaction in vitro
would require the addition of a 20-fold molar excess of active
RhoA (26). As M1041A mutation abolished the autoinhibition
iaph3-C-M1041A. C, autoinhibition between DID and DAD increased protein
MG132 (proteasomal inhibitor) and/or 10 mM cycloheximide (CHX) for 4 h. D,
A-CA interacted with N-terminal fragment of Diaph3. WT, wildtype; CA,
id not interact with RhoA-CA. Western blots of anti-HA immunoprecipitation
RhoA-CA reduced the stabilization of Diaph3 C-terminal fragment. H and I,
. ns, not significant, *p < 0.05 by unpaired Student’s t test. DAD, diaphanous
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Figure 3. E3 ubiquitin ligase Stub1 regulates the degradation of Diaph3-M1041A. A, coomassie blue gel staining of MG132-treated immunoprecip-
itated Diaph3 proteins for mass spectrometry. The arrow indicates the Diaph3 protein (140 kD). B, list of Diaph3-interacting E3 ubiquitin ligases from mass
spectrometry data. C, WT Diaph3 and Diaph3-M1041A interacted with the E3 ubiquitin ligase Stub1. D and E, Western blots (D) and quantitative data (E)
showed that Stub1 overexpression promoted the degradation of Diaph3-M1041A with or without CHX treatment. Mean ± SD, *p < 0.05, **p < 0.01 by
unpaired Student’s t test. F, Stub1 overexpression decreased SRF activity of Diaph3-M1041A. Mean ± SEM. **p < 0.01 by unpaired Student’s t test. G, Stub1
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heximide; SRF, serum response factor.
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Stub1 promotes degradation of the activated Diaph3
by DID-DAD interaction, full-length Diaph3-M1041A
resumed its interaction with RhoA-CA (Fig. 4B). RhoA-CA did
not affect the expression of the full-length Diaph3 (Fig. 4, C
and D), consistent with the lack of detectable interaction be-
tween RhoA-CA and full-length Diaph3.

Interestingly, although Stub1 overexpression failed to
reduce the expression of WT Diaph3 (Fig. 4, E and F), it
significantly reduced the actin polymerization activity of
Diaph3, both in the absence and presence of RhoA-CA
(Fig. 4G). Of particular note, RhoA-CA induced the activity
of WT Diaph3 (Fig. 4G) albeit lack of detectable interaction
between the two molecules (Fig. 4A), suggesting that a very
small proportion of Diaph3 may be bound to and activated by
RhoA-CA while the majority of the Diaph3 proteins remain
J. Biol. Chem. (2024) 300(10) 107813 7



Stub1 promotes degradation of the activated Diaph3
autoinhibited. Similarly, although Stub1 knockdown failed to
increase the expression level of the WT Diaph3 (Fig. 4, H and
I), it significantly increased the actin polymerization activity of
Diaph3, both in the absence and presence of RhoA-CA
(Fig. 4J). Thus, our results indicated that RhoA-CA binds to
and activates a small proportion of the WT Diaph3 (below
detection limit), which are subjected to modulation by the E3
ubiquitin ligase Stub1.

Stub1 mediates polyubiquitination of Diaph3-M1041A at
K1142-K1143-K1144 residues

To further verify if Stub1 regulates the expression of
Diaph3-M1041A via ubiquitination, we examined the effect of
WT and catalytically inactive (H261Q) Stub1 on ubiquitina-
tion levels of Diaph3-M1041A. Overexpression of the WT
Stub1 but not Stub1-H261Q mutant results in global increase
in ubiquitination levels (Fig. 5A), consistent with previous
report (27). Correspondingly, WT but not H261Q Stub1
promoted polyubiquitination of Diaph3-M1041A (Fig. 5A).
Furthermore, knockdown of Stub1 significantly impaired
polyubiquitination of Diaph3-M1041A protein (Fig. 5B). The
catalytically inactive Stub1-H261Q also failed to reduce the
expression of Diaph3-M1041A (Fig. 5, C and D), consistent
with its inability to polyubiquitinate the Diaph3-M1041A
protein (Fig. 5A).

