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ABSTRACT
Mathematical models of viral dynamics are crucial in understanding infection trajectories. However, severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) viral load data often includes limited sparse observations with significant heterogeneity.

This study aims to: (1) understand the impact of patient characteristics in shaping the temporal viral load trajectory and (2)

establish a data collection protocol (DCP) to reliably reconstruct individual viral load trajectories. We collected longitudinal

viral load data for SARS‐CoV‐2 Delta and Omicron variants from 243 patients in Singapore (2021–2022). A viral dynamics

model was calibrated using patients' age, symptom presence, and vaccination status. We accessed associations between these

patient characteristics and aspects of viral dynamics using linear regression models. We evaluated the accuracy of viral load

trajectory estimation under different simulated DCPs by varying patient numbers, test frequencies, and test intervals. Older

unvaccinated individuals had a longer viral shedding duration due to lower infection and cell death rates. Higher peak viral

loads were found in older, symptomatic, and vaccinated individuals, with earlier peaks in younger vaccinated individuals.

Symptom presence and vaccination resulted in a shorter time from infection to diagnosis. To accurately estimate viral dynamics,

more frequent tests, longer test intervals, and larger patient samples are required. For 500 patients, a 21‐day follow‐up with

measurements every 3 days and an 8‐day follow‐up with daily measurements was optimal for the Delta and Omicron variants,

respectively. Patient characteristics significantly impacted viral dynamics. Our analytic approach and recommended DCPs can

enhance preparedness and response to emerging pathogens beyond SARS‐CoV‐2.
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1 | Introduction

The spread of multiple severe acute respiratory syndrome
coronavirus 2 (SARS‐CoV‐2) variants of concern during the
coronavirus disease 2019 (COVID‐19) pandemic has demon-
strated the pivotal role of viral load data in pandemic pre-
paredness. For example, viral load data is useful to inform
contact tracing [1], develop isolation guidelines [2, 3], and
monitor the epidemiological situation [4]. Furthermore, viral
load data and its related measurements are used as clinical
outcomes and as a tool to triage patients as its associations with
disease severity, risk of requiring intubation, mortality [5–7],
and transmissibility [8] have been suggested.

However, one potential issue is that viral load changes
dynamically over the course of infection: it first increases ex-
ponentially, hits a peak, and eventually declines. Additionally,
the time scale must be standardized across individuals before
use in epidemiological and clinical practices. When using viral
load data as an outcome, data collected at the same time point
after symptom onset (or infection if known) can be fairly
compared; however, aligning viral load measurements to the
same time scale is challenging. For other viral load‐related
outcomes, observing the exact timing of negative conversion is
technically impossible because it occurs sometime between
positive and negative viral test results, and the peak viral load
appears between observations. Moreover, measurement error
[9, 10] may yield a positive retest following a negative result
[11–13], making the definition of negative conversion subjective
(some studies set the first or second consecutive negative result
as negative conversion) [14, 15].

To explain the temporal viral load, one approach is to fit viral
dynamics models to discretely observed viral load data [16–20].
While viral load cannot be measured continuously at every
point within a certain time interval, these models extrapolate
viral load over the course of infection. However, research fo-
cusing on viral dynamics remains limited. Despite numerous
studies examining SARS‐CoV‐2 viral load (4003 PubMed results
using search terms “viral load” AND “SARS‐CoV‐2” as of April
29, 2024), a smaller subset has specifically focused on the viral
dynamics (223 PubMed results using search terms “viral load
dynamics” AND “SARS‐CoV‐2” as of April 29, 2024). Indeed, a
recent systematic review reported the association between
single‐timepoint viral load and disease severity to be
inconclusive [21], possibly due to inconsistent timings of data
collection. Conversely, by modeling viral dynamics, Néant et al.
found temporal viral load and mortality to be significantly
associated [18], especially when viral load at the late phase of
infection was considered. These findings collectively imply that
late‐phase viral load may reflect immunological differences
between patients, which is associated with mortality risk.
Therefore, approaches to estimate viral load and viral load‐
related outcomes from limited sparse viral load observations are
warranted.

