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The ability to design and construct synthetic gene regulatory net-
works offers the prospect of studying issues related to cellular
function in a simplified context; such networks also have many
potential applications in biotechnology. A synthetic network exhib-
iting oscillatory behavior has recently been constructed [Elowitz, M. B.
& Leibler, S. (2000) Nature (London) 403, 335–338]. It has also been
shown that a natural bacterial quorum-sensing mechanism can be
used in a synthetic system to communicate a signal between two
populations of cells, such that receipt of the signal causes expression
of a target gene [Weiss, R. & Knight, T. F. (2000) in DNA6: Sixth
International Meeting on DNA-Based Computers, June 13–17, 2000,
Leiden, The Netherlands]. We propose a synthetic gene network in
Escherichia coli which combines these two features: the system acts
as a relaxation oscillator and uses an intercell signaling mechanism to
couple the oscillators and induce synchronous oscillations. We model
the system and show that the proposed coupling scheme does lead
to synchronous behavior across a population of cells. We provide an
analytical treatment of the synchronization process, the dominant
mechanism of which is ‘‘fast threshold modulation.’’

Cellular protein levels are determined by the interplay between
the rates of gene expression and protein degradation. Because

the regulation of expression occurs mainly at the level of DNA
transcription (1, 2), cells often manipulate their protein levels
through the modification of relevant transcription rates. Such
regulation is accomplished by specific regulatory proteins called
transcription factors and can occur in a positive or negative sense.
Positive regulation refers to an increase in transcription rate, usually
accomplished by enhancing RNA polymerase binding at a pro-
moter site. Negative regulation, in turn, usually refers to the
inhibition of polymerase binding at a promoter site. In both cases,
expressed proteins act to regulate their own production and�or that
of other proteins. Such regulatory feedback can lead to complex
network dynamics, and an important theme in ‘‘postgenomic’’
research will be to understand these dynamics and how they affect
cellular behavior.

The design and construction of de novo synthetic gene networks
(3–6) provides a natural framework for reducing the complexity of
gene regulation. This approach combines tools from nonlinear
dynamics and statistical physics with the extensive array of tech-
niques in traditional molecular biology (7, 8). Mathematical models
are utilized in the design and analysis of the various features of the
network, and, to date, the qualitative agreement between model
and experiment has supported the notion of such an engineering-
based approach (3–6). The power of this methodology is that it can
be used to study simplified systems to gain insight into the general
‘‘themes’’ of gene regulation. These themes include subnetworks
that act as switches (5, 9–13) or oscillators (3, 14–21), as well as
networks that utilize feedback to dampen the effects of internal
noise (6, 22). In addition to the insights gleaned from the construc-
tion of small networks, such genetic modules may have important
biotechnological applications in their own right. In this context,
synthetic gene circuits may provide a means for controlling complex
biochemical systems in much the same way that digital and analog
circuits provide a means for controlling electronic and mechanical
systems.

Recently, a synthetic network capable of producing sustained
oscillations in protein concentration was presented (3). The
‘‘repressilator’’ consisted of three genes (for simplicity, call them
a, b, and c), expressing three proteins (respectively, A, B, and C).
The network formed a ring: protein A repressed transcription of
gene b; B repressed c; and C repressed a. For certain biochem-
ical parameters, this cyclic repression produced self-sustained
roughly sinusoidal oscillations over the entire growth phase of
the host Escherichia coli cells. One intriguing aspect of this study
was its relationship to naturally occurring oscillatory networks,
such as circadian clocks. A random phase drift was observed in
each cellular oscillator, and because there was no inherent means
for the cells to synchronize, this caused the phases of the
oscillators to drift apart over time. These variations suggest that,
to circumvent the effects of noise, naturally occurring oscillators
might need some additional form of control (18).