We next used the BDM-PUB algorithm (http://bdmpub.
biocuckoo.org/prediction.php) (28) to predict the candidate
lysine residues on mouse Diaph3-M1041A protein that may be
ubiquitinated by Stub1. Lysine residues at K1142, K1143, and
K1144 on Diaph3 were predicted to be potential ubiquitination
sites. We compared the conservation of Diaph3 K1142 to 1144
residues in different mammals. K1143 to 1144 residues are
conserved in human (Fig. 5E). Indeed, mutations of the three
lysine residues to arginine (Diaph3-M1041A-3KR) partially
abolished polyubiquitination of Diaph3-M1041A by Stub1
(Fig. 5F). Similarly, Diaph3-M1041A-3KR was more resistant
to Stub1-mediated protein degradation, compared to the
Diaph3-M1041A control (Fig. 5, G and H). As Diaph3-
M1041A-3KR only partially rescued the expression level of
Diaph3-M1041A (Fig. 5, F–H), other lysine residues (including
those located at the N terminus) may also contribute to
Diaph3 polyubiquitination and degradation. Together, these
results suggested that the E3 ligase Stub1 mediates poly-
ubiquitination of the activated Diaph3, partially at K1142 to
1144 residues.

Knockdown of the endogenous Stub1 in mouse inner ear
leads to severe hearing loss

Overexpression of Diaph3 is associated with auditory neu-
ropathy in human patients and mouse models (8–10, 29). To
explore the in vivo functions of Stub1 in the auditory system,
we used AAV-inner ear (AAV-ie) virus to knockdown Stub1 in
cochlear cells. AAV-ie can transduce hair cells, supporting
cells, and spiral ganglion neurons (SGNs) when injected
through round window membrane (RWM) of the mouse co-
chlea (30). The AAV-ie vector contains the mouse Stub1
8 J. Biol. Chem. (2024) 300(10) 107813
shRNA driven by the U6 promoter and the EGFP protein
driven by the cytomegalovirus promoter. These AAV-ie vec-
tors were injected into C57BL/6 mice through the RWM at
postnatal day 3 (P3), and auditory function tests and histo-
logical analyses were conducted at postnatal day 21 (P21)
(Fig. 6A).

Efficient knockdown of the Stub1 protein in the cochlea was
validated by Western blot analyses (Fig. 6, B and C). Stub1
knockdown did not significantly affect the total protein level of
Diaph3 (Fig. 6, B and C), consistent with the results from
cultured cells (Fig. 5, H and I). Auditory functions of the
injected mice were evaluated by the distortion product otoa-
coustic emission (DPOAE) and auditory brainstem response
(ABR) tests. Elevated DPOAE and ABR thresholds indicate
impaired outer hair cell function and neural transmissions,
respectively. Mice injected with AAV-ie-EGFP Stub1 shRNA
exhibited elevated DPOAE thresholds (Fig. 6D) and ABR
thresholds (Fig. 6E) compared with the control, indicating that
Stub1 knockdown resulted in significant impairment in audi-
tory functions. To understand the pathological consequences
of Stub1 knockdown, cochlear hair cells, stereocilia bundles,
and SGNs were examined. Interestingly, despite profound
hearing loss, numbers of hair cells were unaffected after Stub1
knockdown in cochlear wholemount samples (Fig. 6, F–H).
Similarly, cryo-sections also displayed normal morphologies of
the organ of Corti and hair cells (Fig. 6I). Intriguingly, the
actin-rich stereocilia bundles of the hair cells were highly
disorganized with fusion and elongations after Stub1 knock-
down (Fig. 6J). This is consistent with hair cell stereocilia
phenotype observed in mice overexpressing Diaph3 (10, 29).
Furthermore, Stub1 knockdown also lead to significant
degeneration of the SGNs (Fig. 6K), highlighting an essential
role of Stub1 in promoting SGN survival. Similarly, mice
overexpressing Diaph3 also showed loss of synapses, which
connect hair cells and SGNs (29). In summary, these findings
indicate that knocking down endogenous Stub1 expression in
the mouse cochleae results in the abnormal morphology of the
hair cell stereocilia, degeneration of SGNs and severe hearing
loss, resembling the phenotypes observed in mice over-
expressing Diaph3.
Discussion