Undoubtedly, having the full longitudinal viral load data over
the entire infection time course is essential to correctly quantify
the viral dynamics model. However, significant variability in
viral dynamics among individuals requires that patient char-
acteristics are considered to improve estimations. Furthermore,

it is currently unclear what data collection protocol (DCP) is
suitable to accurately estimate viral dynamics. Under practical
clinical settings, viral load data are often collected at discrete
time points, inconsistent intervals, and usually after symptom
onset, thus raising concerns about reliably estimating the viral
load trajectory. For example, parameter identification becomes
difficult if viral load data during the exponential phase follow-
ing initial infection is completely absent [22].

Therefore, this study aims to: (1) understand the impact of
patient characteristics in shaping the temporal viral load tra-
jectory and (2) establish a DCP to reliably reconstruct individual
viral load trajectories.

2 | Methods

2.1 | Study Data and Design

We analyzed two distinct clinical datasets comprising viral load
observations from patients infected with SARS‐CoV‐2 Delta
(B.1.617.2) or Omicron (B.1.1.529) variants, collected from April
1, 2021 to June 14, 2021 as per our previous study [23], and
December 1, 2021 to January 31, 2022, respectively. Data were
obtained from electronic medical records of patients admitted to
the National Centre for Infectious Diseases, Singapore. As per
prevailing guidance from the Ministry of Health, Singapore, ad-
missions were initiated primarily for isolation purposes and were
not necessarily of clinical need. Nasopharyngeal swabs were
collected at specific intervals after diagnosis and subjected
to reverse transcriptase‐quantitative polymerase chain reaction
(RT‐qPCR) assays. Viral load was quantified from cycle threshold
(Ct) values using the conversion formula from Zou et al. [24]:

Clog (viral load [copies/mL] ) = −0.32 × value [cycles] +t10

14.11. The lower limit of detection was set at Ct= 50 (10−1.89

copies/mL) for Delta patients and Ct= 45 (10−0.29 copies/mL) for
Omicron patients. The infectiousness threshold was set as Ct= 25
(106.11 copies/mL), based on our earlier study [25]. Age, day of
symptom onset, and vaccination status were also collected from
each patient.

Note that the epidemiological situation when data from Delta and
Omicron patients were collected was highly different. The COVID‐
19 vaccination campaign was ongoing when the Delta variant was
dominant, where 40% of the eligible population was fully vacci-
nated, compared to 86% at the peak of the Omicron epidemic wave
[26]. During the early phase of vaccine rollout, essential workers
and older age groups were prioritized. We only included patients
with a known first positive diagnosis, were naïvely infected, were
either unvaccinated or fully vaccinated with at least two doses of a
messenger RNA vaccine (Pfizer‐BioNTech BNT162b2/Moderna
mRNA‐1273). Given the vaccination schedule in Singapore, all
vaccinations would have been administered within the year before
infection (exact timing of vaccination was not recorded). Further,
we only included patients with at least three viral load measure-
ments, as we need to capture the viral load dynamics (Supporting
Information: Figure 1). To avoid confounding effects arising from
incomplete/non‐mRNA vaccination and hybrid immunity, we ex-
cluded from the analysis patients with a history of previous infec-
tions (n=3), patients who received a non‐mRNA vaccine (n=12),
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and patients who received a single dose of an mRNA vac-
cine (n=12).

IRB review was exempted at Nanyang Technological University
(IRB‐2022‐1041). Informed consent for retrospective data col-
lection was waived (NHG‐DSRB 2020/01122).