In this work, we present a model for controlling a synthetic gene
network of coupled oscillators. Unlike the repressilator, our pro-
posed oscillator (23) consists of only two genes (x and y) and is of
the relaxation type. In our oscillatory gene network, both proteins
are under the control of a promoter that is activated by the protein
X, and protein Y is a protease for X. Oscillations arise because Y
degrades X and thus reduces its own expression level (because X
activates transcription of y). Our proposed control consists of cell
to cell coupling, which acts to maintain synchrony across the
population. We utilize the quorum-sensing apparatus of the bac-
terium Vibrio fischeri (24, 25). (Quorum-sensing refers to the ability
of bacteria to detect and respond to their population density.) This
cell to cell communication system operates by diffusing a small
molecule [called autoinducer (AI)] into the environment. When
this molecule binds to a regulatory protein (LuxR), it activates
transcription from the lux operator region (see Fig. 1). Recent
experiments (4) have shown that such a mechanism can be used by
a synthetic gene network. In that work, two populations of cells were
engineered: ‘‘sender’’ cells containing the autoinducer synthase
(LuxI) under the control of a chemically inducible promoter, and
‘‘receiver’’ cells containing a reporter protein [green fluorescent
protein (GFP)] controlled by the lux operator region. The exper-
iments demonstrated that a complete cell–cell signaling pathway
was active in the synthetic system. When the sender cells were
induced to express LuxI, AI was produced and diffused into the
extracellular environment. The AI then entered the receiver cells
and stimulated production of GFP by activating the lux region.

We begin by describing the proposed synthetic network and
proceed to formulate a model of the cellular and population-level
behavior. We then consider the effect of the coupling on synchro-
nization. For the near-synchrony case, we provide analytical results.
For initial conditions far from synchrony, we show by simulation
that the system is rapidly brought into synchrony by the coupling.

Abbreviation: AI, autoinducer.
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Model
The synthetic network is shown in Fig. 1. We use a variant of the
genetic relaxation oscillator proposed in ref. 23 based on proteins
CII and FtsH, both under the control of the PRE promoter from
the � phage virus. Protein CII is the autocatalytic portion of the
oscillator, whereas FtsH is a protease that degrades CII. Trans-
mission of the coupling signal between oscillators is effected by
placing the protein LuxI, which acts to synthesize the autoin-
ducer signal molecule, under the control of the PRE promoter.
The signal is received when the autoinducer binds to the
regulatory protein LuxR and activates transcription of CII from
the lux operon. Thus, when an oscillator is in its high-CII state,
it expresses LuxI and produces autoinducer, generating a signal
that ‘‘encourages’’ other oscillators to jump to the high-CII state.

We define the following chemical species: X, protein CII; Y,
protein FtsH; L, protein LuxI; A, the AI (diffusible signal); R,
protein LuxR; C, the LuxR–AI complex; D, the DNA protein-
binding site in promoter PRE; DL, the DNA protein-binding site
in the lux operator region; and P, RNA polymerase.

The fast reactions involve the binding of proteins to one
another (multimerization), to the DNA (regulatory binding),
and to the autoinducer (LuxR–AI complex formation):

4X L|;
K1

X4

D � X4
L|;
K2

DX

A � R L|;
K3

C

C � C L|;
K4

C2

DL � C2
L|;
K5

DC
L. [1]

The slow reactions involve transcription of mRNA and transla-
tion of proteins (here treated as a single combined process),
autoinducer synthesis (by protein LuxI, acting on substrates
native to the E. coli cell), and degradation of proteins and
autoinducer:

D � P O¡
kt

D � P � nxX � nyY � nlL

DX � P O¡
�kt

DX � P � nxX � nyY � nlL

DL � P O¡
kt

L

DL � P � nxX

DC
L � P O¡

�kt
L

DL � P � nxX

L � �substrates� O¡
kla

L � A

X � Y O¡
kxy

Y, [2]

where ni is the number of proteins molecules per transcript of
gene i. Species X, Y, L, and A degrade, respectively, at rates kx,
ky, kl, and ka.