Study on the Diaph3 transgenic mice revealed that the
mouse overexpressing Diaph3 mimicked the human auditory
neuropathy phenotype (10). However, KO of the Diaph3 gene
in mice resulted in developmental defect but not hearing loss
(31). Distinct pathological features derived from Diaph3
overexpression (hyperactivity) and deletion (hypoactivity)
highlight the importance of precise control of Diaph3
expression and activation in cellular functions. In this study,
we identify a novel mechanism for negative feedback regula-
tion of Diaph3 protein expression and activity (Fig. 6L). Under
the basal condition, majority of the Diaph3 proteins are pre-
sent as autoinhibited, inactive, and stable forms. When a small
amount of Diaph3 proteins are activated by RhoA GTPase, the
intramolecular DID-DAD interaction is disrupted (similar to

http://bdmpub.biocuckoo.org/prediction.php
http://bdmpub.biocuckoo.org/prediction.php
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Stub1 promotes degradation of the activated Diaph3
the M1041A mutation), allowing actin polymerization by FH1/
FH2 domains. Meanwhile, ubiquitination sites, including
K1142 to 1144 within the DAD domain, of the activated
Diaph3 protein become accessible and are ubiquitinated by the
E3 ligase Stub1, leading to degradation of the active Diaph3
(Fig. 6L). The selective degradation of the activated Diaph3 by
Stub1 contributes to the fine-tuned control of actin polymer-
ization mediated by Diaph3.

Actin polymerization activities of the diverse formin family
members are modulated by distinct mechanisms owning to
their diverse domain structures. Daam1 is activated in a
different manner than Diaph3, in which the PDZ domain of
the Disheveled (Dvl) protein binds to the DAD of Daam1,
thereby releasing autoinhibition (32). Actin binds to the WH2
domain of the formin INF2, which therefore competes for the
intramolecular FH3–WH2 domain autoregulatory interaction
and abolishes the autoinhibition. Such mechanism would be
self-regulated by the concentration of actin molecules, which
act as both antagonists for WH2 binding and as substrates for
actin filament elongation (33). Delphilin contains two N-ter-
minal PDZ domains that typically interact with short signature
motifs occurring in flexible regions of their target proteins,
which is again reminiscent to the GTPase binding domain/
FH3–DAD autoregulation interaction (34, 35). Therefore, se-
lective degradation of the activated Diaph3 serves as a new
dimension for formin regulation. Whether similar mechanism
is applicable to other DRFs or formin family members remains
to be determined.