2.2 | SARS‐CoV‐2 Viral Dynamics Model

We employed the target cell‐limited model, which has been
mostly used to characterize SARS‐CoV‐2 viral dynamics [2, 9,
27–29]. We applied a nonlinear mixed‐effects modeling
approach considering both fixed effects common to the popu-
lation and random effects that capture interindividual varia-
bility. Although the estimated parameter values from the best‐
fit model are informative to infer associations between patient
characteristics (i.e., model covariates) and viral dynamics, such
interpretation is challenging because the impact of parameters
acting collectively on viral dynamics is complex (Figure 1).
Therefore, we ran a series of multiple linear regressions for each
SARS‐CoV‐2 variant using patient characteristics as indepen-
dent variables and the following six quantitative metrics of viral
dynamics as dependent variables: timing of peak viral load,

peak viral load, duration of viral shedding, time from infection
to diagnosis, time from symptom onset to diagnosis, and incu-
bation period (Figure 1). Significance of the regression coeffi-
cients was evaluated via the Wald test, while the Mann–
Whitney U test and chi‐square test of independence were used
to test for group differences in continuous and categorical
variables, respectively. All statistical tests were two‐tailed, with
p< 0.05 indicating statistical significance. See Supporting
Information: Methods S8 for full descriptions of the model and
fitting process.

2.3 | Simulating DCPs

We examined different values for parameters governing differ-
ent DCPs, namely: the number of patients (100, 500, and 1000),
number of tests per patient (3–8), and time interval between
consecutive tests (1–4 days). We assumed the first test to be
taken on the day of diagnosis, while patient characteristics were
randomly sampled to resemble the distributions in our data set.
Briefly, we first simulated longitudinal viral load data from our
calibrated model for the Delta and Omicron variants separately.
We then fitted the viral dynamics model to the simulated data
and computed the root mean squared error (RMSE)

FIGURE 1 | Schematic illustration of the characteristics of the viral load trajectory. (A) The quantitative metrics of viral dynamics considered in

this study were: (1) timing of peak viral load (days since infection), (2) peak viral load (copies/mL), (3) duration of viral shedding (days), (4) time

from infection to diagnosis (days), (5) time from symptom onset to diagnosis (days), and (6) incubation period (days). Note that symptom onset may

either precede or succeed diagnosis and may not necessarily occur at the timing of peak viral load. The horizontal red dotted line represents the

infectiousness threshold, set at 106.11 copies/mL (Ct= 25). (B) The changes in model behavior under the effect of varying the parameters gamma (γ),
beta (β), and delta (δ) are shown in each respective panel. The red solid line represents the common reference trajectory using the same parameters

γ= 5.0 day−1, β= 1.0 × 109 (copies/mL)−1 day−1, and δ= 1.0 day−1 in all panels. The black arrows highlight the changes in viral load trajectory

(colored on a gradient scale) due to the effect of an increasing parameter value of γ= [6.0, 7.0, 8.0, 9.0] day−1, β= [3.0 × 109, 5.0 × 109, 7.0 × 109,

9.0 × 109] (copies/mL)−1 day−1, and δ= [1.2, 1.4, 1.6, 1.8] day−1, respectively.
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representing the deviation of the best‐fit curves from the sim-
ulated longitudinal viral load data (Supporting Information:
Figure 2). The best DCP was defined as the shortest follow‐up
period whilst maintaining the average margin of error below
1.25 units of log10‐transformed viral load, as a longer follow‐up
period is a burden for both patients and health practitioners
involved. See Supporting Information: Methods S8 for full
descriptions of the simulation process.

3 | Results

3.1 | COVID‐19 Clinical Data

We analyzed 243 (78.9%) patients, of which 154 (63.4%) and 89
(36.6%) patients were infected by the Delta and Omicron var-
iants, respectively. The main characteristics of the analyzed
sample are reported in Table 1 and are as follows: (1) only 41
(26.6%) Delta patients were fully vaccinated, whereas all Omi-
cron patients were fully vaccinated; (2) unvaccinated Delta
patients were significantly younger than vaccinated Delta pa-
tients (median age of 40 vs. 57 years, p= 0.00235); (3) a sig-
nificantly smaller proportion of vaccinated Delta patients were
symptomatic compared to unvaccinated Delta patients (78.1%
vs. 90.3%, p= 0.0462); and (4) the proportion of vaccinated
patients who were symptomatic were not significantly different
between the Delta and Omicron variants (78.1% vs. 79.8%,
p= 0.822). On average, for both SARS‐CoV‐2 variants, viral load
was measured 4 to 7 times with an interval of 2–5 days between
tests, while the absolute time interval from symptom onset to
diagnosis was less than a day, suggesting that most patients
were diagnosed soon after symptom onset, possibly due to
public awareness and widely available mandatory free viral
tests.

