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Abstract 

The incidence of brain metastases (BrM) in patients with metastatic melanoma is reported to be 30–50% and consti-
tutes the third most frequent BrM after breast and renal cancers. Treatment strategies including surgical resection, ste-
reotactic radiation, and immunotherapy have improved clinical response rates and overall survival, but the changes 
that occur in circulating melanoma cells to promote invasion of the brain are not fully understood. To investigate 
brain tropism, we generated new variants of the B16 mouse melanoma model by serially passaging B16 cells 
through the brain of immune competent syngeneic C57BL/6 mice. Cells were injected into the right carotid artery 
and recovered from the brain after the mice had reached the study endpoint due to tumor burden, then expanded 
in vitro and reinjected. We compared the transcriptomes of 4th generation B16 cell populations from separate line-
ages with the founder B16-F0 cells. Gene set enrichment analysis (GSEA) of differentially expressed protein coding 
genes revealed that cells isolated from the brain as well as from the lung and meninges expressed higher levels 
of genes associated with an epithelial to mesenchymal transition (EMT), upregulation of the KRAS signaling pathway, 
and a metastasis aggressiveness gene signature associated with poor survival in melanoma patients. Principal com-
ponent analysis of differentially expressed genes showed that 4th generation melanoma cells isolated from the brain, 
lung and meninges from one lineage were distinct from those of the other three lineages. Among the differentially 
expressed genes, transcript levels of several genes, including Itgb2, Rftn2, and Kcnn4, were significantly higher in all 
cell populations that comprised this lineage compared with all cell populations from the other three lineages. In con-
clusion, we have derived an aggressive, highly brain metastatic B16 variant associated with leptomeningeal disease 
by serially passaging cells in vivo.
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Introduction
Melanoma patients have a high risk of developing metas-
tases in different organs including the brain. It is esti-
mated that the incidence of brain metastases (BrM) in 
patients with metastatic melanoma is 30–50% [8, 14]. 
Neurological symptoms from melanoma BrM may be 
aggravated by local hemorrhage, which can occur in up 
to 40% of cases [58]. Treatment modalities for melanoma 
BrM include surgical resection and stereotactic radio-
surgery if central nervous system (CNS) involvement is 
limited, and whole brain radiation if it is more extensive 
[2, 35]. Among systemic treatment modalities single or 
combination immunotherapies have been trialed [23, 25]. 
Leptomeningeal disease (LMD) is associated with ~ 10% 
of late-stage melanoma [5], however based on autopsy 
studies this may be an underestimate [50]. Melanoma 
patients diagnosed with LMD have a very poor prognosis 
despite new treatment modalities [13].

There is a long history of developing metastatic vari-
ants of B16 melanoma cells [1, 18, 19]. These metastatic 
variants arose from either tail vein injections or spon-
taneously from cells placed subcutaneously in the flank 
of the mouse. Intracarotid injection has emerged as 
an effective model for brain metastasis research. This 
approach selectively targets cancer cells to the brain, pre-
venting unwanted tumor formation in facial regions and 
ensuring tumor establishment specifically in the brain. 
The method better recapitulates the metastatic process 
by requiring cancer cells to naturally traverse the blood–
brain barrier, providing enhanced physiological relevance 
compared to direct intracranial injection [37]. In the pre-
sent study we targeted the brain by injecting B16-F0 cells 
into the right carotid artery of syngeneic C57BL/6 mice, 
then reinjecting cells recovered from brain metastases for 
four successive cycles. We compared the transcriptomes 
of fourth generation B16 cells grown from brain, lung and 
meninges and found significant changes in gene expres-
sion compared with the B16-F0 cells, including increases 
in a core group of transcripts of genes associated with the 
extracellular matrix, and KRAS signaling. We identified 
several new candidate genes that may be associated with 
aggressive brain metastases.