Additionally, Diaph3 and its family DRF proteins are
regulated by diverse array of binding partners, including Rho
GTPases, EB1, adenomatous polyposis coli protein, IRSp53,
Bud6p/Aip3, and anillin and so on (36–38). RhoA-dependent
activation of Diaph3 is enhanced by binding to anillin to
facilitate local assembly of b-actin filaments at the cytoki-
netic furrow (38). The stabilizing activity of DRF proteins on
microtubules can be achieved by their interaction with other
microtubule-interacting proteins such as EB1 and adeno-
matous polyposis coli (39). In this study, we identify Stub1 as
the candidate E3 ligase for degradation of the activated
Diaph3. However, the fate of activated Diaph3 may be highly
dependent on its conformation and binding partners,
whereby it can be stabilized for continuous cytoskeletal
remodeling or degraded to prevent excessive actin poly-
merization. Recently, Diaph3 was found to undergo liquid-
liquid phase separation that acts as a regulatory hub for
stress-induced actin cytoskeleton remodeling (40). Phase
separated Diaph3 accumulates in Diaph3 granules (D-gran-
ules) to inhibit assembly of actin filaments in filopodia.
Interestingly, the liquid-liquid phase separation is regulated
by low complexity region 2 containing DD, FH1, and part of
FH2 domains. Whether inactive (autoinhibited) or active
Diaph3 proteins may condensate at similarly propensity re-
mains unknown.
(organ of Corti area). J, hair cell stereocilia bundle morphology labeled with A
and Diaph3 expressions in cryo-sectioned cochlea (SGN area). L, proposed mech
and activity by Stub1-mediated degradation. AAV-ie, AAV-inner ear.
Stub1-mediated ubiquitination and degradation of the active
Diaph3 represents a negative feedback regulatory mechanism
to restrain Diaph3 activity. Such regulatory mechanism by
selective degradation of the activated proteins is not uncom-
mon. Circadian photoresponses are regulated by light-
activated cryptochrome (CRY) in Drosophila melanogaster.
CRY is rapidly degraded in its active form in light and accu-
mulates in darkness. CRY lacking its C terminus exhibits light-
independent constitutive activity similar to the WT CRY under
continuous light, suggesting that the C terminus of CRY reg-
ulates the activity and degradation of the photosensitive,
photolyase-like portion of the protein (41). Phosphatase and
tensin homolog deleted on chromosome 10 (PTEN) is a potent
tumor suppressor and a multifunctional signaling protein
under tight regulation. The catalytic N-terminal C2 phospha-
tase domain acts on protein and lipid substrates, while its C
terminus serves as an autoinhibitory domain to control PTEN
membrane recruitment and phosphatase activity (42, 43).
PTEN is a relatively stable protein, truncation of its C terminus
leads to rapid degradation of PTEN mediated by Nedd4-1.
This suggests that the intramolecular interactions between
the C-terminal and N-terminal C2 domains of PTEN play a
key role in stabilizing PTEN by inhibiting the PTEN-NEDD4-1
interactions (44, 45).

Stub1 is an essential E3 ligase involved in protein quality
control. Recent studies have shown that Stub1 is involved in
regulating various pathophysiological functions, including
autophagy and lysosomal functions (46, 47), aging (48), male
reproduction (49, 50), bone remodeling (51), neuro-
degeneration (52–54), and cardiovascular disorders (55). In
this study, we found that Stub1 deficiency in mouse inner ear
leads to hair cell stereocilia defects, SGN degeneration, and
hearing loss. These phenotypes bear remarkable resemblance
to the mouse model overexpressing transgenic Diaph3 (10, 29).
Therefore, agonists or inhibitors of Stub1 may serve as po-
tential therapeutic treatments for various disorders, particu-
larly autosomal dominant nonsyndromic auditory neuropathy
caused by overexpression of Diaph3.
Experimental procedures

Materials

The HEK293T cell line was purchased from the Chinese
Academy of Sciences Cell Culture Collection. Antibodies were
from the following companies: anti-Flag (SM009100) and anti-
HA (SA068005) magnetic beads from Changzhou Smart-
Lifesciences Biotechnology, China; Flag (14793S) and HA
(3724S) antibodies from Cell Signaling Technology; Actin
(A1978) antibody from Sigma-Aldrich; Myc, His (30401ES10)
and EGFP (31002ES60) antibodies from Yeasen, China; Stub1
(55430-1-AP) antibody from Proteintech; Diaph3 (DP3491)
antibody from ECM Biosciences. Specificities of the primary
antibodies were validated in cells transfected with
ctin-Phalloidin. K, immunofluorescent images showing Parvalbumin (SGNs)
anism of a novel negative feedback regulation of Diaph3 protein expression
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corresponding plasmids. Horseradish peroxidase-conjugated
secondary antibodies including anti-rabbit immunoglobulin
G (BS13278) and anti-mouse IgG (BS12478) were from Bio-
world, China. CHX (66-81-9) was from Sigma-Aldrich and
MG132 (1211877-36-9) was from Selleck Chemicals. TAK-243
(HY-100483) was from MedChemExpress.