3.2 | Determinants of Viral Dynamics

We assessed the raw longitudinal viral load data for the Delta
and Omicron variants stratified by vaccination status and/or
symptom presence (Figure 2). Fitted curves for each stratified
population group are shown in Figure 3, while individual‐level
viral load trajectories are available in Supporting Information:
Figures 3 and 4. Distributions of the quantitative metrics of viral
dynamics can be found in Supporting Information: Figure 5.

We examined associations between patient characteristics and
viral dynamics using a series of linear regression analyses,
incorporating the covariate impact on model parameters
(Table 2) to provide a holistic interpretation. First, we focused
on three metrics of viral dynamics related to viral kinetics
which determine the shape of the viral load trajectory: timing of
peak viral load, peak viral load, and viral shedding duration
(Figure 4A). For both SARS‐CoV‐2 variants, older age was
associated with a lower viral infection and replication rate,
whereby a slow rise in viral load at the initial phase of infection
resulted in a short delay in the timing of peak viral load, a small
rise in peak viral load, and a slightly extended viral shedding
duration. Symptom presence also resulted in a smaller viral
infection rate, yielding similar outcomes as age. For Delta

patients only, vaccination was associated with a faster initial
viral replication and an earlier timing of peak viral load by
1.95 days (95% confidence interval [CI] [1.46–2.43]). None-
theless, vaccination reduced viral shedding significantly by
5.86 days (95% CI [3.56–8.17]), with a larger death rate of in-
fected cells that expedited the decline in viral load following the
peak. On average, Omicron patients had a lower viral load that
peaks much later compared to Delta patients.

Second, we addressed three other metrics of viral dynamics
related to disease progression following initial infection: time
from infection to diagnosis, time from symptom onset to diag-
nosis, and incubation period (Figure 4B). The time from
infection to diagnosis was longer in older Omicron patients by
0.09 days per year of age (95% CI [0.08–0.10]), mainly due to the
longer incubation period by a similar magnitude of 0.08 days
per year of age (95% CI [0.06–0.10]). Generally, symptom
presence was associated with shorter time from infection to
diagnosis, possibly since the onset of symptoms prompted pa-
tients to seek treatment. Compared to asymptomatic patients,
symptomatic Delta patients were diagnosed significantly earlier
by 4.79 days (95% CI [4.16–5.41]), whereas symptomatic Omi-
cron patients were only diagnosed 0.28 days (95% CI [−0.007 to
0.57]) earlier. This was possibly due to the changing epide-
miological landscape and patient profile, such as regular testing
for asymptomatic cases. Yet, there were no significant associa-
tions between patient characteristics and the time from symp-
tom onset to diagnosis. Among Delta patients, vaccination was
associated with a reduced time from infection to diagnosis by
2.60 days (95% CI [2.11–3.09]) and a shorter incubation period
by 1.87 days (95% CI [1.37–2.37]). Interestingly, while the
incubation period was comparable between the SARS‐CoV‐2
variants, the peak viral load for the Omicron variant occurs
much later than the Delta variant and increases with age,
implying that symptom onset occurs much earlier than the peak
viral load in Omicron patients.

3.3 | Defining DCPs

We simulated longitudinal viral load data collected under dif-
ferent DCPs (Supporting Information: Figure 6) and explored
the accuracy of estimating individual viral load trajectories from
the simulated data (Figure 5). Henceforth, we use the average
RMSE as a proxy for overall model performance (i.e., a lower
average RSME suggests model fits were more accurately esti-
mated), but variations in RMSE across individual fits are found
in Supporting Information: Figure 7.