We formulate the model by using a rate equation approach
(26, 27), neglecting fluctuations and using concentrations as our
dynamical variables. Taking the fast reactions to be in equilib-
rium, we eliminate variables as follows: [X4] � K1[X]4; [DX] �
K1K2[X]4[D]; [C] � K3[A][R]; [C2] � K3

2K4([A][R])2; and
[DC

L] � K3
2K4K5([A][R])2[DL].

The rate equation for the concentration of protein CII is given
by

Fig. 1. Schematic of the proposed gene network. Proteins X (CII) and Y (FtsH) constitute the relaxation oscillator; protein L (LuxI) synthesizes the diffusible signal
molecule called the AI, which passes through the cellular membrane in both directions. AI binds to the lux operator region (mediated by protein LuxR, not shown)
and stimulates production of X.
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d�X��dt � mxnxkt�P���D� � ��DX�� � kxy�X��Y�

� kx�X� � mlnxkt
L�P���DL� � ��DC

L��, [3]

where mx and ml are plasmid copy numbers. We eliminate the
fast variables, note that the total number of DNA-binding sites
is conserved in each of the PRE and lux regions (DT � [D] � [DX]
and DT

L � [DL] � [DC
L]), and nondimensionalize by setting � �

t(nxkt[P]dT(K1K2)1/4) � t�t*, x � [X](K1K2)1/4 � [X]�X*, y �
[Y]�X*, l � [L]�X*, and a � [A][R]oK3(K4K5)1/2 � [A]�A*,
where [R] � constant � [R]o. The dimensionless equation is then

dx�d� � mxf�x� � �xyxy � �xx � 	xg�a�, [4]

where f(x) � (1 � �x4)�(1 � x4), �xy � kxyt*X*, �x � kxt*, 	x �
ml(kt

L�kt)(DT
L�DT), and

g�a� � �1 � �a2���1 � a2�.

The equations for y and l are derived similarly:

dy�d� � myf�x� � �yy [5]

dl�d� � 	lf�x� � �ll , [6]

where �y � kyt*, �l � klt*, and 	l � ml(nl�nx). The appearance
of the same production term f(x) in Eqs. 4–6 reflects the fact that
all three proteins are under the control of the same promoter.

As a first approximation, we ignore spatial effects except to
partition the volume of interest into the fraction inside the
bacterial cells (volume fraction 
) and the fraction in the
extracellular space (1 � 
) (28). Autoinducer is synthesized by
LuxI (we assume that the underlying substrates are not deplet-
ed), diffuses through the cell walls at a rate �, and undergoes
degradation, leading to the equation

da�d� � 	al � Da�a � ae� � �aa, [7]

where 	a � klat*X*�A*, Da � �t*�
, aext � [Ae]�A*, and �a �
kat*. The extracellular autoinducer concentration, [Ae], is gov-
erned by

d�Ae��dt � ��	�A�
 � �Ae����1 � 
� � kae�Ae�, [8]

where kae gives the rate of decay of the autoinducer in the
extracellular space and 	[A]
 represents the average autoinducer
concentration inside the cells. As in ref. 28, we make the
simplifying assumption that [Ae] is in a quasisteady state, so that
[Ae] � Q 	[A]
, with Q � ��[� � (1 � 
)kae]. In terms of
dimensionless quantities, ae � Q 	a
.

Parameter values are as follows: � � 600 (29); K1 � 1.8 � 1018

M�3 (30); K2 � 5 � 106 M�1 (31); from earlier estimates
(nxkt[P]dT) � 88 nM min�1 (23); kal � 1.1 min�1 (32, 33); � �
9 min�1 (34). The degradation rates of the various molecules are
not known. We use the nondimensionalized values �a � 0.2
(corresponding to the rate arising from dilution by cell growth),
and �x � �y � 0.5 (a rate slightly above dilution). We use a high
degradation rate for l (�l � 25), which avoids lingering produc-
tion of AI after the oscillator is no longer in the high state;
protein degradation rates may be artificially increased by using
SsrA tags (peptide sequences appended to the protein to make
it a target for proteases in the cell) (3, 35). In wild-type E. coli,
CII has a half-life on the order of 2 min (36, 37), with the
degradation thought to be caused largely by the influence of
FtsH. The lack of a figure for the concentration of FtsH in the
cell makes the value of kxy uncertain; we use kxy � 2 � 104 nM�1