Animal

The use of animals was following the standard ethical
guidelines. The C57BL/6 mice used in the experiment (Gem-
Pharmatech Inc) had an equal sex ratio. Animals were housed
at a room temperature of 22 ± 1 �C, humidity of 55% ± 5%,
light/dark cycle for 12 h, and plenty of available food and
water. All animal experiments were approved by the Institu-
tional Animal Care and Use Committee of Model Animal
Research Center of Nanjing University, China (#WGQ04).

Plasmid construction

Diaph3 (NM_019670.2), Stub1 (NM_019719.4), Fbxo3
(NM_012175), Anapc4 (NM_024213.2), Trim27
(NM_009054.3), Skp1 (NM_011543.4), and RhoA
(NM_001313941.2) Complementary DNA sequences were
cloned to the eukaryotic expression vector pcDNA3.1.
Mutated and truncated fragments were derived from the
above-mentioned plasmids. All mammalian expression plas-
mids were amplified in DH5a bacteria, and all plasmids were
validated by sequencing and transfection experiments.

Cell culture

HEK293T cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum, gluta-
mine, nonessential amino acids, sodium pyruvate, and
penicillin-streptomycin. Plasmids were transfected into the
cells using liposomal transfection reagents according to the
manufacturer’s instructions. HEK293T cells were cultured in a
humidified 37 �C incubator containing 5% CO2.

Coimmunoprecipitation

After transfection, cells were harvested 48 h later, appro-
priate lysis buffer (including protease inhibitors) was added,
supernatant was centrifuged after full lysis, and a small amount
of lysate was taken for Western blot analysis. The remaining
lysate was incubated with Flag beads at 4 �C overnight. After
immunoprecipitation, the supernatant was discarded and the
beads washed with 1 ml lysis buffer for 3 to 4 times. Finally,
30 ml of 2×SDS loading buffer was added and boiled in a metal
bath at 95�C for 10 min. Protein samples were obtained after
centrifugation. Samples were subjected to the Western blot
analysis.

Stub1 shRNA knockdown

For Stub1 knockdown, target sequences for silencing human
Stub1 were cloned into pLKO1, a lentiviral vector with puro-
mycin resistance screening label and GFP tag. Plasmids of
Stub1 shRNA were constructed with forward (50- CCG GGA
12 J. Biol. Chem. (2024) 300(10) 107813
AGA GGA AGA AGC GAG ACA TCT CGA GAT GTC TCG
CTT CTT CCT CTT CTT TTT G -30) and reverse (50- AAT
TCA AAA AGA AGA GGA AGA AGC GAG ACA TCT CGA
GAT GTC TCG CTT CTT CCT CTT C -30) primers. Sticky
ends for subcloning were generated by restriction enzymes
EcoRI and AgeI. The knockdown efficiency of Stub1 in
HEK293T cells was examined by Western blot.

PAGE and Western blotting

After transfection, cells were harvested at either 24 h later
(unless otherwise indicated in figure legends), lysis buffer
(50 mM Tris–HCl pH 7.4, 150 mM NaCl, 1 mM EDTA pH
8.0, 1% Triton X-100, and 1 mM phenylmethylsulfonyl fluo-
ride, protease inhibitor) was added, and lysis was performed at
4�C for 10 min. The protein samples were then prepared by
homogenization or centrifugation. All protein samples were
subjected to SDS-PAGE and transferred to polyvinylidene
fluoride membrane, followed by antibody incubations. The
nondenaturing PAGE was performed similarly without adding
denaturing agents including SDS and mercaptoethanol. Elec-
trophoresis was performed at 0 to 4�C to prevent overheating.
Signals from horseradish peroxidase-conjugated secondary
antibodies were visualized using the enhanced chem-
iluminescence substrate (180-5001, Tanon) on the automatic
chemiluminescence image analysis system (4600, Tanon).