Our results suggest that, for both SARS‐CoV‐2 variants,
increasing the number of consecutive tests, interval between
tests, and number of patients resulted in a lower average RMSE
(Figure 5). For the Delta variant, a small sample size of 100
patients resulted in relatively worse model fits, but this was
eventually alleviated at higher sample sizes of 500 and 1000
patients. Furthermore, model fits for the Omicron variant
appear to be consistently better compared to the Delta variant.
As the peak viral load for the Omicron variant occurs much
later compared to the Delta variant, by the time patients present
for testing, it is likely that viral load data collected would con-
tain pre‐peak observations (Supporting Information: Figure 6).
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FIGURE 2 | Spaghetti plot of the raw viral load data of SARS‐CoV‐2 patients. (A) Delta patients stratified by vaccination status and symptom

presence. The lower limit of detection was 10−1.89 copies/mL (Ct= 50). (B) Omicron patients stratified by symptom presence only (all were

vaccinated). The lower limit of detection was 10−0.29 copies/mL (Ct= 45). Each point corresponds to the measured viral load, with the number of days

since diagnosis as the time scale. Trajectories are depicted as lines connecting the points and are colored on a gradient scale based on continuous age

(in years). Red points represent observations under the detection limit and are thus plotted at the detection limit value. The horizontal red dotted line

represents the infectiousness threshold, set at 106.11 copies/mL (Ct= 25). SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2.
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FIGURE 3 | Predicted viral load trajectories for SARS‐CoV‐2 patients. (A) Delta patients stratified by vaccination status and symptom presence.

(B) Omicron patients stratified by symptom presence only (all were vaccinated). Three age groups: 20 years old (red), 40 years old (blue), and 60 years

old (green), were chosen to depict the age effect on viral dynamics. Solid lines are the predicted viral load curves representing the population typical

value, while shaded areas correspond to 95% prediction intervals representing the interindividual variability, computed using 1,000 simulated

individual parameter sets. The horizontal red dotted line represents the infectiousness threshold, set at 106.11 copies/mL (Ct= 25). SARS‐CoV‐2,
severe acute respiratory syndrome coronavirus 2.
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Furthermore, model parameters for the Omicron variant were
generally more precisely estimated because we assumed all
Omicron patients to be fully vaccinated in our simulations, gi-
ven the high vaccination rate and our model was calibrated
without vaccination status as a covariate. This reduced the
additional level of heterogeneity in the immune life history of
patients and minimized the possible uncertainty during model
fitting. However, post‐peak observations are equally important
in determining the overall model fit. For example, if the
observed data is only restricted to three tests spaced only 1 day
apart (i.e., bottom‐left square of heatmaps in Figure 5), poorer
model fits are obtained.

When aiming for an acceptable average error within 1.25 units
of log10‐transformed viral load while minimizing the follow‐up
period, we recommend a DCP consisting of 7 consecutive

measurements with a 3‐day interval (21 days of follow‐up) for
500 Delta patients. Conversely, for 500 Omicron patients, eight
consecutive measurements with a 1‐day interval (8 days of
follow‐up) are recommended. Furthermore, the necessary
follow‐up period decreases with larger patient cohorts.

4 | Discussion

In this study, we used a viral dynamics model to study popu-
lation heterogeneity in viral dynamics. We found that the
temporal viral load trajectory was influenced by age, symptom
presence, and vaccination status. Specifically, older and
unvaccinated individuals showed a later peak timing and a
longer viral shedding duration. A higher peak viral load was
observed for older, symptomatic, and vaccinated individuals.

FIGURE 4 | Forest plots of the multivariate multiple linear regression results. Quantitative metrics of the viral dynamics related to (A) viral

kinetics in terms of the timing of peak viral load (days), peak viral load (log10[copies/mL]) and duration of viral shedding (days), as well as (B) disease

progression in terms of the time from infection to diagnosis (days), time from symptom onset to diagnosis (days), and incubation period (days) are

shown as the dependent variables in each panel. All covariates considered in the analysis such as continuous age, symptom presence, and vaccination

status are shown as independent variables on the y‐axis. The reference group was set to an individual who is 42 years old, symptomatic, and

vaccinated. Regression coefficients are reported as text and statistical significance was evaluated by the Wald test. Each regression coefficient is

shown as point estimates (filled: significant, empty: nonsignificant) along the x‐axis together with their corresponding 95% confidence intervals for