Materials and methods
Surgical procedure
Institutional approval was obtained for the survival sur-
geries. B16-F0 melanoma cells were injected into the 
carotid artery of C57BL/6 female mice using a surgical 
technique that has been described previously [61]. In 
brief, mice were anesthetized by intraperitoneal injec-
tion of ketamine (100  mg/kg) and xylazine (10  mg/kg). 
After proper placement of the mouse on a glass plate and 
securing the extremities with tape, neck hair was shaved, 

and the skin disinfected by applying povidone-iodine 
and 70% alcohol. The mouse was then placed under the 
microscope. After skin incision with a surgical scal-
pel and placement of a spreader, blunt dissection of the 
muscle with forceps followed to expose the right carotid 
artery. A 6–0 silk suture was placed proximal and distal 
to the injection site before a small saline moistened cot-
ton ball was placed below the carotid artery to elevate the 
vessel at the intended site of injection and to reduce the 
blood flow. Then a sharp pair of micro-scissors was used 
to perform a small opening in the carotid artery, followed 
by the insertion of a polyethylene tube with a sharp-
ened tip (PE10, inner diameter 0.28  mm, outer diam-
eter 0.61 mm). After correct placement of the tube was 
confirmed by blood regurgitation into the tube, 100 ul of 
tumor cells resuspended in PBS were injected (Fig. 1A). 
Successful delivery of the tumor cells could be observed 
by color change in the nearby arteries for a few seconds. 
The catheter was then withdrawn, and the proximal 
and distal placed sutures were used for ligation of the 
artery. Finally, the situs was closed and the skin sutured 
with Prolene 4–0 suture. Tumor growth was monitored 
by bioluminescence imaging. In  vivo imaging was per-
formed under isoflurane anesthesia after IP injection of 
luciferin (100 μl of 5 mg/ml stock solution). Chemilumi-
nescence images were captured using an IVIS Lumina II 
imaging system (Perkin Elmer, Waltham, MA).

Cell culture methods
The B16-F0 primary melanoma tumor cell line [18] 
(American Type Culture Collection, Manassas, VA), and 
in vivo derivatives were grown in DMEM with 10% heat-
inactivated fetal bovine serum (FBS) in 5%  C02. To moni-
tor tumor growth in  vivo B16-F0 cells were transduced 
with a dicistronic third generation HIV-based lentivirus 
encoding strawberry fluorescent protein and firefly lucif-
erase. To recover cells from melanoma BrM, whole brains 
from injected euthanized mice were dissected and disso-
ciated by enzymatic digestion with Miltenyi® tumor dis-
sociation kit for 45  min (Miltenyi Biotec, Gaithersberg, 
MD). After adding DMEM media, cells were filtered 
through a 100  μm filter, spun down and washed with 
PBS. The resulting cell pellet was resuspended in DMEM 
containing 10% FBS and penicillin–streptomycin. Disso-
ciated cells were grown in T75 flasks until they reached 
confluency (6–23  days) prior to reinjecting them into 
animals. The following numbers of cells were used for 
the serial injections: 1st generation 1,000,000 cells/100ul, 
2nd, 3rd and 4th generation 500,000 cells/100ul.

RNA extraction and histology
B16-F0 melanoma and 4th generation B16 cells isolated 
and expanded from brain, lung and meninges were flash 
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frozen, and RNA was extracted using the Zymo® quick 
RNA kit (Zymo Research, Irvine, CA). Cells were iso-
lated from four different lineages (Fig. 1B). To avoid batch 
effect, all samples were processed for bulk RNA sequenc-
ing (RNA-Seq) at the same time. Whole brains and lungs 
from 4th generation injected animals were fixed, paraffin 
embedded and sectioned for H&E staining.

Library preparation and DNA sequencing
The integrity of RNA preps was verified using the Agi-
lent 4200 TapeStation System (Agilent Technologies, 

Santa Clara, CA). Libraries for RNA-Seq were con-
structed with KAPA Stranded mRNA-Seq Kit to gener-
ate strand-specific RNA-seq libraries (Roche Diagnostics 
Corp, Indianapolis, IN). The workflow consists of poly(A) 
RNA selection, RNA fragmentation and double-stranded 
cDNA generation using a mixture of random and 
oligo(dT) priming, followed by end repair to generate 
blunt ends, adaptor ligation, strand selection, and PCR 
amplification to produce the final libraries. Amplified 
libraries were quantified by Qubit dsDNA HS (High Sen-
sitivity) Assay Kit (ThermoFisher, Waltham, MA), and 
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Fig. 1 Derivation of B16 melanoma variants by serial intracarotid artery injection. B Images from the surgical procedure in which B16 cells are 
delivered through a polyethylene tube inserted into the carotid artery, C chemiluminescence images of the five 3rd generation B16-B2 animals 
(B2:3:1, B2:3:2, B2:3:3, B2:3:4, B2:3:5) showing tumor growth in the head, D H&E sections of brain and lung from two 4th generation animals 
showing metastatic B16 tumor cells in both organs (arrows point to the locations of the higher power insets), A schematic outline of the derivation 
of the B16 melanoma variants which entailed recovering B16 cells from brain tissue and growing them for four successive generations. The final 
designations of the 4th generation cell lines that were used for RNAseq are shown
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quality-checked by the Agilent 4200 TapeStation System. 
Different index adaptors were used for multiplexing sam-
ples in one sequencing lane. Sequencing was performed 
with HiSeq3000 sequencer to produce 50 base-pair sin-
gle-end reads (1 × 50 bp) (Illumina Inc., San Diego, CA).