Mass spectrometry proteomic analysis

After transfection of plasmid for 48 h, MG132 was treated
for 6 h, and cell lysate was collected for immunoprecipitation
using Flag antibodies. The Co-IP enriched protein complex
were shortly separated by SDS-PAGE and subjected to coo-
massie blue G250 staining. The subsequent mass spectrometry
proteomics analysis was carried out as previously described
(56). Briefly, the gel bands containing proteins of interest were
excised and digested by trypsin. The resulting peptides were
extracted and finally submitted to liquid chromatography with
tandem mass spectrometry analysis using a nanoLC.2D
(Eksigent Technologies) coupled with a TripleTOF 5600 Sys-
tem (SCIEX). The original mass spectrometry data were sub-
mitted to ProteinPilot Software (https://sciex.com/products/
software/proteinpilot-software) (version 4.5, SCIEX) for data-
base searching against UniProt Homo Sapiens database
concatenated with reverse decoy database. All the searching
parameters in ProteinPilot were set to default values. In
addition, Protein Prospector (https://prospector.ucsf.edu)
(version 5.20.0) was used for search compare and protein
quantification as described previously.

SRF-RE dual-luciferase reporter assays

The pGL4.34[luc2P/SRF-RE/Hygro] plasmid was kindly
provided by Dr Cheng Deng (Sichuan University, China). A
pRL-TK renilla luciferase reporter plasmid was used as an in-
ternal reference for normalizing the firefly luciferase reporter.
Various Diaph3 constructs were cotransfected with pGL4.34
and pRL-TK plasmids, and starved for 6 h prior to the harvest.
The cell lysates were collected and the SRF activity, which

https://sciex.com/products/software/proteinpilot-software
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indirectly represents Diaph3 actin polymerization activity, was
assessed using a dual luciferase assay kit (RG089M, Beyotime).

Immunofluorescence and imaging

For cochlear histological analysis, the mouse cochlea was
isolated after audiometry. Isolated mouse cochleae were fixed in
4% paraformaldehyde for 2 h with shaking at room temperature,
and then decalcified in 5% EDTA for 3 days. Decalcified cochleae
were used for microdissection and cryosection. After microdis-
section and cryosection, dissected cochlear samples were
blocked in 5% heat inactivated horse serum with 0.3% Triton X-
100 in PBS for 1 h, and then incubated with primary antibodies
overnight at 4 �C. Next day, samples were rinsed in PBS for 3
times and incubated with secondary antibodies for 2 h at room
temperature. Primary antibodies used in this study, as follows:
rabbit anti-EGFP (1:400, 31002ES60, Yeasen), mouse anti-
Pou4f3 (1:200, sc-81980, Santa Cruz), mouse anti-Parvalbumin
(1:500, sab4200545, Sigma-Aldrich), rabbit anti-Diaph3 (1:400,
DP3491, extracellular matrix). Secondary antibodies used in this
study are as follows: Alexa Fluor 488 AffiniPure Goat Anti-
Rabbit IgG (H + L) (1:500, 111-545-003, Jackson ImmunoR-
esearch), Alexa Fluor 568-conjugated goat anti-mouse (IgG1)
(1:500; A21124, Life Technologies), Alexa Fluor 647 AffiniPure
Goat Anti-Rabbit IgG (H + L) (1:500, 111-605-003, Jackson
ImmunoResearch). Nuclei were stained with 40,6-diamidino-2-
phenylindole (1:2000, 28718-90-3, Roche). F-actin was stained
with Phalloidin-iFluor 594 (1:1000, ab176757, Abcam).