both the SARS‐CoV‐2 Delta (red) and Omicron (blue) variants. Note that the time from symptom onset to diagnosis and incubation period are

computed only for symptomatic patients by definition. *p< 0.05; **p< 0.01; ***p< 0.001. SARS‐CoV‐2, severe acute respiratory syndrome corona-

virus 2.
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However, both symptom presence and vaccination were asso-
ciated with a shorter time from infection to diagnosis. Fur-
thermore, we examined the suitability of different DCPs to
accurately estimate viral dynamics. Our analysis reveals that to
reconstruct individual viral dynamics and minimize the num-
ber of viral tests required for 500 Delta patients, a 21‐day follow‐
up period with measurements every 3 days is recommended.
For 500 Omicron patients, an 8‐day follow‐up period with
consecutive daily measurements is recommended. Additionally,
the required follow‐up period decreases with increasing sample
size. Our findings have profound multifaceted implications
ranging from disease diagnosis to virus characteristics, and to
public health policy.

From the biological point of view, viral dynamics is influenced
by multiple factors, particularly immunological differences
between patients. We observed a lower viral infection and
replication rate with age, which is likely related to im-
munosenescence. The abrupt appearance of symptoms is
thought to be caused either by viral cytopathic effects (as a
consequence of the viral infection and replication rate), or the
host immune response to infection mediated by cytokine sig-
naling [30]. In line with earlier SARS‐CoV‐2 studies, we found
that older patients are more likely to have a blunted immune
response towards infection, leading to a delay in symptom onset
and, in turn, a longer incubation period [31–33]. Moreover, one
of the hallmarks of COVID‐19 disease progression is immune

FIGURE 5 | Accuracy of estimating the viral load trajectories under different data collection protocols. Variations in the root mean squared error

(RMSE) averaged over all individual fits for both the (A) Delta variant and (B) Omicron variant are shown as heatmaps. The RMSE represents the

root mean squared deviation of the estimated best‐fit curves from the true longitudinal viral load data determined under the calibrated model, and

this varies with the number of consecutive tests and the interval between tests. The number of simulated virtual patients differ from left to right in

each panel. The areas surrounded by dotted lines correspond to combinations that realize an RMSE value below 1.25 units of log10‐transformed viral

load, while the best combination that realizes the shortest duration of follow‐up (i.e., the product of the number of consecutive tests and the interval

between tests) is depicted by a red star.
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dysregulation, which may be more pronounced in older patients
and likely contributes to severe COVID‐19 outcomes. With age,
there is a marked increase in the proportion of highly differ-
entiated effector and memory T cells due to exposure to a
variety of pathogens over time [34]. This accumulated antigenic
burden leads to immunosenescence through continuous re-
shaping and eventual shrinkage of the immune repertoire [35],
thus shifting the immune system towards an inflammatory Th2
cell profile. Our findings demonstrate that vaccination increases
the death rate of infected cells because vaccination stimulates
the immunological response to infection, although we did not
detect any age‐specific differences in vaccine responses. In
addition, symptomatic patients had higher peak viral loads and
a longer viral shedding duration compared to asymptomatic
patients. The more viral stimuli exposed to over a longer period
of time is likely why symptomatic patients have higher neu-
tralizing antibody levels, although other studies have reported a
shorter viral shedding duration for symptomatic patients [36].
Furthermore, consistent with a previous study [37], the Omi-
cron variant induced a higher viral infection rate with lower
peak viral loads, which might be due to immune escape of the
virus.

From the public health perspective, vaccination is associated
with a shorter viral shedding duration, implying that the vac-
cine is not only effective in providing individual immunological
protection but also in mitigating forward transmission.
Although our analysis shows that vaccinated individuals have a
slightly higher peak viral load compared to unvaccinated in-
dividuals, the overall transmissibility may still be lower with a
significant reduction in viral shedding duration (i.e., smaller
area under the viral load curve above the infectiousness
threshold). Moreover, among Delta patients, symptomatic cases
were diagnosed significantly earlier than asymptomatic cases on
average, highlighting the importance of identifying asympto-
matic cases through viral tests regardless of symptom presence,
especially since the peak viral load of asymptomatic cases is
comparable to that of symptomatic cases [14]. For the Omicron
variant, older age was associated with a longer viral shedding
duration, suggesting that the isolation period could be short-
ened for younger patients.