Bioinformatics methods
RNAseq data were processed using Partek Flow® soft-
ware (Partek Inc., St. Louis, MO). Reads were mapped 
to the latest UCSC transcript set using STAR—2.7.2a 
[16] and mm10 (GRCm38.97), and gene counts were 
normalized by Trimmed Mean of the M-values. Pair-
wise gene set enrichment analysis (GSEA) [54] was 
performed between brain-derived, lung-derived and 
meninges-derived B16 cells and B16-F0 cells respec-
tively. 2023 releases of the molecular signatures data-
base were used. Gene lists comprised the genes that 
were expressed in every sample of either brain-derived, 
lung-derived or meninges-derived B16 cells, and B16-F0 
cells. Conversion to human orthologs used a web func-
tion, https:// www. syngo portal. org/ conve rt [29]. Differen-
tially expression of individual genes between cell samples 
was determined using edgeR [45]; cutoffs of ≥ 2  log2 fold 
difference, FDR < 0.05, and p < 0.05 were applied (Addi-
tional File 1). Metascape [63] was used to assign differ-
entially expressed genes to established gene pathways. 
NetworkAnalyst 3.0 was utilized to construct a STRING 
protein–protein interaction network with a high confi-
dence score (0.9) [55, 62]. A network of the most highly 
correlated differentially expressed genes was constructed 
using Graphia [21]. Principal components analysis of dif-
ferentially expressed genes was performed with the R 
package FactoMinerR [34]. The Cancer Genome Atlas 
(TCGA) data were obtained through the UALCAN web 
portal (https:// ualcan. path. uab. edu) [10, 11]. Networks 
were formatted in Cytoscape [48] and exported as scal-
able vector graphic files to CorelDraw (Corel Corpo-
ration, Ottawa, ON). Heatmaps were generated using 
Morpheus (https:// softw are. broad insti tute. org/ morph 
eus/) and exported to CorelDraw as portable document 
format files.

Results
Serial in vivo transfer of B16‑F0
The starting point for this study was the parental B16-F0 
line [17]. A schema outlining the derivation of the dif-
ferent B16 cell lines by serial passage in  vivo is shown 
in Fig.  1A. Cells were injected into the carotid artery 
(Fig.  1B), and as exemplified in Fig.  1C, establishment 
of tumors at each step was verified by in  vivo imag-
ing. When the mice reached the endpoint due to tumor 
burden (14–23  days after injection), they were eutha-
nized and metastases from the brain were dissociated, 

expanded until confluent, and then vitally frozen. For the 
second generation, the two most brain-homing cell lines 
by observation were chosen for intracarotid injections 
(B2 and B3; Fig. 1A). Four brain-derived B16 lines were 
selected from this second generation for the next round 
of injections (Fig. 1A). During the surgical procedure to 
generate the 3rd generation of B16 derivatives the injec-
tion was either made into the common carotid artery, or 
the external carotid artery was ligated prior to the injec-
tion, and cells were selectively injected into the internal 
carotid artery. For a final in  vivo transfer, four 3rd gen-
eration B16 derivatives were injected into the common 
carotid artery (B2:2:4, B2:3:3, B2:4:2, and B3:1:3; Fig. 1A). 
The B16-B3 lines showed by observation more of a brain 
preference in comparison to the other cell lines, starting 
at the second generation. Third generation B16-B3 cells 
were very brain distinct and showed less tumor growth in 
the skull base and the lungs, irrespective of whether the 
external carotid had been ligated. This observation also 
pertained to the 4th generation B16-B3 cells with fewer 
lung metastases compared with the other B16 deriva-
tives, although this was not quantified. In agreement with 
previous work [46], we only observed B16 cells in menin-
ges and brain ventricles not in the parenchyma (Fig. 1D).