Samples were analyzed using the inverted fluorescence mi-
croscope (XD, SOPTOP), Leica SP5 confocal microscope
(Leica TCS SP5, Leica Microsystems). ImageJ software
(https://imagej.net/ij) was used to process image, map cochlear
length to cochlear best frequencies.

Mouse Stub1 shRNA AAV-ie virus preparation

For Stub1 knockdown in vivo, target sequences for silencing
mouse Stub1 were cloned into the AAV plasmid containing
the cytomegalovirus promoter, GFP tag. and polyA tail. Plas-
mids of Stub1 shRNA were constructed with forward (50- CCG
GCC CTT CGC ATT GCT AAG AAG ACT CGA GTC TTC
TTA GCA ATG CGA AGG GTT TTT G -30) and reverse
(50- AAT TCA AAA ACC CTT CGC ATT GCT AAG AAG
ACT CGA GTC TTC TTA GCA ATG CGA AGG G -30)
primers. Sticky ends for subcloning were generated by re-
striction enzymes EcoRI and AgeI. mStub1-shRNA (AAV2/i.e.,
1 × 1013 genomic copies per mL) were made by PackGene
Biotech. The knockdown efficiency of Stub1 in mouse cochlear
was examined by Western blot.

RWM injection

To infect the cochlear tissue with AAV-ie virus, P3 mice
were selected for injection. Low temperature anesthesia was
used to minimize the damage of anesthesia to mice. P3 mice
were placed in an ice bath for 2 to 3 min until loss of con-
sciousness and then moved to the ice pad for the follow-up
surgery. Surgery time was limited to 5 to 10 min. The left
ear of each pup was injected, and the noninjected contralateral
right ear was used as a negative control. After anesthesia, the
otic bulla was exposed by postauricular incision to visualize the
cochlea, RWM was exposed by examining the relative position
of the facial nerve to the temporal bone. Glass micropipette
was used to inject about 2 ml AAV per cochlea. After injection,
tissue adhesives (1469SB, 3M Vetbond) were used to bind the
skin incisions, and the pups were placed under a heat lamp.
The awaken pups were returned to their breeding cages.

Auditory function tests via DPOAE and ABR measurements

Animals were intraperitoneal injected of 375 mg/kg Avertin
(Sigma-Aldrich) for anesthesia. DPOAE and ABR tests were
performed in a sound-proof chamber on P21 mice as pub-
lished previously (57). For ABR measurements, three needle
electrodes were used, “A” placed on the dorsal midline be-
tween the two ear flaps, “B” placed behind the pinna of test ear,
and “G” placed at the base of the tail. The ABR responses were
evoked at six frequencies (5.6, 8, 11.3, 16, 22.6, and 32 kHz).
Sound pressure levels (SPLs) were raised at 5 dB-step from 10
to 80 dB (dB). The DPOAE signal in response to primary and
secondary tones with frequencies f1 and f2, respectively, was
recorded at the third frequency (2 × f1)-f2, with f2/f1 = 1.2,
with the f2 levels 10 dB lower than the f1 levels. SPLs at the ear
canal was amplified and digitally sampled at 4-ms intervals.
DPOAE thresholds were defined as the f1 level required to
evoke a response at −10 dB SPL. Both DPOAE and ABR re-
cordings were performed using the EPL cochlear function test
suite software (https://www.masseyeandear.org/research/
otolaryngology/eaton-peabody-laboratories/engineering-core)
(Mass Eye and Ear).

Statistical analysis

Statistical tests were performed using Graphpad Prism 8
(https://www.graphpad.com). Results were reported as
mean ± SEM. Specific statistical tests used in each experiment
were described in figure legends. One-way ANOVA or Stu-
dent’s t test was used for statistical analyses.

Data availability

All data reported in this paper will be shared by the corre-
sponding authors upon request.
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