min�1 (whence �xy � 5). The dimensionless parameter Q varies
fairly weakly with the extracellular AI degradation rate, kae, over
a wide range of half-lives; we choose kae to make Q � 0.6. For
the volume fraction found inside bacterial cells we use 
 � 0.5;

this is the fraction occupied by loosely packed spheres, but of
course E. coli are not spherical, and their density will vary
depending on experimental conditions. Plasmid copy number
choices give mx � 10, my � 1, and 	l � 	x � 50. The degree
to which bound LuxR–AI complexes stimulate transcription, �,
is not available, but ref. 38 suggests that it is significantly greater
than 4; we use � � 10 (note that our analysis indicates that � does
not critically affect the synchronization behavior). The binding
strengths that make up the factor K3(K4K5)1/2 � KAR are also not
known; we use the reasonable but somewhat arbitrary value
KAR � 10�6 nM�2. Inaccuracy in this value should not be fatal
to the design effort. We can compensate for the influence of KAR
by adjusting [R]o with a tunable promoter; here, we take [R]o �
100 nM. The dimensional scaling constants are t* � 6.7 min,
X* � 580 nM, and A* � 10 	M. The remaining dimensionless
constants are 	a � 0.4 and Da � 120.

To summarize the system, each cell is governed by Eqs. 4–7;
x and y constitute the oscillator, whereas l and a implement the
coupling, operating through the quantity ae.

Results
To analyze the synchronization, we address the near-synchrony
case where the bulk of the population is synchronous, whereas
a single outlier cell (or a small fraction of the population) is out
of phase. This situation could be arranged experimentally by
augmenting the design with a chemically inducible promoter
expressing, say, protein X (CII). By flooding the system with the
appropriate inducer, we could force all cells to a nonoscillatory
fixed point, then remove the inducer to obtain a population that
would start to oscillate at least approximately in synchrony. In
this case, it is possible to derive analytical expressions for the
effect of the coupling; the analysis is somewhat technical, and we
defer the details to the Appendix. Briefly, when the outlier cell
lags the population, its level of a is increased by the ambient ae
diffused by the population. This shifts the oscillator’s transition
threshold (see Fig. 4) and causes the cells to jump quickly from
the low-x to the high-x state; this transition reduces the phase
difference between the outlier cell and the population. A slower
synchronization mechanism prevails when the outlier cell leads
the population. As Fig. 2 shows, the closed-form solution
matches well with the results of numerically integrating Eqs. 4–7
for a population of 1,000 cells, with a single outlier cell initialized
with various phase lags.

Fig. 3 illustrates that even cells initially at randomly scattered
phases are quickly brought into synchrony by the coupling.
Heuristically, the effect is caused by the cells initially in the
high-x state producing enough AI to saturate the levels of a in
the cells initially in the low-x state, causing rapid transitions and
quickly condensing the range of phases in the population. On
subsequent cycles, the cells are close enough to synchrony that
the near-synchrony mechanism discussed in the Appendix is
approximately applicable, and the population exhibits the rapid
synchronization seen in Fig. 2.

Discussion
In this article, we have proposed a design for a synthetic network
implementing coupling between genetic oscillators and we have
shown through modeling that the proposed design is capable of
producing synchronous behavior across a population of such
oscillators. Our analytical results enable us to predict, for a given
set of parameter values, whether or not the intercell coupling will
act to synchronize the cells. This will assist in producing a
working experimental implementation of the design, enabling us
to assess, at least approximately, the expected effect of varying
parameters.