Transcriptome analysis
Transcript data were obtained from 4th generation mel-
anoma cells grown from brain, meninges and lung, and 
three independently grown populations of B16-F0 cells. 
For GSEA, only the protein coding genes were used, and 
only those that were expressed in every sample (Addi-
tional file  1). Comparisons were made with both the 
murine and human signature gene sets, and B16 cells 
derived from all three tissues were significantly enriched 
in genes associated with an epithelial to mesenchymal 
cell transition (EMT), a core signature of cytoskeletal 
proteins associated with aggressive melanoma metastases 
in human [59], and upregulation of the KRAS signaling 
pathway (Fig. 2). The corresponding enrichment plots are 
shown in Additional file 2, and heat maps of the  log2 nor-
malized counts of the genes in all three comparisons in 
all samples with a rank score > 1 are shown in Additional 
file 3.

We made pairwise comparisons of individual genes 
between 4th generation tissue-derived melanoma cells 
and the parent F0 cells and identified a common set 
of 104 genes whose expression differed by > twofold 
between the 4th generation melanoma cells and F0 cells 
(Fig. 3A and B; Additional file 1). Approximately 40% of 
these genes were associated with established functional 
pathways in particular a set of mouse genes associated 
with extracellular matrix organization (Fig. 3C). We also 
compared the list of 104 genes to the TCGA database and 

https://www.syngoportal.org/convert
https://ualcan.path.uab.edu
https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
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identified nine genes that are expressed at a significantly 
higher level in human metastatic melanomas (n = 368) 
compared with primary tumors (n = 104) (> twofold dif-
ference in median expression; transcript per million > 1). 
These genes are listed in the inset in Fig. 3B, and boxplots 
taken from UALCAN web portal are shown in Additional 

file 4. AKAP12, CXCL10, ITGB2, and SPP1 are all associ-
ated with upregulation of the KRAS pathway (Fig. 2).

To identify potential hub genes among the 104 differen-
tially expressed genes we constructed a protein: protein 
interaction (PPI) network based on the STRING database 
of functional gene associations. The genes with the most 
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Fig. 2 Increased transcript levels of genes associated with EMT, Matrisome, and the KRAS signaling pathway. Median normalized transcript counts 
from melanoma cells isolated from brain, lung and meninges compared with three independently grown populations of B16-F0. Genes were 
selected that were found in each pairwise GSEA analysis between B16-F0 and B16-derived brain, lung and meninges cells with a rank metric 
score > 1. Overlapping genes between the three molecular signatures are shown in blue. Medians are re-scaled from 0 to 1
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connections to other genes in the B16 cell transcriptome 
would be candidate hub genes (Additional file  5). The 
expression levels of the most highly connected genes 
in the PPI network are plotted in Fig.  3D and includes 
ITGB2. These genes may be involved in controlling the 
metastatic behavior of the B16 variants.

Principal component analysis using the normalized 
gene counts of the 104 genes clearly separated the tissue-
derived cells into two groups, reflecting the source of the 
cells, B16-B3 versus B16-B1, -B2, -B4 (Fig. 4A). We also 
used linear correlation and Louvain clustering to con-
struct a network of the co-expressed genes among the 
104 genes (Pearson correlation coefficient of > 0.95; > 5 
genes per cluster) (Fig. 4B). This network was expressed 
at a higher level in B16-B3 melanoma cells, suggesting 
that they may account in part for the observation that 
B16-B3 cells appeared to show an increased propen-
sity to target the brain compared to B16-B1, B2, and B4 
cells (Fig.  4C). As shown in Fig.  4D, expression of the 
most highly connected genes was significantly different 
between the B16-B3, and B16-B1, -B2, -B4 cells. Higher 
levels of RFTN2 and ITGB2 transcripts are also found in 
metastatic human melanomas compared with primary 
skin tumors (Additional file 4).