The simulation investigating DCPs is beneficial in alleviating
the burden on both patients and healthcare practitioners.
Especially during a pandemic, prolonged follow‐up periods
pose additional stress on both parties. While collecting lon-
gitudinal viral load data was feasible in Singapore due to
stringent isolation policies, implementing such measures
might prove challenging during periods of surging cases.
Therefore, our primary aim was to minimize the follow‐up
period while maintaining the error within a predetermined
threshold, balancing the need for accurate DCPs with prac-
tical considerations.

We outline the main strengths of this study below. First, we
incorporated viral load data collection into clinical routine to
obtain consistent longitudinal data from the general population
(i.e., individuals hospitalized for isolation purposes and not
necessarily of clinical need) for more accurate estimates of the
viral dynamics. Second, as viral load changes over the course of
infection, we used a mechanistic modeling approach to fully

recover the viral load trajectory and were able to characterize
quantitative aspects of viral dynamics that corroborated with
the findings of earlier studies [8, 31, 37], given that most of the
observed data occurred after the viral load peak. Third, we used
a nonlinear mixed‐effects model to capture both population
heterogeneities in viral dynamics as well as interindividual
variability which cannot be entirely explained by the covariates
included in the analysis. Incorporating this additional varia-
bility enabled us to simulate synthetic longitudinal data that
was representative of discrete observations at the population
level, which gave us a unique opportunity to evaluate the
effectiveness of different DCPs in accurately recapitulating the
viral dynamics.

There are a few limitations in our analyses. First, although the
target cell‐limited model has been widely used to characterize
SARS‐CoV‐2 viral dynamics, misspecifications might be present
and additional factors including the immune response to viral
infection may need to be incorporated for more biologically
reasonable models. Nonetheless, as demonstrated in our pre-
vious study where we compared several models considering the
effect of interferons or the eclipse phase of infection, the model
used in this study holds an advantage in its simplicity and
goodness‐of‐fit [2, 28]. Second, previous studies have shown
possible associations between viral dynamics and the number of
antigenic exposures, prior infection, immunological status, sex,
use of antivirals, vaccination history (i.e., doses, types of vaccine
and timing of vaccination), and underlying health conditions [8,
37, 38]. However, we could not investigate the effect of these
variables due to limitations in the sample size or lack of
information. In particular, we do not have access to antiviral
treatment records for the patients analyzed in this study. During
the study period, intravenous remdesivir was the only antiviral
available in Singapore and it was accessible at no cost to pa-
tients. It is thus possible that some of the patients analyzed in
this study had received remdesivir. Although previous literature
showed a limited effect of remdesivir on SARS‐CoV‐2 viral
kinetics [39, 40], it is hard to assess this impact on our results.
Third, as symptom scores were self‐reported, the estimated
incubation period may not be truly accurate. Fourth, it is
imperative to consider the costs and logistical factors involved
in DCPs. It may be essential to establish dedicated facilities for
patient follow‐up. If patients are isolated at home, it becomes
necessary to facilitate self‐collection of samples and utilize
courier services for the transport of samples to laboratories.
While nasopharyngeal swabs have traditionally been the gold
standard, recent evidence suggests that saliva samples are
equally sensitive and easier to obtain [41, 42], and thus, may be
a viable option for future data collection efforts.

In conclusion, we identified multiple factors influencing viral
dynamics and appropriate DCPs to accurately estimate viral
dynamics. These findings would deepen our understanding of
the biology of SARS‐CoV‐2 infection and, at the same time,
have strong public health implications, including the definition
of isolation guidelines and the effect of vaccination in ham-
pering forward transmission. Our analytic pipeline based on the
interpretation of limited sparse viral load observations with a
viral dynamics model is applicable in contexts beyond SARS‐
CoV‐2 and will be instrumental to improve preparedness for the
next pathogen with epidemic/pandemic potential.
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