Our proposed oscillator is of the relaxation type, whereas the
previously implemented ‘‘repressilator’’ (3) is a phase oscillator:
it has a sinusoidal waveform and does not exhibit multiple time
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scales. This distinction is key, because it has been shown (39–42)
that the mechanism underlying the approach to synchrony is very
different in the two cases. Relaxation oscillators generally syn-
chronize more rapidly than their phase-oscillator counterparts
and approach synchrony at a rate relatively independent of the
coupling strength. It would be of interest to investigate these
differences directly, carrying out both modeling and experimen-
tal work on a system in which the repressilator phase oscillator
was coupled across a population by using the same type of
signaling mechanism outlined here.

The model presented here simplifies a number of aspects of
the system. The effects of noise and heterogeneity are of
particular interest. Gene expression levels in cells exhibit f luc-
tuations, often attributed to the relatively small particle numbers
involved (13, 44–46). It is possible to augment the rate equations
with stochastic terms capturing these fluctuations (13, 46); in the
case of the relaxation oscillators, the effect would presumably be
most critical near the transition points, where small f luctuations
could cause early entry into the fast phases of the oscillation.
Although we have treated the plasmid copy numbers as con-
stants, they may in fact vary across a population, causing a
corresponding variation in the internal dynamics of the cells.
Further modeling and analysis may be able to elucidate how such
a variation will affect the synchronization behavior. Interest-
ingly, previous theoretical work (40) indicates that arrays of
coupled relaxation oscillators are able to compensate for het-
erogeneity in their internal dynamics, altering their waveforms
while retaining synchrony in the timing of the fast jumps.

There are a number of potential applications for a synthetic
network of the type described here. Existing gene therapy
approaches typically deal with transfected genes that are fixed in
either an ‘‘on’’ or ‘‘off’’ state. As our ability to implement cellular
control improves, more sophisticated medical interventions may
require particular proteins to be expressed on a periodic sched-
ule, and in such cases we would want all cells in a given tissue to
oscillate synchronously. Further, there has been considerable
recent interest in genetic ‘‘reverse engineering’’; that is, in
probing complex natural gene networks to deduce their network
connectivity. Inserting an artificial oscillator into the natural
system of interest would provide an input whose induced re-
sponse could provide valuable information about the system’s
internal dynamics; keeping oscillations synchronous across a
population would prevent the introduction of drift in the input
signal from cell to cell.

Appendix: Analysis
In Eqs. 4–7, the variables l and a act to shift the nullclines of the
x–y dynamics. We may thus consider motion only in the x–y
plane, provided that we properly account for the motion of the
nullclines under the influence of the other two variables. For our
parameter values, l and a rapidly approach steady-state values
(with time scales on the same order as the fast dynamics of the
oscillator); we will thus take l � l� � 	lf(x)��l and a � a� � (	al�
� Daae)�(Da � �a). The ẏ � 0 nullcline is given by y �
myf(x)��y, whereas the cubic-shaped ẋ � 0 nullcline is given by

y �
mxf�x� � �xx � 	xg�a�

�xyx
. [9]

The ẋ � 0 nullcline is in fact a family of curves parametrized by
a, where increasing the level of autoinducer shifts the nullcline
upwards. For low levels of a, g(a) � 1; substituting g(a) � 1 into
Eq. 9 gives us what we will call the a� nullcline. At high levels
of a, g(a) � �; substituting g(a) � � into Eq. 9 gives us the a�

nullcline. Both of these curves are shown in Fig. 4. The transition
points [(X1, Y1) and so on] have been found explicitly as
functions of the parameters, by solving for the extrema of Eq. 9.