Discussion
Following the in  vivo-in vitro selection approach devel-
oped by Isiah Fidler [17, 19] we have generated four 
new polyclonal B16 variants. To preferentially target the 
brain, we injected B16-F0 cells into the common carotid 
artery, and only selected cells that had seeded the brain. 
In agreement with Schackert and Fidler [46] we found 
that B16 cells grew extensively in the meninges and brain 
ventricles but not in the brain parenchyma per se. Intra-
carotid artery injection of human melanoma cell lines in 
immune deficient mice also leads to metastases in the 
meninges and ventricles [31, 47, 49]. The involvement of 
the meninges in melanoma BrM is well established [13, 
24, 50, 53], and the prognosis for melanoma patients with 
LMD is very poor. High resolution MRI has revealed that 
small intracranial melanoma metastases are often found 

in close association with the pial surface suggesting that 
some parenchyma metastases may originate in the lep-
tomeninges [33]. Although there are very few reported 
cases of melanoma BrM with ventricular involvement, 
the prognosis is again very poor [3, 6, 9, 27] We therefore 
believe that these new B16 variants in particular B16-B3 
will be valuable models for LMD associated with mela-
noma BrM.

Analysis of RNA transcripts from 4th generation B16 
cells isolated from brain, lung and meninges revealed sig-
nificant changes in gene expression compared with the 
parental B16-F0 line that were consonant with a more 
aggressive metastatic phenotype. Our analysis was car-
ried out on cells that were expanded in vitro, indicating 
that the changes in gene expression we observed were 
maintained after multiple cell divisions ex vivo. The phe-
notypic stability of polyclonal B16 metastatic variants 
in vitro was previously described by Isiah Fidler’s group 
[41]. We conjecture that in  vivo serial transfer of B16 
cells results in epigenetic modification of selected genes 
resulting in heritable changes in gene expression and the 
development of stable variants [12]. On the other hand, 
a recent comparison of established B16-F0 and B16-F10 
cells by single cell RNA-seq revealed the presence of 
putatively pro-metastatic subpopulations in the B16-F0 
cells [28]. This would suggest that existing variants pos-
sibly fixed by mutation in the parental B16-F0 population 
are selected for by serial transfer in vivo. In future work, 
a single cell ATAC-seq experiment with our B16 variants 
should resolve these questions.

The expression of SPP1 (osteopontin), a regulator of 
epithelial-mesenchymal transition (EMT) [30] and  a 
characteristic of melanomas with high metastatic 
potential [40], was approximately ten-fold higher in our 
B16 variants compared with the parental B16-F0. It has 
been reported that knockdown of SSP1 in melanoma 
cells results in significantly reduced tumor growth [15], 
and in a B16 mouse melanoma model, SPP1 block-
ade suppressed melanoma metastasis [26]. In addi-
tion to SPP1, GSEA showed that other genes linked to 
KRAS activation were expressed at higher levels in the 

Fig. 3 Identification of a common set of genes in the B16 variants. A Venn diagram showing that there are 104 genes whose expression is highly 
significantly different from B16-F0 in all tissue derived B16 cells (>  log2 two-fold difference, p < 0.05, FDR < 0.05), B heatmap showing the expression 
of the 104 genes in every sample of 4th generation B16 cells.  (log2 normalized counts re-scaled from 0 to 1). Hierarchical clustering of rows 
and columns is based on the 1-Pearson correlation coefficient metric and average linkage method. Boxed genes are differentially expressed 
in human metastatic melanoma; genes in blue are associated with upregulation of the KRAS signaling pathway, C association of the 104 genes 
with Reactome, Gene Ontology and Wikipathways databases  (log10P < − 3.5): R-MMU-1474244, Extracellular matrix organization; GO:0051962, 
positive regulation of nervous system development; GO:0042447, hormone catabolic process; GO:0051152, positive regulation of smooth muscle 
cell differentiation; GO:0030199, collagen fibril organization; GO:0060749, mammary gland alveolus development; WP3625, Tyrobp causal network 
in microglia; GO:0006935, chemotaxis, D dot plots of normalized transcript counts of potential hub genes among the 104 genes, based on a String 
PPI network (0.9 confidence limit)

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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brain-derived B16 variants, including the scaffolding 
protein gene AKAP12 (A-kinase anchoring protein 12), 
whose increased expression in human metastatic mela-
nomas correlates with reduced survival [20]. KRAS has 
been reported to be a potential driver gene for mela-
noma BrM [42]. In addition, BIN2, CMTM8, CXCL10, 
HCLS1, ITGB2, PTPN2, and RFTN2 were expressed 
at significantly higher levels in our B16 brain-derived 
variants compared with the parent B16-F0 and are also 

upregulated in human metastatic melanomas compared 
with primary cutaneous tumors. (Additional file 4).