We begin by examining the dynamics of a single isolated cell
with no coupling influence; that is, we take ae � 0. Consider such
a cell starting on the left branch of the a� nullcline (see Fig. 4).
On this branch, f(x) � 1 and g(a� ) � 1; the cell proceeds down
the left branch to the ‘‘knee’’ at (X1, Y1), at which point it makes
a rapid transition to the right branch. For large x we have f(x) �
�, g(a� ) � � [for our parameters, simulations show g(a� ) �
0.95�], and the cell moves upwards along the right-hand branch
of the a� nullcline to (X2, Y2), where it rapidly jumps back down
to the left branch. After this transition, g(a� ) quickly drops back
to 1, the cell moves down the a� nullcline, and the cycle repeats.

Fig. 2. Effect of coupling on cycle to cycle phase differences for the near-
synchrony case. Dashed line: analytical result. Circles: results from numerical
integration of Eqs. 4–7 for 1,000 cells with one outlier cell. Varying the
coupling strength (�) does not affect the quality of the match between
numerics and theory (simulations not shown). Rapid phase compression via
fast threshold modulation occurs for the range 0 � 

 � 
j (where 
j � 0.72);
see the Appendix for definitions of these terms. Outside this range we have
slower synchronization via the mechanism discussed in the Appendix.

Fig. 3. Synchrony achieved from random initial phases. The plot overlays the
time courses of 100 cells, chosen at random from a population of 1,000
coupled cells; the initial phase for each cell was chosen with a uniform
distribution in [0, 1]. Synchrony is essentially complete within two periods of
the oscillation.

682 � www.pnas.org�cgi�doi�10.1073�pnas.022642299 McMillen et al.



Note that the cell’s own local production of a is sufficient to shift
the ẋ � 0 nullcline from the a� to (nearly) the a� state.

A population of synchronously oscillating cells behaves essen-
tially identically to a single cell; the presence of higher levels of
ae has little effect on the x–y dynamics because g(a� ) is bounded
by �. To estimate the period of the oscillations, we use the
saturating form of f(x) to solve Eq. 5 on the left branch (f(x) �
1) and on the right branch (f(x) � �). We may then write
expressions for the time taken to move from a point y1 to a point
y2:

�L�y1 3 y2� �
1
�y

ln�y1 � C
y2 � C� [10]

on the left branch, and

�R�y1 3 y2� �
1
�y

ln�y1 � �C
y2 � �C� [11]

on the right branch, where C � my��y. Taking the fast jumps to
be instantaneous, we may write the period as

T � �L�Y2 3 Y1� � �R�Y1 3 Y2�. [12]

For our parameters this predicts T � 46 min, compared with T �
48 min obtained by numerical integration of Eqs. 4–7. We define
the phase as 
 � t�T, taking t � 0 at the point marked in Fig. 4.

To analyze the approach to synchrony, we address the near-
synchrony case mentioned in Results: the bulk of the population
is synchronous, while a single outlier cell is out of phase.
Throughout this analysis, we apply ideas from the work on ‘‘fast
threshold modulation’’ (FTM) presented in refs. 39, 40, and 43.

The synchronous portion of the population may be lumped
together into a single oscillator, so that we are effectively
considering two coupled oscillators: Op, the population (with
associated phase 
p), and Oc, the outlier cell (phase 
c). Op
affects both its own value of a� and that of Oc; Oc, on the other
hand, has no influence on Op but affects its own level of a� . We
are interested in the effect of the leftward and rightward
transitions on the separation in time of the two oscillators; that
is, how long it would take for one oscillator, moving along the
cycle, to reach the current position of the other oscillator. Phase
compression is said to have taken place if, after a transition, the

time separation is reduced. Successive compressions yield an
approach to synchrony at a geometric rate (39).

Consider first the situation where Oc lags Op, with both
starting on the left branch of the a� nullcline; we define the
phase lag as 

 � 
p � 
c. When the population reaches (X1,
Y1) and jumps to the right branch, ae rises rapidly and the cell’s
value of a� is increased to the point where g(a� )3 �; the cell thus
finds itself governed by the a� nullcline. For sufficiently short
lags (0 � 

 � 
j � 
*), the cell is now past the ‘‘knee’’ of its
new nullcline, and jumps instantly to the right. Phase compres-
sion occurs if

�R�Y1 3 Yc� � �L�Yc 3 Y1�, [13]

where Yc is the cell’s y position when the population jumps.
Substituting our parameters into Eqs. 10 and 11 shows that we
do in fact have �R �� �L for all points in this range of phases.

For longer lags (
j � 
* � 

 � 
j), the cell jumps first to the
left branch of the a� nullcline then makes its rightward transition
when it reaches (X�1, Y�1) (marked in Fig. 4). During the delay
before the cell jumps, the population moves upward along the
right branch of the a� nullcline, reaching a point Yp (explicitly
calculable in terms of the parameters). Phase compression
occurs in this case if

��R�Yp 3 Y�1�� � �L�Yc 3 Y1�. [14]

The absolute value sign on �R reflects the fact that Yp may fall
above or below Y�1, leading to negative or positive values of �R,
respectively; in either case, the phase separation between the two
oscillators is reduced if the new absolute time difference is
smaller than the original difference. Once again, evaluation of
the inequality for our parameter values shows rapid phase
compression for all points in the range.

When Oc lags Op at the leftward transition at (X2, Y2), there is no
effect on the phase separation of the two oscillators: the cell’s local
production of a keeps it on the a� nullcline, so there is no difference
in the trajectories and thus no phase compression.

We now move to the case where Oc leads Op; that is, the outlier
cell is ahead of the population in the cycle. Here, the rightward
transition at (X1, Y1) has no effect on the phase separation, once
again because of the cell’s local production of a. The leftward
transition at (X2, Y2) now leads to relatively slow synchroniza-
tion, as follows. The cell makes its leftward transition, but travels
down the left branch of the a� nullcline rather than that of the
a� nullcline, reaching some point Yc; the time separation
between points on this branch may be written as

�L
��y1 3 y2� �

1
�y

ln�y1 � f�C

y2 � f�C
� , [15]

where

f� �
�X0

X�1 f�x�dx

�X�1 � X0�
[16]

is an approximation used to obtain a closed-form solution. When
the population makes its leftward transition, the cell returns to
the a� nullcline, and we have a synchronizing effect if

�L�Y2 3 Yc� � �L
��Y2 3 Yc�. [17]

This inequality is always satisfied, as may be seen by examining
Eq. 5: because the function f(x) is monotonically increasing,
motion down the a� nullcline is slower everywhere than motion
down the a� nullcline, and thus �L(Y2 3 Y) � �L

�(Y2 3 Y) for
all Y. However, the synchronization is not rapid in this case,
because f� is only slightly greater than f(x) � 1.

Fig. 4. Nullclines for Eqs. 4 and 5. Dash-dotted line: ẏ � 0 nullcline. Solid line:
ẋ � 0 nullcline, no coupling (g(a) � 1); the a � nullcline. Dashed line: ẋ � 0
nullcline, maximum coupling (g(a) � �); the a � nullcline. 
* � 0.24 and

j � 0.72.
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Combining the effects at the leftward and rightward transi-
tions, and explicitly calculating the values of �L, �L

�, and �R for
various initial phase lags, we produce an analytical prediction of
the map from the phase lag (

 � 
p � 
c) on one cycle to the
new phase lag on the next cycle (see Fig. 2). For phase lags in the
range 0 � 

 � 
j � 
*, the lagging outlier cell undergoes a
rightward transition nearly instantly when the population jumps,
whereas for 
j � 
* � 

 � 
j the cell makes its rightward
transition after spending some time on the left branch of the a�

nullcline, as discussed above. The entire range 0 � 

 � 
j
exhibits rapid synchronization via the fast threshold modulation
mechanism: all phase lags in this range are mapped, on the next
cycle, to values near zero. For 

 � 
j, the curve is close to the

identity map; in this region, the synchronization is governed by
the slower mechanism discussed above.
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