Following injection into the common carotid artery, 
B16 cells would be expected to move from the internal 
branch into blood vessels in the dura and choroid plex-
uses. Although the endothelial cells of the blood vessels 
in the dura and choroid plexus are fenestrated, there are 
tight junctions between the epithelial cells that form the 
arachnoid barrier under the dura, and on the ventricular 
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side of the choroid plexus [22, 57]. Therefore, B16 cells 
have to traverse these barriers in order to enter the suba-
rachnoid space and ventricles. It appears that the B16 
cells may use the same paracellular and/or transcel-
lular means as leukocytes to enter the CSF as indicated 
by the marked increase in expression of ITGB2 in the 
brain-derived B16 variants compared with the parent 
B16-F0. Notably, in B16-B3 cells isolated from the brain 
ITGB2 transcripts were up to 45-fold higher. Integrin 
β2 dimerizes with integrin αL to form leukocyte-func-
tion-associated antigen 1 (LFA-1), which binds intercel-
lular adhesion molecules (ICAMs) on endothelial cells 
as part of the process of diapedesis [44]. ICAMs are also 
expressed on the apical side of choroid plexus epithelial 
cells [52], indicating a potential interaction between the 
B16 variants in the ventricles and the epithelial cells lin-
ing the ventricles. Complement C3 has been shown to be 
involved in the growth of tumor cells in CSF [7]. Because 
C3 transcripts were not detected in every sample it was 
excluded from our differentially gene expression analysis. 
It may however be significant that integrin dimers com-
prising ITGB2 bind iC2b, a downstream cleavage product 
of C3 [60].

We found that B16-B3 cells were distinguished from 
B16-B1, 2 and 4 cells by a group of genes whose high 
expression levels were significantly correlated. Three of 
the most connected genes in this network were ITGB2, 
KCNN4 and RFTN2. KCNN4 (KCa3.1) encodes a cal-
cium-activated potassium channel that has been was 
shown to promote invasion and metastasis in hepato-
cellular carcinoma [36]. In clear renal cell carcinoma 
increased expression of KCNN4 has been linked to 
shorter progression-free and overall survival, and a high 
metastatic potential [43]. The use of selective KCa3.1 
channel inhibitors to treat cancers is an area of active 
research [4, 38, 56].

RFTN2 encodes Raftlin family member 2 a major 
component of lipid rafts, which are microdomains in 
membranes enriched in cholesterol, sphingolipids, gan-
gliosides that form platforms for signaling via integ-
rins, ion channels and receptors [32, 39]. Thus, high 
co-expression of RFTN2, ITGB2, and KCNN4 and other 
genes in the network may reflect an increase in the for-
mation of the lipid rafts and consequent enhanced signal-
ing. Isolation and proteomic analysis of lipid rafts from 
the B16 variants and parent F0 cells would address this 
supposition.

Limitations
Further work is required to test the functional signifi-
cance in melanoma brain metastases of the genes that 
we have identified in this study. In addition, injection of 
these new variants into more distal and peripheral sites 

will be required to evaluate preferentially homing to the 
brain. Other groups have shown that selected B16 mela-
noma variants that metastasize to the same organ do not 
necessarily show an organ specificity [51]. Since we found 
that intracarotid artery injection of 4th generation brain-
derived B16 cells still leads to seeding of the lungs, we 
doubt that the B16 variants reported in this study would 
only invade the brain following subcutaneous placement 
or tail vein injection. But we believe that these new cell 
lines reflect well the phenotype of a melanoma that seeds 
the brain in metastatic leptomeningeal disease.

Conclusion
We generated novel aggressively metastatic B16 mela-
noma cell lines by serial in vivo-in vitro transfer and have 
identified genes whose elevated expression compared 
with the original B16-F0 cell line may account for an 
enhanced metastatic phenotype. These genes are associ-
ated with migration, invasiveness, and proliferation, and 
reflect an epithelial to mesenchymal transformation and 
engagement of KRAS signaling. The involvement of lipid 
rafts in brain metastases is strongly suggested by our 
gene analysis. Our data identified multiple targets that 
can be validated in human melanoma brain metastases 
samples. These new B16 cell lines, in particular B16-B3, 
will be useful for further preclinical studies and to test 
new approaches to treating brain metastases associated 
with leptomeningeal disease.
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